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Lung cancer CT image generation 
from a free‑form sketch using 
style‑based pix2pix for data 
augmentation
Ryo Toda1,2, Atsushi Teramoto1*, Masashi Kondo3, Kazuyoshi Imaizumi3, Kuniaki Saito1 & 
Hiroshi Fujita4

Artificial intelligence (AI) applications in medical imaging continue facing the difficulty in collecting 
and using large datasets. One method proposed for solving this problem is data augmentation using 
fictitious images generated by generative adversarial networks (GANs). However, applying a GAN 
as a data augmentation technique has not been explored, owing to the quality and diversity of the 
generated images. To promote such applications by generating diverse images, this study aims to 
generate free‑form lesion images from tumor sketches using a pix2pix‑based model, which is an 
image‑to‑image translation model derived from GAN. As pix2pix, which assumes one‑to‑one image 
generation, is unsuitable for data augmentation, we propose StylePix2pix, which is independently 
improved to allow one‑to‑many image generation. The proposed model introduces a mapping 
network and style blocks from StyleGAN. Image generation results based on 20 tumor sketches 
created by a physician demonstrated that the proposed method can reproduce tumors with complex 
shapes. Additionally, the one‑to‑many image generation of StylePix2pix suggests effectiveness in 
data‑augmentation applications.

The remarkable development of artificial intelligence (AI) technologies, especially deep learning models, has 
led to the application of automated methods to medical images for a wide range of purposes, including lesion 
detection and segmentation and their classification as benign or  malignant1. Typically, large amounts of training 
data are required to achieve good performances in these  applications2. However, constructing large datasets of 
medical images is difficult owing to the need to protect patient information and collaboration among hospitals. 
Consequently, in some cases, performing AI methods remains insufficient. Hence, data augmentation has been 
performed using various  methods3, typically image processing (e.g., rotation and flipping of images by geometric 
transformation, noise addition, and contrast modulation). However, the amount of data that can be increased 
using this method is limited. Recently, researchers have aimed to augment data by generating synthetic lesion 
images using generative adversarial networks (GANs) as an AI-based image-generation  technology4–8. Moreo-
ver, a wide range of target modalities and tasks have been explored. For example, Waheed et al. performed data 
augmentation with a GAN model for a COVID-19 classification model using chest X-ray  images7. Sandfort et al. 
used GAN-augmented data to perform multiorgan segmentation using computed tomography (CT)  images8. 
These approaches have attracted attention as anonymization methods as they can generate new data without 
patient  information9. Generally, GAN-based image-generation methods have prioritized the generation of a 
large number of images and have not sufficiently ensured the quality and diversity of the generated  images10. 
Therefore, insufficient progress has been made in the application of GANs and AI to rare diseases where data 
augmentation is particularly important. Accelerating the application of AI to such diseases is possible by improv-
ing the diversity of the images generated by GANs. This study aims to apply a GAN model to generate lesion 
images of the desired shapes. In our previous study, we attempted to generate lesion images using  InfoGAN11, 
which provides additional parameters for shape  control12. However, this method requires manually adjusting 
several parameters for complex shape representation. Therefore, in this study, we propose using sketches as a 
more intuitive and convenient shape control method and generating images using pix2pix, an image-to-image 
translation technology based on a GAN model. In this study, as an initial investigation, the feasibility of the 
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proposed method was verified using computed tomography (CT) images of lung cancer. Furthermore, a modified 
pix2pix named StylePix2pix was proposed. This model includes the following advantages: (1) lesion shape can be 
controlled using sketches, (2) one-to-many image generation can be performed, and (3) image generation can be 
conducted using the same procedures as for the original pix2pix (i.e., without requiring additional procedures).

Related works
GANs are commonly applied as deep-learning image-generation techniques. Competitive training is performed 
by two different deep learning models, including a generator G that generates a fake image G(z) based on ran-
dom numbers z, and a discriminator D that aims to correctly distinguish real images x from fake images G(z), 
which represents the real image space pdata using the fake image space pz to generate high-quality images. The 
loss function of this training can be formulated as a minimax game (Eq. (1)).

Although no particular deep learning model must be applied to both the generator and discriminator com-
prising the GAN, deep convolutional GANs (DCGANs)13, which employ convolutional neural networks (CNNs), 
are widely used.

