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Abstract

Recently, there has been considerable research on combining multi-agent simulation and

particle swarm optimization in practice. However, most existing studies are limited to spe-

cific engineering fields or problems without summarizing a general and universal combina-

tion framework. Moreover, particle swarm optimization can be less effective in complex

problems due to its weakness in balancing exploration and exploitation. Yet, it is not com-

mon to combine multi-agent simulation with improved versions of the algorithm. Therefore,

this paper proposes an improved particle swarm optimization algorithm, introducing a multi-

level structure and a competition mechanism to enhance exploration while balancing exploi-

tation. The performance of the algorithm is tested by a set of comparison experiments. The

results have verified its capability of converging to high-quality solutions at a fast rate while

holding the swarm diversity. Further, a problem-independent simulation-optimization

approach is proposed, which integrates the improved algorithm into multi-agent systems,

aiming to simulate realistic scenarios dynamically and solve related optimization problems

simultaneously. The approach is implemented in a response planning system to find optimal

arrangements for response operations after the Sanchi oil spill accident. Results of the case

study suggest that compared with the commonly-used shortest distance selection method,

the proposed approach significantly shortens the overall response time, improves response

efficiency, and mitigates environmental pollution.

Introduction

The merging of optimization and simulation technologies has seen rapid growth recently. The

optimization of simulation models refers to finding the best values of some decision variables

for a system where the performance is evaluated based on the output of a simulation model of

this system [1]. However, due to the complexity, analytical simulation methods may be unsuit-

able for large-scale systems in manufacturing, supply chain management, financial manage-

ment, etc. Agent-based modeling (ABM) is a bottom-up modeling method with high

autonomy and interactivity, which is particularly suitable for complex system research [2].

Given the advantages of ABM, researchers have been solving optimization problems by inte-

grating multi-agent simulation (MAS) with a wide range of methods, including game theory,

reinforcement learning, and swarm intelligence (SI). Applications can be found in various
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fields such as intelligent transport systems, efficient electric grids, and smart buildings. Among

the methods mentioned above, SI has been proved to be robust and efficient for optimization

problems. As a classic category of SI, particle swarm optimization (PSO) has the advantage of

simple parameter setting, fast convergence rate, high stability, and strong scalability, making it

an excellent option for complex systems.

However, despite a high convergence rate, the standard formation of PSO (SPSO) [3] is

likely to stagnate at a local optimum, which reduces the solution accuracy. Thus, it is necessary

to modify the algorithm for the application in complex problems where stable optimal solu-

tions are indispensable. Different approaches have been considered to improve SPSO, among

which setting parameters is especially representative [4]. Changing coefficients is a typical way

of parameter setting. The performance of SPSO is affected by the values of its coefficients, i.e.,

the acceleration coefficients and the inertia weight. Thus, several attempts were made to tune

the values of these parameters, such as the random weight method (RPSO) [5], the constriction

factor approach (CPSO) [6], and the fuzzy adaptive approach (FAIPSO) [7]. Apart from the

coefficients, the population size of the swarm is also a vital parameter. The basic idea for

adjusting population size is to concentrate the individuals in the most promising area during

the exploitation phase of the algorithm. De Oca et al. [8] conducted this idea by introducing

incremental social learning (IPSO). On the other hand, as SPSO came from a simplified simu-

lation of bird clustering behaviors, some researchers tried to improve it by mimicking other

bird activities simultaneously. Neshat et al. [9] modified SPSO based on the predation phe-

nomenon in bird swarms (PPSO). Besides these approaches, Li et al. [10] decoupled explora-

tion and exploitation to make the algorithm more effective in large-scale optimization.

In MAS, agents can be either homogeneous or heterogeneous. Homogeneous agents are

usually treated as particles when PSO is applied [11]. Yang et al. [12] presented a multi-agent-

based model which simulated human behaviors in a multi-exit evacuation environment,

where individuals were homogeneous agents and PSO was introduced to simulate their move-

ment. Ali et al. [13] proposed a collective motion and self-organization control of a swarm of

10 unmanned aerial vehicles, which were divided into two clusters of five agents each. PSO

was adopted to provide the best agents of the cluster. While homogeneous systems often simu-

late certain collective activities of agents with the same properties, heterogeneous systems are

more practical for realistic scenarios due to the diversity of agents. Kanaga and Valarmathi

[14] proposed a multi-agent model using PSO to solve patient scheduling problems, using a

PSO Agent to perform the algorithm. Yu et al. [15] designed a Web services selection model,

using PSO to select the optimal Web services combination in E-business. The model was real-

ized by MAS. Thiel et al. [16] simulated Hanoi dwellers’ choices between traditional markets

and a hypothetical new one, aiming to find the optimal location for the ready-to-build local

supermarket by using PSO to maximize sales volume. Mahad et al. [17] proposed an intelligent

MAS approach to optimize power supply in community-based multi-microgrids systems,

where various layers of autonomous and intelligent agents took decisions based on the PSO

method.

Although there are many studies on improving SPSO, there are not so many attempts to

combine proposed algorithms with MAS and apply them to practical problems. In fact, utiliz-

ing improved algorithms in simulation-optimization systems is necessary because complex

tasks require high-performance optimizers, and SPSO may not meet this requirement. Besides,

existing studies on the combination of MAS and PSO may vary in engineering fields, yet they

all designed the system based on specific problems of their own research field without summa-

rizing a general and universal framework, which is field-independent and can be implemented

in various settings. Therefore, this paper focuses on a more in-depth exploration of improving
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PSO and integrating it into MAS to solve practical problems. The main contributions of this

paper are as follows:

1. Proposing an improved particle swarm optimization algorithm (CoPSO) according to the

biological nature of birds. It has a multi-level structure and a competition mechanism, aim-

ing to improve performance by enhancing exploration while balancing exploitation.

2. Proposing a general simulation-optimization approach (MAS-CoPSO) to integrate CoPSO

into MAS. It is supposed to achieve a very close combination between simulation and opti-

mization, and the application should not be limited to certain engineering fields and spe-

cific problems.

3. Conducting a series of experiments to substantiate the validity of CoPSO.

4. Implementing MAS-CoPSO in a case study of the Sanchi oil spill accident to solve the

response planning problem.

Methods and materials

This section elaborates on the methodologies used in this study. Firstly, a brief introduction to

MAS technology is given. Detailed descriptions of the proposed CoPSO algorithm and the

MAS-CoPSO approach follow afterward.

Multi-agent simulation

The fundamental element in MAS is the agents, which can be software or physical entities.

Although different agents exhibit distinct behaviors, they share some common properties. For

instance, they all have a certain degree of autonomy that enables them to work even without

human intervention, they can communicate and interact with each other, and they are capable

of perceiving and reacting to the changes in the environment as well as determining the proper

behaviors to achieve the final goal [18]. In a simulation system, agents can be either homoge-

neous or heterogeneous depending on the specific problem background. Heterogeneous

agents can deal with diverse scenarios and complex tasks, making it more suitable for compli-

cated realistic systems [11]. Based on the aim of proposing a general framework for the combi-

nation of MAS and CoPSO, this paper mainly focuses on heterogeneous systems due to their

universality.