The images generated by regular GAN models depend on random input numbers and are difficult to control. 
Therefore, conditional GAN (cGAN) models were proposed to generate images for various classes by simultane-
ously inputting numerical information as labels to indicate the information of the  subject14. Because real and 
fake images are conditioned by label y, the loss function of cGAN models may be formulated as given in Eq. (2).

Pix2pix, the model used in this study, was inspired by cGAN and enables image-to-image translation by 
adopting a U-net architecture for the generator and changing label y from simple numerical information to 
conditioning  images15,16. Images before and after the translation must be paired with some meaning, such as 
black-and-white and color photographs of the same subject, or a map and an aerial photograph of the same 
location. The loss function of pix2pix is given by Eq. (3), and a regularization term using the L1 norm between 
the real and generated images is added to Eq. (2). This regularization is useful for improving image quality in 
image translation  tasks17.

Image quality enhancement and translation between different modalities are main applications of pix2pix in 
medical images. A substantial number of versions have been developed with their own modifications, depending 
on their purpose and  modality18,19. As an example of using sketch-like images together, Zhang et al. proposed 
SkrGAN, which used medical images such as chest X-rays and fundus images, and detected their edges via a Sobel 
filter to improve the representation of microstructures and blood vessels in image  generation20. This is just a case 
of using sketches to improve the quality of generated images, which is essentially different from the approach 
taken in this study. Similar examples to our approach can be found in the following. Liang et al. used sketches as 
an aid to generate ultrasound images based on real images with new structures  added21. For pulmonary nodules, 
Wang et al. proposed a method for guiding images generated using a mask of the surrounding area extracted 
from the real CT image and a free-form lesion  mask22. Many of these cases require a base real image for image 
generation, and, while sophisticated image generation is possible, it is potentially limited by base real image. 
While generating completely new images is possible when only sketches are used as input for pix2pix, generating 
multiple images with different color tones and backgrounds using a single sketch is difficult with pix2pix as the 
generated image has a one-to-one relationship with the input image. Therefore, number of sketches must match 
number of images. Data augmentation by GAN typically requires generation of several thousand images, or at 
least of several hundred. However, an enormous amount of time is required to create sketches for all of these by 
hand. To address this, we propose StylePix2pix as an improved model of pix2pix based on the idea of StyleGAN 
in this  study23,24. StyleGAN is an unsupervised GAN model developed to represent image features as styles, a 
concept known as style  transfer25,26. Our StylePix2pix is designed to achieve diverse image generation by control-
ling tumor shapes using sketches and large-scale image generation sufficient for data augmentation applications.

Methods
Overview. Figure  1 presents an outline of this study. Two-dimensional images of only lesions and their 
surroundings were obtained from chest CT images. The model was trained to generate images using recorded 
images and sketches created based on them. To verify the effectiveness of the proposed StylePix2pix model, we 
also generated images using the standard pix2pix model (or, simply, pix2pix) alone. To investigate the quality 
of the generated images, comparisons with real images were performed using both qualitative and quantitative 
evaluations. Additionally, the generated images were subjected to data augmentation for a classification task as 
a more practical evaluation.

Image generation. Dataset details. We analyzed approximately 147 tumors in the chest CT images of 133 
lung cancer patients collected at Fujita Health University Hospital. Of these, 20 tumors were used as the test-
ing dataset, and the remaining 127 tumors were used for training. All images were acquired using an Aquilion 
ONE scanner manufactured by Canon Medical Systems and reconstructed by AIDR3D, using FC51 and FC52 
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as kernels for the lung window. The number of matrices was 512 × 512, pixel size was 0.625 × 0.625  mm2, and 
slice thickness was 0.5 mm. Data used in this study was approved by the Research Ethics Committee of Fujita 
Health University (No. HM17-002). All procedures were conducted in accordance with the Ethical Guidelines 
for Medical and Biological Research Involving Human Subjects in Japan, and informed consent was obtained 
from all participants.

Image preprocessing. From each CT image, the imaged tumor and its surroundings were cropped in cubes (rep-
resenting volumes of interest (VOIs)) twice the size of the tumor’s long diameter. Crop size was determined to 
consider information on the surrounding structures in addition to the lesion, and similar settings or ideas have 
been used in various studies on pulmonary  nodules27–29. As pixel size and slice thickness differed, each voxel was 
transformed into an isotropic cube with 0.625 mm on each side. As our models were designed for 2D images, 
from the cropped VOI, multiple 2D images were acquired for input to pix2pix and StylePix2pix. From all VOIs 
(training and testing data), an axial plane of the tumor center was obtained as a representative image of each 
VOI. For training data only, angled slices were additionally acquired at 10° intervals from the axial plane to ± 30° 
in the left–right and head–tail directions, respectively, to increase amount of data. All 2D images were resized 
to 128 × 128 pixels by linear interpolation and saved in a 24-bit (RGB) PNG format with the window level set to 
-600 and the window width set to 1600 as the lung window. The total number of 2D images in each dataset was 
12,446 for the training dataset and 20 for the testing dataset.

Sketches must be created for all acquired 2D images. However, creating sketches for all images by hand was 
impractical; therefore, edges were detected by the Canny edge detection  operator30 to substitute for sketches. The 
Canny method consists of four steps: (1) noise suppression using a Gaussian filter, (2) edge pre-detection using 
Sobel filters, (3) non-maximum suppression in the normal direction of each edge, and (4) edge determination 
using hysteresis thresholding. We used a 5 × 5 Gaussian filter in (1), an upper limit of 200, and a lower limit of 
128 as the thresholds in (4). Edges were saved in an 8-bit (grayscale) PNG format.

Pix2pix. Figure 2 presents the proposed pix2pix model. It consists of a generator with a U-Net structure that 
performs seven down-sampling and up-sampling operations and discriminator using a simple CNN. Both 
sketches and CT images (real or generated) were inputted into the discriminator. The network was constructed 
and trained using Tensorflow2 on a server equipped with an NVIDIA Quadro RTX8000 GPU using Adam 
(β1 = 0.9, β2 = 0.999) as the optimization algorithm, with a learning rate of 1 ×  10–5, 400 training epochs, and a 
batch size of 5.

Figure 1.  Outline of this study.

Figure 2.  Network structure of pix2pix used in this study: (a) generator and (b) discriminator.
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StylePix2pix. The original StyleGAN has two essential elements: a mapping network that generates style infor-
mation using multiple fully connected layers (Fig. 3), and a mechanism called a style block that linearly trans-
forms the kernel of each convolutional layer of the generator according to the generated style. The input (latent) 
of the mapping network consisted of random numbers. Diverse styles can be expressed without supervision, and 
various styles can be applied by adjusting input data. However, these operations do not involve directly inputting 
a style image, unlike the approach adopted for style transfer  tasks26. Our StylePix2pix model introduces these 
mechanisms into pix2pix to examine whether they are also effective in pix2pix. As the nature of pix2pix and the 
original StyleGAN are different, experiments merging them are considered novel.

Figure 4 indicates that the structure of StylePix2pix retains the basic structure of the baseline pix2pix, adds a 
mapping network, and replaces all seven up-convolution layers of the generator with style blocks. The discrimi-
nator was unchanged from the standard pix2pix model. In each style block, the style is represented by four fully 
connected layers based on a 512-dimensional input, and the weights of the 3 × 3 kernel of the convolutional layer 
were adjusted based on style. The network was constructed, and hyperparameters were established in the same 
environment as pix2pix; however, we changed the number of training epochs to 200.

Evaluation methods. Sketching by doctors. Although edges were used to train the model, we assumed 
the use of hand-drawn sketches. Therefore, we verified that images of sufficient quality can be obtained when 
sketches were used. Four doctors from the Department of Respiratory Medicine at Fujita Health University Hos-
pital created sketches based on the CT images of the test data. To verify whether generating images from sketches 
of various patterns was possible, only the lesion was specified as the target to be drawn, and the accuracy of its 
shape, size, and position was not considered. No restrictions were placed on whether blood vessels and bronchi 

Figure 3.  Basic structure of StyleGAN.

Figure 4.  Network architecture of StylePix2pix. (a) Generator with style blocks and mapping network. (b) 
Structure inside the style block.
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within the lung field were drawn as structures within the mediastinum and chest wall. This strategy is based on 
the idea that generating realistic nodule images from detailed sketches is possible. However, if generating im-
ages with a certain reality even from rough sketches is possible, the availability for data augmentation can be 
increased. Sketches were drawn on paper, digitized with a scanner, resized to 128 × 128 pixels, and binarized for 
use as data. During binarization, the threshold was adjusted for each image using visual feedback to avoid miss-
ing relevant information in the drawing.

Image quality metrics. Standard evaluation methods have yet to be established for images generated using 
GAN  models31,32. We adopted two types of image quality metrics: a general image quality metric and an image 
similarity metric based on features extracted by a CNN. The peak signal-to-noise ratio (PSNR) and structural 
similarity (SSIM)33 were used for the former. Conversely, the Fréchet inception distance (FID)34 and learned 
perceptual image patch similarity (LPIPS)35 were used for the latter.