Improved particle swarm optimization algorithm

PSO mimics the behavior of bird swarms. The fundamental idea is to assume a potential solu-

tion to the optimization problem as a bird without quality and volume, i.e., a particle. Particles

are described by their positions and velocities. Generally, the position of a particle represents a

specific solution while the velocity represents the searching direction and scope, which leads

the particle to fly through the solution space. Every particle will get a fitness value by calculat-

ing the objective function. It will also adjust the value according to the experience of itself and

the neighbors.

Supposing the search space is D-dimensional, the ith particle is represented as

xi ¼ ðxi1; xi2; . . . ; xiDÞ, where xid 2 ½Xd
min;X

d
max�, d 2 [1, D], Xd

min and Xd
max are the lower and

upper bounds of the dth dimension, respectively. The velocity of the ith particle is represented

as vi ¼ ðvi1; vi2; . . . ; viDÞ, where vid 2 ½Vmin;Vmax�, d 2 [1, D], Vmin and Vmax are the minimum

velocity and maximum velocity specified by the user, respectively. In SPSO [3], during each
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iteration, particle i updates its position and velocity as follows:

vi  wvi þ r1c1ðpbesti � xiÞ þ r2c2ðgbest � xiÞ; ð1Þ

xi  xi þ vi; ð2Þ

where w is the inertia weight, r1 and r2 are random values between 0 and 1, c1 and c2 are accel-

eration constants which control how the particle moves, pbesti ¼ ðpbesti
1
; pbesti

2
; . . . ; pbesti

D
Þ

is the best previous position of the ith particle, and gbest = (gbest1, gbest2, . . ., gbestD) is the

best position among all the particles in the swarm.

PSO encourages exploration during the early stage of the iterations while encouraging

exploitation in the latter stage. However, Angeline [19] has pointed out that the balance

between exploration and exploitation is subtle and difficult to control in PSO, leading to stag-

nation or premature convergence. Inspired by the features of bird flocks, this paper proposes

CoPSO to improve the performance of PSO, introducing a multi-level structure and a compe-

tition mechanism.

Multi-level structure. According to the biological nature of birds, their ability to sing and

create a complete song is learned from their parents. Experiments have shown that if a bird is

reared in silence, it can only scream. In addition, birds’ singing skills are not set in stone. Basi-

cally, as they grow up, their expertise in singing also gets improved [20]. Based on this phe-

nomenon, CoPSO has a multi-level structure, dividing the particles in a swarm into different

singing levels. It is stipulated that the closer a particle is to a possible global optimum, the

higher its level. The level of the ith particle is denoted by li, which will increase if the particle

doesn’t update its personal best position pbesti in μ continuous iterations. Since birds of differ-

ent ages learn to sing at different rates, particles of different levels have different acceleration

constants.

Fig 1 illustrates how the particles’ levels change during the iterations in two-dimensional

unimodal problems. At the early stage of the algorithm, particles are like newborn birds with

little knowledge about singing. They will explore the search space and try to find promising

areas. Once found, they might temporarily stop updating their personal best positions, leading

to an upgrade. At the latter stage of the algorithm, some particles can be very close to the global

optimum. Consequently, they will find it difficult to locate better positions, and their levels are

also relatively higher.

Fig 1. Variations of particles’ levels during the iterations in two-dimensional unimodal problems. The points

represent the particles. (a) The early stage. (b) The latter stage.

https://doi.org/10.1371/journal.pone.0275849.g001
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Competition mechanism. While a particle’s high level is likely to come from finding the

global optimum, there are exceptions. Note that falling into local optima can also stop particles

from updating their personal best positions. Since particles’ levels are linked to their ages (the

higher level and the more skillful in singing, the older), the idea of the competition mechanism

inside bird swarms is utilized to improve the algorithm. The survival resources of swarms and

the lifespan of birds are both limited. Therefore, a bird swarm is constantly renewed by the

death of old birds and the born of new ones. If a particle’s level is too high, it becomes too old

to possess the resources of the swarm. The population size is set as a constant, once a particle’s

level reaches the upper bound Lmax, it will be replaced by a randomly generated new one. The

new particle has the lowest level since it’s a newborn.

Fig 2 depicts how the competition mechanism functions in two-dimensional multimodal

problems. If particles prematurely converge to a local optimum, they will upgrade around it. It

can be seen from Fig 2a that few particle gets close to the global optimum. However, once the

particles in the local area become too high-leveled, they will be replaced by new birds. As these

new particles are randomly generated, they have the potential to explore unknown search

space and finally locate the global optimum, which is shown in Fig 2b.

Since particles tend to move closer to the global optimum and oscillate around it as the

algorithm runs, in practice, the value of μ will be increased as the level rises, which allows an

elaborate control over the balance between exploration and exploitation. The pseudo-code of

CoPSO is shown in Algorithm 1.

Algorithm 1: Pseudo-code of CoPSO
Input: The value of Lmax, the value of μ, and the maximum number of
iterations Imax
Output: The final solution gbest and its fitness value f(gbest)
1 Initialize gbest;
2 for each particle i do
3 Generate xi and vi randomly;
4 pbesti = xi;
5 if f(xi) is better than f(gbest) then
6 gbest = xi;
7 end
8 end
9 while Imax is not met do
10 for each particle i do
11 Update vi according to Eq (1);

Fig 2. Competition mechanism in two-dimensional multimodal problems. The points represent the particles. (a)

Particles are trapped in the local optimum. (b) Particles jump out of it.

https://doi.org/10.1371/journal.pone.0275849.g002
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12 Update xi according to Eq (2);
13 if f(xi) is better than f(pbesti) then
14 pbesti = xi;
15 end
16 if f(xi) is better than f(gbest) then
17 gbest = xi;
18 end
19 if pbesti hasn’t changed in μ continuous iterations then
20 li+ = 1;
21 end
22 if li == Lmax then
23 Regenerate xi and vi randomly;
24 li = 0;
25 end
26 end
27 end

Problem-independent simulation-optimization approach

The architecture of the proposed MAS-CoPSO approach is shown in Fig 3, where the MAS

module and the CoPSO module are the main components. For the optimization problem

brought up by the user (e.g., decision making, scheduling, route planning, etc.), a suitable sim-

ulation time step should be chosen first according to specific backgrounds. In every time step,

MAS is supposed to simulate the problem scene, during which the agents’ behaviors might

change the values of related variables and parameters. Simulation statistics are then put into

Fig 3. Architecture of the MAS-CoPSO approach.

https://doi.org/10.1371/journal.pone.0275849.g003
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the optimization module, whose objective can be maximizing the efficiency or minimizing the

cost of certain activities. CoPSO algorithm is supposed to optimize the objective function

while satisfying all the constraints. The optimization result will then play as the input of MAS,

instructing the simulation process in the next time step. This iteration will go on until meeting

the stop criteria set by the user. The outcome of MAS-CoPSO is the final solution to the prob-

lem. For complex systems, the solution may not be strictly optimal (actually it is intractable to

find the strict global optimum for these problems). However, MAS-CoPSO can compromise

between the solution quality and computational cost, making it possible to get a satisfying

result in a reasonable period of time.