PSNR. The PSNR is used as an index of image quality degradation in image compression. For a reference 
image f and a target image g both with sizes of M × N, the ratio of the square of the maximum pixel value that the 
image can encode (255 for 8-bit images) to the mean squared error (MSE) between the images is expressed in 
decibels (Eq. (4)). The higher the value is, the closer the quality of the reference image is maintained.

SSIM. The SSIM focuses on three factors: image luminance, contrast, and structure. These factors are expressed 
in the mean pixel values μf and μg, standard deviations σf and σg of images f and g, and covariance σfg of the two 
images (Eq. (6)).

Values are given in the range of 0–1, with a value closer to 1 indicating a better image quality. When calculat-
ing for 8-bit images, constant terms C1 = 0.01× (255)2,C2 = 0.03× (255)2 are generally used, and these values 
were also used in this study.

FID. The FID shows the similarity between two image groups as a distance. The features of 2048 dimensions 
obtained by the final pooling layer of Inception-v336, a type of CNN, were extracted from all images belonging 
to image groups F and G for comparison. The FID was calculated using Eq. (7) with the average µF and µG of the 
extracted features in each image group and covariance matrices ΣF and ΣG.

Smaller values indicate a higher similarity between image groups. Pre-trained weights were applied to Incep-
tion-v3 using ImageNet, a large database of natural  images37.

LPIPS. The LPIPS is a measure of the similarity between images, which was proposed based on the remarkable 
image recognition performance of CNN models to solve the problem that the results of conventional measures 
differ from human perception. The two images to be compared, f and g, were input to the CNN. From each 
image, a feature map f̂ l , ĝ l was obtained of size M × N from convolutional layer l. Similarity between the images 
was calculated by taking the pixel-by-pixel difference between all feature maps, weighting them with w, averag-
ing them, and then summing them (Eq. (8)).

A smaller value indicates a higher similarity between images.  AlexNet38,  VGG39, and  SqueezeNet40, which 
were trained on ImageNet, can be used to extract feature maps, and AlexNet was used in this study. The weights 
w were determined using a neural network comprising three fully connected layers. This network was pre-trained 
on the BAPPS  dataset35, which is a specially designed dataset for calculating the LPIPS, and no additional train-
ing was conducted. The BAPPS dataset contains more than 160,000 sets of three images, including a reference 
image and two distorted images created via image processing. The dataset is designed for models to select an 
image that is more similar to the reference image among the two distorted images. The distorted images selected 
by human perceptual judgments were compared with those selected based on the calculation of the LPIPS, and 
the network was trained to obtain weights w such that the two images matched.

Data augmentation using the generated images for a classification task. The proposed method 
is intended for use in data-augmentation applications. For a more practical evaluation, we verified the effective-
ness of the images generated via data augmentation in a lung cancer histological classification task using CT 
images.

(4)PSNR
(
f , g

)
= 10log10

(
2552

MSE(f ,g)

)
,

(5)whereMSE
(
f , g

)
= 1

MN

∑M
i=1

∑N
j=1

(
fij − gij

)2
.

(6)SSIM
(
f , g

)
=

(
2µf µg+C1

)(
2σfg+C2

)
(
µ2
f +µ2

g+C1

)(
σ 2
f +σ 2

g +C2

) .

(7)FID(F,G) = �µF − µG�22 + Tr
(
�F +�G − 2

√
�F�G

)
.

(8)LPIPS
(
f , g

)
=

∑
l

1
MlNl

∑
M,N

∥∥∥wl ⊙
(
f̂ lMN − ĝ lMN
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Dataset split for the classification. All lung cancer cases used in this study were pathologically examined, and 
histological types were determined for adenocarcinoma (ADC), squamous cell carcinoma (SCC), or small cell 
carcinoma (SCLC). There were 49 ADCs, 54 SCCs, and 44 SCLCs. Of these, 26 each, for a total of 78, were used 
as data for histological classification. These 78 tumors were identical to the data used in previous  research12, 
which shared a part of the dataset. Of the remaining 69 images, 10 for each histological type, for a total of 30, 
were used as test data for image generation, and the remaining 39 were used as training data for image genera-
tion.

Experiment settings. Both pix2pix and StylePix2pix were trained using the same preprocessing and hyperpa-
rameters as in “Image preprocessing”, “Pix2pix”, and “StylePix2pix”. When generating images, edges extracted 
from the above 30 test data points were used after the number of images was increased by rotation (“Image 
preprocessing” section). For StylePix2pix, the input of the mapping network was randomly changed, and five 
images were generated from each edge. The total number of images generated was 980 images × 3 classes and 
4900 images × 3 classes for pix2pix and StylePix2pix, respectively.

AlexNet, implemented in Tensorflow2, was used as the CNN for the classification. After pre-training all layers 
using generated images, only the fully connected layers were fine-tuned with real images. The pre-training phase 
had a learning rate of 1 ×  10–5, 100 epochs, and batch size of 32, and the fine-tuning phase had a learning rate of 
1 ×  10–4, 100 epochs, and batch size of 8. Optimization algorithms were all stochastic gradient descent (SGD). 
Calculating the classification accuracy is also presented as the mean and standard deviation of three iterations 
of the threefold cross-validation method, as in prior research.

Results
Image generation using edges. Figure 5 presents the results of edge-based image generation on the test 
data, wherein random numbers following a standard normal distribution were used as the input of the style 
blocks of the StylePix2pix model. While most lesions were precisely represented using either model, represent-
ing the surrounding blood vessels and structures in the chest wall was difficult, and many showed artifacts.

Table 1 lists the calculation results for the four metrics. Only the FID was calculated using all 20 test images 
for comparison between image groups, and the remaining images were the average values of the comparison for 
each image. StylePix2pix showed better results for all metrics.

Image generation using hand‑drawn sketches. Figure 6 presents the sketches of each of the four doc-
tors and results of the image generation based on them, where the input of StylePix2pix was random, as in the 
case of edges. Doctor #1 drew only the lesion, whereas Doctors #2 and #3 drew structures that could be recog-
nized relatively clearly on the CT image in addition to the lesion. Doctor #4 drew detailed microstructures. In all 
cases, lesions were precisely represented, and the surrounding structures were either incompletely represented or 
accompanied by artifacts, as was the case when edges were used. Table 2 lists the calculation results of the met-
rics when sketches are used. The calculation method was the same as that used for edges. Conversely, the model 
exhibiting better values varied depending on both the metric considered and the doctor who drew the sketch.

Figure 5.  Examples of the image generation result using edges.

Table 1.  Quantitative evaluation of generated images from edges. Significant values are in bold.

Metrics

Higher is better Lower is better

PSNR SSIM FID LPIPS

Pix2pix 17.92 0.675 251.1 0.260

StylePix2pix 18.73 0.682 220.1 0.225
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We also investigated the effect of changing the input of the style block on the image, and Fig. 7a presents the 
results. Generate multiple images from a single sketch is possible.

Result of data augmentation application. Table 3 presents the results of the application to lung cancer 
classification. The classification accuracy when using only real and InfoGAN-generated images were taken from 

Figure 6.  Examples of the sketches and image generation result using edges.

Table 2.  Quantitative evaluation of generated images from sketches. Significant values are in bold.

Doctor

#1 #2 #3 #4

(a) PSNR

Pix2pix 12.51 13.90 13.65 14.80

StylePix2pix 12.52 13.97 13.41 14.97

(b) SSIM

Pix2pix 0.5001 0.4826 0.4769 0.5036

StylePix2pix 0.5052 0.4882 0.4690 0.4990

(c) FID

Pix2pix 292.8 287.4 294.2 281.5

StylePix2pix 322.2 280.7 284.9 266.5

(d) LPIPS

Pix2pix 0.4666 0.3951 0.3877 0.3170

StylePix2pix 0.4841 0.3867 0.3991 0.3123

Figure 7.  Results of image generation varying input of the style block. (a) Examples of generated images. (b) 
Comparison of lung substances in the dataset (upper: healthy, lower: pneumonia).
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prior  research12 for comparison. Improvement in classification accuracy was confirmed using the generated 
images in both cases of pix2pix and StylePix2pix.

Discussion
As the lesion was precisely represented regardless of the presence or absence of style blocks, edges, or sketches, 
the U-net structure may have accurately transferred the shape and location of the sketch. However, as the main 
input information comprised only sketches, distinguishing between the lesion and others was impossible, which 
may be the reason for the difficulty in representing the surrounding structures. SPADE, a technique derived from 
GAN, can generate complex landscape images by inputting color-coded representations of landscape elements 
(e.g., sky, trees, and houses)41. Following this method, this problem can be solved by distinguishing the lesion, 
chest wall, mediastinum, and so on, by color.