Successful simulation of the problem scene relies on a proper setup of the environment

(which reflects the background of the problem) and an appropriate design of all the agents. In

MAS, agents have autonomous behaviors and complex interactions, and the relationship

between them can be various (e.g., cooperation, competition, control, etc.). Value changes of

related variables and parameters link simulation and optimization together. For CoPSO, simu-

lation results will influence the calculation of the objective function’s fitness value and the

expression of constraints. Optimization results of CoPSO will function as the instructions for

simulation in the next time step, i.e., how to adjust agents’ behaviors and tune the values of var-

iables, parameters, and environmental settings. These two modules compose a cohesive frame-

work through consistent information exchange and close integration.

Experiments and analysis of the optimization algorithm

To substantiate the validity of the proposed CoPSO algorithm, this study conducts numerical

comparison experiments and computational complexity analysis. Exhaustive descriptions and

discussions are given in this section.

Comparison experiments

The performance of CoPSO is compared with a set of classic algorithms:

• SPSO [3]: the standard formation of PSO, introduced in detail in the previous section.

• RPSO [5]: PSO with a random inertia weight factor designed for tracking dynamic systems.

• CPSO [6]: PSO with a new constriction factor related to the original acceleration

coefficients.

• IPSO [8]: PSO with an increasing population size, i.e., whenever the algorithm can not find

a satisfactory solution, add a new particle to the population.

Benchmarks and parameter setting. Five well-known benchmark functions commonly

used in literature [21] are applied to evaluate the performance of CoPSO, both in terms of solu-

tion quality and convergence rate. They are non-linear minimization problems that present

different difficulties to the optimizers. Table 1 lists the functions, the problem dimension n,

the global minimum fitness value fmin, and the search space ranges (which are also the initial

ranges in this research).

The main parameters are set based on the recommendation in [22]. In CPSO, the maximal

velocity Vmax and the minimal velocity Vmin are 100,000 and -100,000, respectively (since it is

believed that Vmax and Vmin are not even needed in CPSO [6]). For other algorithms, Vmax is

10% of the search space’s upper bound while Vmin is 10% of the lower one. The acceleration

constants c1 and c2 are both 2.05 for CPSO. For SPSO, RPSO, and IPSO, the figure is 2.0. For

CoPSO, Lmax is 3, the initial value of μ is 5 (added by 1 for each level up), and the gap between
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the acceleration constants of each level is 0.2 (c1 and c2 are the same with a maximum value of

2.0). A fixed inertia weight value of 0.6 is adopted for SPSO, IPSO, and CoPSO. The maximum

iteration number is 1000 for all algorithms, meaning that the maximum particle number is

1000 in IPSO. In other cases, the population size is 80. A total of 50 repeating runs are con-

ducted for each experiment. In addition, as recommended by Yang et al. [23], Wilcoxon rank

sum tests are conducted for the statistical analysis between CoPSO and the other algorithms

with a significance level of 0.05.

Results and discussion. Table 2 summarizes all the experimental results of 50 indepen-

dent runs. Wilcoxon rank sum tests further verify the significance of these numerical results.

The numbers in bold represent the comparatively best values. In general, CoPSO greatly out-

performs SPSO, RPSO, CPSO, and IPSO on most metrics. For the exceptions, it still shows

equivalent performances to the comparison algorithms. These results indicate that the multi-

level structure and the competition mechanism can improve the solution quality of CoPSO.

It is believed that CoPSO can preserve excellent exploration and exploitation abilities while

keeping a good balance between these two. In other words, CoPSO is able to jump out of local

optima and fully exploit the promising areas at a fast rate. To substantiate this hypothesis,

swarm diversity is used to measure an algorithm’s exploration ability. Supposing the size of

swarm S is N, the problem dimension is D, and xi represents the position of particle i. As rec-

ommended by Yang et al. [23], the diversity of swarm S is computed as follows:

DðSÞ ¼
1

N

XN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XD

d¼1

ðxi
d � �xdÞ2

s

;

�xd ¼
1

N

XN

i¼1

xi
d;

where D(S) is the swarm diversity of S and �x is the average position of the swarm. Further, the

converging speed can reflect whether an algorithm can compromise between exploration and

exploitation properly. During the iterations, average swarm diversities and average global best

fitness values (of 50 runs, in logarithmic form) for each algorithm on five benchmarks are

recorded in Fig 4.

Generally, CoPSO converges faster with better solutions than all other algorithms in most

cases. As for swarm diversity, CoPSO holds a similar tendency on all benchmarks, i.e., decreas-

ing rapidly in the early stage of the evolution and staying at a relatively high value (or even the

highest) in the latter stage. This can be explained by the structure of CoPSO. Particles of differ-

ent levels are in different regions of the search space. Those of lower levels are more likely to

Table 1. Benchmark functions used in this study.

Function n fmin Search range

Sphere function f1ðxÞ ¼
Pn

i¼1
xi2 30 0 [−100, 100]n

Schwefel’s function f2ðxÞ ¼
Pn

i¼1
jxij þ

Qn
i¼1
jxij 30 0 [−10, 10]n

Quartic function f3 ¼
Pn

i¼1
ixi4 þ rand½0; 1Þ 30 0 [−1.28, 1.28]n

Rosenbrock function f4 ¼
Pn

i¼1
100� ðxiþ1 � xi2Þ

2
þ ð1 � xiÞ

2 30 0 [−100, 100]n

Griewank function
f5 ¼

1

4000

Pn
i¼1
xi2 �

Qn
i¼1

cos
xiffiffi
i
p

� �

þ 1
30 0 [−600, 600]n

The problem dimension n, the global optimum fmin, and the search range are listed in the table.

https://doi.org/10.1371/journal.pone.0275849.t001
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be far away from the global best position while those of higher levels can be very close to it.

CoPSO treats different levels differently by enhancing exploration for lower levels and promot-

ing exploitation for higher ones. Thus, the algorithm has more potential to locate promising

areas in the early stage and then converges to them very quickly, causing the swarm diversity

to decline. However, particles may not upgrade because they find a global optimum, but

because they are trapped in local optima. In this case, the competition mechanism will force

the swarm to escape from local areas, which increases the diversity simultaneously.

Despite the overall similarity, the behaviors of CoPSO differ slightly on different kinds of

test functions. f1 is a simple unimodal function with only one global minimum, making it pos-

sible to achieve fast convergence. Although all algorithms converge exponentially to the

optima, CoPSO greatly surpasses the others due to better exploitation of the promising areas at

the beginning and high-intensity exploration in the latter stage. For f2, CoPSO has a

Table 2. Experimental results for all algorithms on benchmark functions.

CoPSO SPSO RPSO CPSO IPSO

f1 Best 2.8549E-65 5.5264E-09 1.5411E-35 1.5978E-23 3.0563E-11

Worst 9.7607E-57 5.7243E-06 6.5542E-29 1.2931E-19 7.2027E-09

Median 1.0691E-61 8.5793E-08 5.3866E-33 9.3553E-22 3.6676E-10

Mean 3.0003E-58 4.1779E-07 1.3600E-30 7.2911E-21 7.5476E-10

Std 1.4938E-57 9.5508E-07 9.2625E-30 2.1853E-20 1.2102E-09

p-value - 7.0661E-18 7.0661E-18 7.0661E-18 7.0661E-18

f2 Best 4.9143E-37 3.2218E-05 1.2864E-21 5.8821E-11 3.5853E-06

Worst 8.5886E-15 9.8248E+00 6.4473E-13 6.8001E-07 2.1356E+02

Median 1.3265E-31 3.1720E-04 1.0877E-19 2.6652E-09 9.8882E-05

Mean 3.8317E-16 3.9115E-01 1.6602E-14 3.7949E-08 7.5323E+00

Std 1.4994E-15 1.6359E+00 9.2441E-14 1.1971E-07 3.3733E+01

p-value - 7.0661E-18 5.1559E-11 7.0661E-18 7.0661E-18

f3 Best 3.0297E-03 2.3906E-02 8.9131E-03 2.7188E-03 7.4989E-03

Worst 1.7855E-02 1.3631E-01 5.5517E-02 2.1025E-02 3.4737E-02

Median 8.6013E-03 7.1187E-02 4.0110E-03 1.0032E-02 1.7729E-02

Mean 8.7629E-03 7.3491E-02 2.5168E-02 1.0271E-02 1.8165E-02

Std 3.4998E-03 24612E-02 9.1510E-03 4.6240E-03 6.8623E-03

p-value - 7.0661E-18 3.7961E-13 1.0448E-01 3.9592E-12

f4 Best 3.4746E-03 1.4929E+01 6.4345E+00 7.6875E+00 4.0219E+00

Worst 8.1844E+01 4.6145E+02 1.5713E+02 9.5701E+02 1.7156E+02

Median 1.3684E+01 7.2457E+01 2.4572E+01 2.5592E+01 2.6071E+01

Mean 1.7385E+01 6.7829E+01 4.4824E+01 8.7070E+01 4.4996E+01

Std 1.8940E+01 6.8713E+01 3.3475E+01 1.5140E+01 3.6439E+01

p-value - 3.8499E-14 6.9808E-10 3.7706E-12 3.5908E-12

f5 Best 0 3.3119E-10 0 0 9.4358E-13

Worst 2.9459E-02 5.1369E-02 4.4293E-02 6.6471E-02 5.3964E-02

Median 7.3960E-03 7.3961E-03 7.3960E-03 7.3960E-03 9.8573E-03

Mean 7.1907E-03 9.0566E-03 9.6510E-03 1.0782E-02 1.1233E-02

Std 8.2867E-03 1.1201E-02 1.1035E-02 1.3882E-02 1.0670E-02

p-value - 1.0732E-02 3.8092E-01 3.7739E-01 8.9401E-04

Best, Worst, Median, Mean, and Std are the best, worst, median, average, and the standard deviation of the final results in 50 independent runs, p-value is the statistical

result obtained by Wilcoxon rank sum test with a significance level of 0.05.

https://doi.org/10.1371/journal.pone.0275849.t002
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competitive performance compared to RPSO and even shows better potential in the end as a

result of higher swarm diversity. f3 is a noisy quartic function. f4 is a classic optimization prob-

lem with a global minimum inside a long, narrow, parabolic-shaped valley. f5 is a multimodal

function where the number of local optima increases exponentially as the problem dimension

increases. For all these complicated benchmarks, CoPSO always keeps an excellent balance

between exploration and exploitation, which helps it to achieve the fastest converging rate or

the shortest stagnation at local optima. The other algorithms lack the adjusting ability of

CoPSO. For instance, IPSO puts too much emphasis on exploration (holding the highest

swarm diversity on most benchmarks) while RPSO and CPSO are too focused on exploitation,

which degenerates their overall performances.

Computational complexity analysis

According to Yang et al. [23], given a fixed number of fitness evaluations, the computational

complexity of an evolutionary algorithm is generally calculated by analyzing the extra cost in

each generation without considering the cost of function evaluations, which is problem-depen-

dent. As CoPSO inherits the simple structure of SPSO, its computational complexity will be

analyzed by comparison with SPSO.

Assuming the population size is N and the problem dimension is D, updating particles’

states takes O(N × D) time in each iteration for SPSO. By comparison, adding line 19 to line 25

in Algorithm 1 costs extra time for CoPSO. Specifically, particles tend to update pbesti fre-

quently at the early stage of the iterations, so it only costs O(N) extra time to check li and

update related parameters. As li increases, the algorithm may have to regenerate some new par-

ticles, which costs O(N × D) extra time in the worst case. However, this situation is only

Fig 4. Average swarm diversities and average global best fitness values of all algorithms at each iteration. Note

that the vertical axes are in logarithmic form. (a) The results on f1. (b) The results on f2. (c) The results on f3. (d) The

results on f4. (e) The results on f5.

https://doi.org/10.1371/journal.pone.0275849.g004

Table 3. Average runtime for all algorithms on benchmark functions (in second).

CoPSO SPSO RPSO CPSO IPSO

f1 9.3840e-02 9.2220e-02 9.0920e-02 8.9540e-02 5.3714e-01

f2 9.6400e-02 9.2880e-02 9.3700e-02 9.0220e-02 5.6548e-01

f3 1.5344e-01 1.5248e-01 1.5138e-01 1.5044e-01 9.3878e-01

f4 1.0150e-01 9.8220e-02 9.9000e-02 9.8580e-02 5.7976e-01

f5 1.5624e-01 1.5144e-01 1.5274e-01 1.5212e-01 9.3274e-01

https://doi.org/10.1371/journal.pone.0275849.t003
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possible in certain generations. Besides, the value increase of μ also controls the time cost of

this part. As for the space complexity, since CoPSO needs to store the information of li and the

time particles stay at the same pbesti, it requires O(N) extra memory than SPSO (which takes

O(N × D) space to save particles’ positions and velocities). To conclude, with proper parameter

setting, the computational complexity of CoPSO can be controlled within an acceptable range.

Table 3 lists the average computing time for a single run (in 50 repeating experiments) with

the same parameters as the numerical experiments. SPSO, RPSO, and CPSO take nearly the

same time on different functions due to their similar algorithmic structures. However, IPSO

has a growing population, dramatically increasing fitness evaluations at the latter stage of the

iterations. Consequently, the computational cost of IPSO is the highest. Based on the complex-

ity analysis above, CoPSO takes acceptable extra time in each iteration compared to SPSO, ver-

ified by the experimental result that CoPSO costs slightly higher than SPSO on the

benchmarks. In conclusion, CoPSO surpasses the other algorithms in solution quality while

remaining computationally efficacious.