As the values of all metrics in Table 1 were better, StylePix2pix may have been able to output images with 
high similarity to real images and good image quality when edges were used. Conversely, when sketches were 
used, the PSNR and SSIM values were almost the same for both models (Table 2). The results of FID and LPIPS 
were better when using Pix2pix for coarse sketches, such as those of Doctor #1 and, conversely, when using 
StylePix2pix for fine sketches, such as with Doctor #4. Although the edges used for training varied from fine 
for large tumors to coarse for small nodules, learning and representing them comprehensively in either model 
was impossible. In the case of StylePix2pix, unnatural streak artifacts were sometimes observed in the blank 
area without drawing, particularly around the lower bound of the image, suggesting that the model may have 
learned to recognize only the area near the drawn lines as the style. Skip connections in the U-Net structure are 
considered as involved in this problem; therefore, it may be solved in future work by changing the layer to apply 
the style block or by applying additional style blocks to the U-Net encoder. Additionally, cases wherein the edges 
detected by Canny edge detection showed apparent visual differences from sketches drawn by doctors. Recent 
edge detection methods, such as holistically nested edge  detection42, have been demonstrated to extract more 
natural edges. Hence, application of such methods is expected to improve both models’ performance.

In feasibly generating images from coarse sketches, a difference in image quality of up to 35% was observed 
between sketches of Doctor #1, which completely excluded the surrounding structures, and those of Doctor 
#4, which were finely drawn. However, when comparing Doctors #2, #3 with practical levels of sketching and 
#4, most metrics had differences of approximately 10% and were, therefore, considered acceptable. Thus, image 
generation can be possible without major problems, unless the sketch is highly omitted.

Most of changes occurring in the output image owing to the adoption of the style block were related to image 
quality (e.g., contrast and sharpness). In this study, we used data obtained from a single imaging facility and 
equipment, and imaging conditions were basically the same; therefore, imaging environment being a factor is 
unlikely. In contrast, our dataset included patients with severely damaged lungs owing to complications such as 
pneumonia (Fig. 7b). Images of such patients tend to be degraded owing to changes in the X-ray absorption in 
the lung fields. Therefore, these differences in image quality under such bad conditions were acquired as styles 
and represented in the generated images. Although the current expressions of StylePix2pix remaining within the 
range are replaceable by conventional image processing, StylePix2pix can output more diverse images if trained 
by adding images taken under more widely varying environments and conditions.

Results of the data augmentation application showed that the classification accuracy improved, although not 
as much as that with InfoGAN in prior research. InfoGAN is specialized for this task, such as explicitly providing 
information on each histological type as input to generate images. In contrast, the proposed methods improved in 
the classification accuracies without including any processing designed for this task. Therefore, the feasibility of 
general-purpose data augmentation using complex shape representation is suggested. Furthermore, StylePix2pix 
was more effective in improving the accuracy than pix2pix, indicating the benefit of large-scale data generation.

In this study, a private dataset was used for the analysis. Additional experiments using publicly available 
datasets, such as  LUNA1643, should be conducted in the future to compare this method with other GAN-based 
lung nodule image-generation methods. Additionally, as none of the quantitative metrics employed in this study 
can fully express the reality of the generated images, additional verification is necessary in the future as a more 
suitable metric is established.

Conclusion
In this study, as an initial investigation for generating desired shaped lesion images, we aimed to generate lung 
cancer CT images based on sketches using pix2pix, an image-to-image translation technology. Additionally, 
we proposed StylePix2pix as an improved version of pix2pix, designed to increase its applicability in data aug-
mentation. Although the representation of surrounding structures can still be improved, both models can rep-
resent tumors with complex shapes, indicating the feasibility of generating lesion images with arbitrary shapes. 

Table 3.  Classification results.

Generated images Classification accuracy [%]

None12 34.2 ± 5.1

InfoGAN (10,000 × 3 classes)12 57.7 ± 5.3

Pix2pix (980 × 3 classes) 40.3 ± 5.0

StylePix2pix (4900 × 3 classes) 48.7 ± 3.1
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Additionally, StylePix2pix could acquire multiple images from a single sketch, suggesting its applicability to 
data augmentation.

Data availability
The datasets analyzed in this study are not publicly available because they include patient information. The source 
code used in this study is available from the corresponding author upon reasonable request.
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