Case study of the simulation-optimization approach

To demonstrate that MAS-CoPSO can be used in practical applications, a case study of a real

marine oil spill accident is carried out. This section presents the accident background, the

implementation of MAS-CoPSO in a response planning system, and the mathematical formu-

lation of the optimization problem. Further, an in-depth analysis of the system’s performance

is given.

Background

Frequent marine oil spills have posed severe tests to the environment. Reducing the loss caused

by oil spills has become an important issue. The capability of the MAS-CoPSO approach is

tested through a case study of the Sanchi oil spill accident, which is caused by a collision

between Panamanian oil tanker Sanchi and Chinese bulk carrier Changfeng Crystal. The acci-

dent happened on January 6, 2018, and the collision site is about 160 nautical miles east of the

Yangtze River Estuary. Fig 5 illustrates the approximate location where the accident happened

Fig 5. Geographical map of the approximate collision site and surrounding areas. Map services and data available

from the U.S. Geological Survey.

https://doi.org/10.1371/journal.pone.0275849.g005
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and the areas around it. Tons of condensate oil carried by Sanchi leaked into the ocean, caus-

ing significant economic loss and environmental pollution. Researchers have pointed out that

oil tankers are transporting around 90% of all the oil around the world [24]. Furthermore, ship

collision is the primary cause of many catastrophic marine oil spills, which suggests the repre-

sentativeness of the case study.

Zhong and You [25] have concluded that after spill accidents, oil leaked into the ocean

forms scattered slicks around the spill site and undergoes various physical and chemical

changes due to environmental forces. The most dominant processes are spreading, evapora-

tion, emulsification, and dispersion. These processes will dramatically change the volume,

area, thickness, and viscosity of those slicks, which will affect the efficiency of oil spill response

operations as a consequence.

There are some equipped response teams berthed at docks near the spill site. They will con-

duct a wide range of actions to clean up the ocean, among which booms, skimmers, chemical

dispersants, and in situ burning are the most frequently used methods. Booms are generally

the first equipment deployed after an oil spill and are often used to protect shorelines, divert

oil to certain areas, or concentrate oil for further recovery and burning. Skimmers are adopted

to recover oil or oil-water mixtures from the water surface. The characters of the slick will

affect the working efficiency of skimmers. Chemical dispersants can reduce the oil-water inter-

facial tension, which should be initialized as soon as possible. In situ burning indicates con-

trolled burning of the oil at or near the site. In this case, it is assumed that the spraying of

dispersants and the concentration of leaked oil have been completed quickly after the accident.

Besides, in situ burning will emit toxic substances and waste the leaked oil. Thus, the primary

response operation is recovery.

This study focuses on supporting response planning after the accident. A simulation-opti-

mization system is built based on the proposed MAS-CoPSO method. The overall objective is

to clean up the polluted sea area in the most efficient way, i.e., as soon as possible. The system

is supposed to realize interactive spill simulation and response optimization while considering

the influences of the oceanic environment. It should also give the most reasonable allocations

for available resources and the schedule of response teams’ actions.

Implementation

The implementation of MAS-CoPSO in the system is described in Fig 6, which is an instantia-

tion of Fig 3. The MAS module and the CoPSO module work collectively, composing a

dynamic system for marine oil spill response planning. The CoPSO algorithm is encapsulated

as a function to be called before each time step. Meanwhile, agents of the simulation module

consistently update their behaviors and interact with each other, realizing the oil spill fate

modeling and response operation modeling. The agents must follow specific rules in reality.

For instance, the property changes of oil slicks are calculated by weathering models consider-

ing spreading, evaporation, emulsification, and dispersion. Skimmers and ships of response

teams should obey the rules for oil recovery. The performance of a response team can be

affected by the actions of other teams and the characteristics of oil slicks. For example, when a

skimmer works on a slick to collect oil, the volume and area of the slick, the evaporated and

dispersed oil rates, the viscosity and the water content of the oil, will all be affected. If more

than one team are instructed to head for the same slick, they will collaborate.

To complete the global objective of minimizing response time while cleaning up the spill

site to a large extent (the stop criteria, only a small portion of leaked oil remained in the

ocean), CoPSO is utilized to maximize the decreased volume of oil in each simulation

time step. Meanwhile, MAS should simulate equipment location, response process, oil spill
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fate, and transportation. The system can be further updated to suit different purposes and

requirements.

Mathematical formulation of the optimization problem

Since the weathering process dramatically affects oil properties, it is necessary to simulate it as

accurately as possible. Furthermore, the objective function and constraints of the optimization

problem can be derived from the model.

Simulation of the weathering process. First of all, the initial area of a slick, A0 (m2), can

be calculated by the equation shown as follows [26]:

A0 ¼ p
k2

4

k3

2

ðro � r0ÞgV0
5

rono

� �1=6

; ð3Þ

where ρω (g � cm−3) is the density of seawater, ρ0 (g � cm−3) is the density of oil, νω
(0.801 × 10−6m2 � s−1 under 30˚C) is the kinematic viscosity of seawater, V0 (m3) is the inital

volume of the slick, g (m � s−1) is the acceleration of gravity, k2 and k3 are constants with values

of 1.21 and 1.53, respectively.

The area changing rate of the slick due to spreading can be modeled as follows [27]:

dA
dt
¼ K1A

� 1V4=3; ð4Þ

where A (m2) is the current surface area of the slick, t (s) refers to the time since the accident

happened, V (m3) is the current volume of the slick, K1 (s−1) is a dominant physicochemical

parameter of the oil with a default value of 150.

Fig 6. Implementation of the MAS-CoPSO approach in the case study.

https://doi.org/10.1371/journal.pone.0275849.g006
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Evaporation is assumed as the most influential environmental effect, causing a loss of up to

20-50% of the spill. The rate that oil evaporates from the sea surface is modeled by the follow-

ing equation [28]:

dFE
dt
¼
KevA
V
� expðAev �

Bev
TK
� ðTO þ TGFEÞÞ; ð5Þ

where FE (%) is the current volume fraction of the oil that has been evaporated with an initial

value of FE(t=0) = 0, TK (K) is the oil temperature, Aev and Bev are empirical constants with fixed

values of 6.3 and 10.3, respectively. Kev (m � s−1) is the mass transfer coefficient for evaporation

which can be calculated as follows [29]:

Kev ¼ 2:5� 10� 3v0:78
wind;

where vwind (m � s−1) is the wind speed. TO and TG are the initial boiling point and the gradient

of the oil distillation curve, respectively. Their values can be calculated through functions of

the oil API (American Petroleum Institute) degree as follows:

TO ¼ 457:16 � 3:3447 � API;

TG ¼ 1356:7 � 247:36 � lnAPI:

Emulsification can also influence the slick characteristics dramatically, especially for the oil

viscosity. The initial oil viscosity μ0 (%) can be calculated using the following equation [29]:

m0 ¼ 224�
ffiffiffiffiffiffiffi
AC
p

; ð6Þ

where AC (%) is the asphaltene content of the parent oil, which is a constant. As the viscosity

changes over time, its changing rate is given by [30]:

dm
dt
¼

2:5m

ð1 � C3YWÞ
2

" #

�
dYW
dt
þ C4m �

dFE
dt

; ð7Þ

where μ (%) is the current viscosity, C3 is a constant for the final water content, C4 is an oil-

dependent constant, YW (%) is the fractional water content in the emulsion, it changes over

time, which can be computed with the following equation [27]:

dYW
dt
¼ Kem � ðvwind þ 1Þ

2
� ð1 �

YW
C3

Þ;

where Kem is an empirical constant between 1 × 10−6 and 2 × 10−6, YW has an initial value of

YW(t = 0) = 0.

Finally, dispersion is also a vital factor in the loss of oil. The volume of oil naturally dis-

persed changes over time, which can be modeled by [27]:

dVD

dt
¼

0:11 � ðvwind þ 1Þ
2
� A � V

Aþ 50zt � V � m1=2
; ð8Þ

where VD (m3) is the total dispersed oil volume until now with an initial value of VD(t=0) = 0

and zt (cP) is the oil-water interfacial tension.

Objective function and constraints. In the response process, the optimization problem is

formulated on the basis of each simulation time step. Suppose that the ith response team is

recovering oil on the kth slick during time step Tstep, define ORRi (m3 � hr−1) as the oil recovery

rate of team i (i.e., the amount of oil that the team can recover per hour) and STk (m) as the
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current oil thickness of slick k. ORRi is determined by the properties of the team’s skimmer

and STk:

ORRi ¼ a� STk
2 þ b� STk; ð9Þ

where α and β are empirical coefficients obtained from experimental tests, reflecting the fea-

tures of the skimmer. STk can be calculated by:

STk ¼
Vk

Ak
; ð10Þ

where Vk (m3) and Ak (m2) are the current oil volume and the area of the kth slick, respectively.

Ak can be calculated according to Eqs (3) and (4), Vk can be computed as follows:

Vk ¼ Vk0 � ðEVk þ DVk þ SViÞ; ð11Þ

where Vk0 (m3) is the remaining oil volume of this slick at the end of the last time step (i.e., the

initial oil volume of the current time step), EVk (m3) is the volume loss caused by evaporation,

DVk (m3) is the volume loss caused by dispersion, and SVi (m3) is the volume recovered by

team i. Notice that SVi may not exist, which indicates that no response team is working on

slick k right now. The system can get the value of EVk, DVk, and SVi according to Eqs (5), (8)

and (9), respectively. During the simulation, for simplification, a short Tstep should be chosen

and the system will use the value of Vk0 for the calculations regarding Vk.
The aim of the system is to clean up the polluted sea area as soon as possible. Therefore,

based on the proposed method, given a fixed simulation time step, the oil volume loss will be

maximized during each step, which is composed of the evaporation loss, the dispersion loss

and the recovered volume. Suppose there are m oil slicks and n response teams during Tstep,
Vstep represents the total oil volume loss in this period. FEk and μk refer to the evaporated oil

fraction and the oil viscosity of slick k, respectively. The objective function and constraints are

given by:

max Vstep ¼
Xm

k¼1

EVk þ
Xm

k¼1

DVk þ
Xn

i¼1

SVi ð12Þ

s.t.

EVk ¼ FEk � Vk; ð13Þ

dFEk
dt
¼
KevAk

Vk
� expðAev �

Bev
TK
� ðTO þ TGFEÞÞ; ð14Þ

FEkðt¼0Þ
¼ 0; ð15Þ

dDVk

dt
¼

0:11 � ðvwind þ 1Þ
2
� Ak � Vk

Ak þ 50zt � Vk � mk
1=2

; ð16Þ

DVkðt¼0Þ
¼ 0; ð17Þ

SVi ¼ ORRi � Tstep: ð18Þ
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Performance of the system

To examine the efficiency of MAS-CoPSO, its performance is compared with the shortest dis-

tance selection approach (SDS). Ye et al. [31] have suggested that SDS is a simple strategy com-

monly used in marine oil spill emergency response, which indicates a process that allows a

response team to choose the nearest oil slick as the target for oil recovery. After meeting the

cleaning requirements, they will choose the second nearest oil slicks to continue.

Therefore, when conducting SDS, the distances between ships and slicks are the judgment

criteria for response planning. When initializing the simulation process, each response team

(corresponding to a certain response agent) is assigned with the closest oil slick (corresponding

to a certain spill agent) to clean. Before each time step, instead of calling the CoPSO module,

SDS will check whether the slick is cleaned up, if the oil volume is below the set threshold, the

ship will head to the closest one in the remaining slicks, otherwise, it will stay at the current

location until finishing the cleaning task. Compared to MAS-CoPSO, SDS is more straightfor-

ward, which explains why it is commonly used in real accidents. However, SDS makes plans

without considering the oceanic forces and the interactions between agents, which according

to previous discussions, can dramatically influence the overall efficiency. Thus, comparative

experiments are conducted for further analysis.

Simulation settings. Chen et al. [32] introduced the process and consequences of the acci-

dent in detail. Based on their description, it is assumed that the spilled oil was split into ten

slicks within the East Sea with a total volume of 113,000 tons. Table 4 lists the oil volumes and

locations (described by the distance and direction from the approximate collision site) of these

slicks. The ship-mounted skimmers belonging to five different response teams are the only

available nearby cleanup means to be applied. Assume that all the teams have enough storage

space for recovered oil. As the allocation process needs specific transportation time, the speed

of ships is set at 30 km � h−1. Skimmers of different teams have different recovering efficiencies,

which are affected by α and β in Eq (9). Table 5 lists the values of the empirical coefficients for

different teams. Fig 7 illustrates the simulation process. The red cross represents the collision

site, the black spills represent the oil slicks (the size reflects the oil volume of the corresponding

slick), and the ships represent the response teams carrying the recovery task. The position and

size of a slick will change over time. A ship can either be heading to a slick or working on it.

As mentioned above, spreading, evaporation, emulsification, and dispersion are the main

oceanic effects. Table 6 lists the inputs for the modeling of these processes, including

Table 4. Oil volumes and site locations of ten slicks formed after the accident.

Slick Oil volume (ton) Location (from the collision site)

Distance (km) Direction

1 9318.66 14 Northwest

2 6593.79 12 Northwest

3 15020.19 11 North

4 8344.60 4 Southwest

5 6258.39 2 North

6 13907.59 2 Southwest

7 16689.20 13 Southeast

8 5562.99 2 Southwest

9 7253.58 15 Southeast

10 24051.01 0 None

https://doi.org/10.1371/journal.pone.0275849.t004

PLOS ONE A novel multi-agent simulation based particle swarm optimization algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0275849 October 13, 2022 16 / 22

https://doi.org/10.1371/journal.pone.0275849.t004
https://doi.org/10.1371/journal.pone.0275849


environmental parameters and the characteristics of the leaked oil (condensate oil). As [26]

suggested, the drifting speed of oil slicks is about 2.5-4.5% of the wind speed, so it is set at 0.03

m � s−1.

The model is built in AnyLogic1. 50 repeating runs are carried out with 50 iterations per

time step (Tstep is one hour). Once the volume of the remaining oil is reduced to 10% of the

original figure, the simulation will stop.

Results and discussion. Table 7 presents the simulation results of MAS-CoPSO and SDS

with the same stop criteria and time step. The operation time for achieving an oil recovery rate

Table 5. Empirical coefficients for the calculations of five ship-mounted skimmers’ oil recovery rates.

Types of skimmers Empirical coefficients

α β

SK1(TeamA) 0.01437 0.05602

SK2(TeamB) -0.00791 0.84975

SK3(TeamC) -0.01591 1.54975

SK4(TeamD) 0.02372 0.03583

SK5(TeamE) -0.01026 1.27589

https://doi.org/10.1371/journal.pone.0275849.t005

Fig 7. Illustration of the simulation process.

https://doi.org/10.1371/journal.pone.0275849.g007
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of 90% is 129.82 hours based on the optimal outcomes given by the MAS-CoPSO system,

which is only 74.2% of the figure for SDS. Shorter response time means higher operation effi-

ciency, less volume of wasted oil, and slighter damage to the environment. The results also

indicate that total recovered oil holds a proportion of 65.54% in MAS-CoPSO, which is

approximately 1.2 times higher than the number for SDS.

Fig 8 illustrates the variations of remaining oil volume for each slick in MAS-CoPSO and

SDS scenarios during the entire simulation process. The optimization outcomes of MAS-

CoPSO are highly related to the thickness of the oil slicks, and the system intends to keep a bal-

anced volume level for each slick by optimizing the time for allocation and the response effi-

ciency (see Fig 8a). However, oil thickness does not affect the decision-making of the SDS

model, so it will not try to reduce the volume steadily. As a result of different strategies, the

curves of MAS-CoPSO are much smoother than those of SDS. In addition, the SDS method

might ignore slicks too far from the response teams (e.g., Slick 1), leading to long-time expo-

sure of the oil, emitting more harmful substances (see Fig 8b).

Fig 9 depicts the variations of accumulated recovered volume for each team in two

approaches. MAS-CoPSO tries to find optimal schedules for all teams in every time step, so the

curves climbs stably (see Fig 9a). Meanwhile, SDS always cleans up one slick before moving to

another, leading to discontinuous curves, which also hinders the increase of the overall effi-

ciency (see Fig 9b).

Table 6. Parameters for the simulation of weathering processes.

Parameter Value Unit

Sea water temperature (T) 278.15 K
Wind speed (vwind) 10 m � s−1

Sea water density (ρw) 1.02 g � cm−3

Interface tension (zt) 2.30 × 103 cP
Oil density (ρ0) 0.77 g � cm−3

Oil temperature (TK) 288.15 K
Oil API 52.27 None

Oil AC 1.21 %

https://doi.org/10.1371/journal.pone.0275849.t006

Table 7. Simulation results of MAS-CoPSO and SDS.

MAS-CoPSO SDS

Operation time (hr) 129.82 174.96

Recovered oil (Team A) (ton) 4133.35 2203.70

Recovered oil (Team B) (ton) 14658.40 13329.95

Recovered oil (Team C) (ton) 27268.71 20088.75

Recovered oil (Team D) (ton) 5598.22 5726.52

Recovered oil (Team E) (ton) 22401.52 20258.68

Total recovered oil (%) 65.54 54.52

Evaporated oil (%) 24.13 35.34

Dispersed oil (%) 0.52 0.51

Remaining oil (%) 9.81 9.63

The operation time (hr), the oil volume recovered by each team (ton), the proportion of each oil loss type (%), and

the proportion of remaining oil after the response process (%) are listed in the table.

https://doi.org/10.1371/journal.pone.0275849.t007
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The above results show that the response planning system based on MAS-CoPSO outper-

forms the commonly used SDS strategy in terms of time consumption, oil recovery rate, and

environmental impact. Therefore, oil spill response teams can schedule their operations

according to the simulation-optimization outcomes of this system rather than relying on the

inefficient SDS approach. Moreover, complex problems and high-intensity interactions can

enhance the advantages of MAS-CoPSO, indicating the system’s ability to function in scenar-

ios with higher oil volumes and more response teams. Even though the case study is simplified

and focuses on the oil recovery process, the system has the potential to comprehensively sup-

port multiple cleanup techniques concerning booms, chemical dispersants, and in situ burn-

ing. Besides, modeling of the weathering process can be easily enriched by considering more

complicated oceanic forces such as dissolution, photo-oxidation, sedimentation, and biodegra-

dation [25]. Hydrodynamic simulation of oil spill trajectories can also be considered. In addi-

tion, the application range of the MAS-CoPSO-based system can be further enlarged by

handling uncertainties and risk assessments. With these extensions, oil spill response teams

can get a practical simulation-optimization tool to support their planning process.

Fig 8. Variations of remaining oil volume for each slick in MAS-CoPSO and SDS. (a) The results of MAS-CoPSO.

(b) The results of SDS.

https://doi.org/10.1371/journal.pone.0275849.g008

Fig 9. Variations of accumulated recovered volume for each team in MAS-CoPSO and SDS. (a) The results of

MAS-CoPSO. (b) The results of SDS.

https://doi.org/10.1371/journal.pone.0275849.g009
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Conclusion

An improved particle swarm optimization algorithm called CoPSO is proposed in this paper.

Inspired by the features of bird flocks, a multi-level design and a competition mechanism are

introduced into CoPSO to balance the exploration and exploitation more effectively, increase

solution accuracy, achieve fast convergence, and avoid stagnation at local optima. The perfor-

mance of CoPSO is tested on a series of well-known benchmark functions. Comparisons are

made between CoPSO, SPSO, and three classic variants of it. Experimental results have verified

its capability.

This paper also proposes a problem-independent simulation-optimization approach called

MAS-CoPSO to combine CoPSO with MAS. MAS-CoPSO can achieve a dynamic simulation

of various complex systems and give satisfying solutions to related optimization problems. In

MAS-CoPSO, the relationship between the simulation module and the optimization module is

highly cohesive. The effectiveness of MAS-CoPSO is substantiated through a response plan-

ning system for the Sanchi oil spill accident. The system simulates the accident scene with con-

sideration of the oil slicks’ physicochemical evolution. Case study results show that the system

can optimize response device allocation, operation scheduling, and time consumption, causing

slighter damage to the environment.

MAS-CoPSO can also be applied in other scenarios to solve different optimization prob-

lems depending on the users’ requirements. For future studies, we will consider the combina-

tion with other methods, such as fuzzy control and neural network.

Acknowledgments

We would thank Junbo Tong for his review of the manuscript.

Author Contributions

Conceptualization: Shuhan Du, Wenhui Fan.

Investigation: Shuhan Du.

Methodology: Shuhan Du, Wenhui Fan.

Software: Shuhan Du.

Supervision: Wenhui Fan, Yi Liu.

Validation: Shuhan Du.

Visualization: Shuhan Du.

Writing – original draft: Shuhan Du.

Writing – review & editing: Wenhui Fan, Yi Liu.

References
1. Olafsson S, Kim J. Simulation optimization. In: Proceedings of the winter simulation conference. vol. 1.

IEEE; 2002. p. 79–84.

2. Macal CM, North MJ. Tutorial on agent-based modeling and simulation. In: Proceedings of the Winter

Simulation Conference, 2005. IEEE; 2005. p. 14–pp.

3. Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of ICNN’95-international confer-

ence on neural networks. vol. 4. IEEE; 1995. p. 1942–1948.

4. Bonyadi MR, Michalewicz Z. Particle swarm optimization for single objective continuous space prob-

lems: a review. Evolutionary computation. 2017; 25(1):1–54. https://doi.org/10.1162/EVCO_r_00180

PMID: 26953883

PLOS ONE A novel multi-agent simulation based particle swarm optimization algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0275849 October 13, 2022 20 / 22

https://doi.org/10.1162/EVCO_r_00180
http://www.ncbi.nlm.nih.gov/pubmed/26953883
https://doi.org/10.1371/journal.pone.0275849


5. Eberhart RC, Shi Y. Tracking and optimizing dynamic systems with particle swarms. In: Proceedings of

the 2001 congress on evolutionary computation (IEEE Cat. No. 01TH8546). vol. 1. IEEE; 2001. p. 94–

100.

6. Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional

complex space. IEEE transactions on Evolutionary Computation. 2002; 6(1):58–73. https://doi.org/10.

1109/4235.985692

7. Neshat M. FAIPSO: fuzzy adaptive informed particle swarm optimization. Neural Computing and Appli-

cations. 2013; 23(1):95–116. https://doi.org/10.1007/s00521-012-1256-z

8. De Oca MAM, Stutzle T, Van den Enden K, Dorigo M. Incremental social learning in particle swarms.

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). 2010; 41(2):368–384.

https://doi.org/10.1109/TSMCB.2010.2055848 PMID: 20875976

9. Neshat M, Sargolzaei M, Masoumi A, Najaran A. A new kind of PSO: predator particle swarm optimiza-

tion. International Journal on Smart Sensing and Intelligent Systems. 2012; 5(2). https://doi.org/10.

21307/ijssis-2017-493

10. Li D, Guo W, Lerch A, Li Y, Wang L, Wu Q. An adaptive particle swarm optimizer with decoupled explo-

ration and exploitation for large scale optimization. Swarm and Evolutionary Computation. 2021;

60:100789. https://doi.org/10.1016/j.swevo.2020.100789

11. Rizk Y, Awad M, Tunstel EW. Decision making in multiagent systems: A survey. IEEE Transactions on

Cognitive and Developmental Systems. 2018; 10(3):514–529. https://doi.org/10.1109/TCDS.2018.

2840971

12. Bo Y, Cheng W, Hua H, Lijun L. A multi-agent and PSO based simulation for human behavior in emer-

gency evacuation. In: 2007 International Conference on Computational Intelligence and Security (CIS

2007). IEEE; 2007. p. 296–300.

13. Ali ZA, Han Z, Masood RJ. Collective Motion and Self-Organization of a Swarm of UAVs: A Cluster-

Based Architecture. Sensors. 2021; 21(11):3820. https://doi.org/10.3390/s21113820 PMID: 34073061

14. Kanaga EGM, Valarmathi M. Multi-agent based patient scheduling using particle swarm optimization.

Procedia Engineering. 2012; 30:386–393. https://doi.org/10.1016/j.proeng.2012.01.876

15. Yu C, Wang G, Liu Y. A multi-agent based architecture for web service selection in E-business. In: 2011

IEEE 8th International Conference on e-Business Engineering. IEEE; 2011. p. 245–250.

16. Thiel D, Hovelaque V, Pham DN. A multi-agent model for optimizing supermarkets location in emerging

countries. In: 2012 IEEE 13th International Symposium on Computational Intelligence and Informatics

(CINTI). IEEE; 2012. p. 395–399.

17. Malik MM, Kazmi SAA, Asim HW, Ahmed AB, Shin DR. An intelligent multi-stage optimization approach

for community based micro-grid within multi-microgrid paradigm. IEEE Access. 2020; 8:177228–

177244. https://doi.org/10.1109/ACCESS.2020.3022411

18. Wang L, Wang Z, Yang R. Intelligent multiagent control system for energy and comfort management in

smart and sustainable buildings. IEEE transactions on smart grid. 2012; 3(2):605–617. https://doi.org/

10.1109/TSG.2011.2178044

19. Angeline PJ. Evolutionary optimization versus particle swarm optimization: Philosophy and perfor-

mance differences. In: International Conference on Evolutionary Programming. Springer; 1998. p. 601–

610.

20. Poesel A, Fries AC, Miller L, Gibbs HL, Soha JA, Nelson DA. High levels of gene flow among song dia-

lect populations of the Puget Sound white-crowned sparrow. Ethology. 2017; 123(9):581–592. https://

doi.org/10.1111/eth.12632

21. Vesterstrom J, Thomsen R. A comparative study of differential evolution, particle swarm optimization,

and evolutionary algorithms on numerical benchmark problems. In: Proceedings of the 2004 congress

on evolutionary computation (IEEE Cat. No. 04TH8753). vol. 2. IEEE; 2004. p. 1980–1987.

22. Eberhart RC, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization.

In: Proceedings of the 2000 congress on evolutionary computation. CEC00 (Cat. No. 00TH8512). vol.

1. IEEE; 2000. p. 84–88.

23. Yang Q, Chen WN, Da Deng J, Li Y, Gu T, Zhang J. A level-based learning swarm optimizer for large-

scale optimization. IEEE Transactions on Evolutionary Computation. 2017; 22(4):578–594. https://doi.

org/10.1109/TEVC.2017.2743016

24. Zhang HY, Ji Q, Fan Y. What drives the formation of global oil trade patterns? Energy Economics.

2015; 49:639–648.

25. Zhong Z, You F. Oil spill response planning with consideration of physicochemical evolution of the oil

slick: A multiobjective optimization approach. Computers & Chemical Engineering. 2011; 35(8):1614–

1630. https://doi.org/10.1016/j.compchemeng.2011.01.009

26. Fay JA. The spread of oil slicks on a calm sea. In: Oil on the Sea. Springer; 1969. p. 53–63.

PLOS ONE A novel multi-agent simulation based particle swarm optimization algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0275849 October 13, 2022 21 / 22

https://doi.org/10.1109/4235.985692
https://doi.org/10.1109/4235.985692
https://doi.org/10.1007/s00521-012-1256-z
https://doi.org/10.1109/TSMCB.2010.2055848
http://www.ncbi.nlm.nih.gov/pubmed/20875976
https://doi.org/10.21307/ijssis-2017-493
https://doi.org/10.21307/ijssis-2017-493
https://doi.org/10.1016/j.swevo.2020.100789
https://doi.org/10.1109/TCDS.2018.2840971
https://doi.org/10.1109/TCDS.2018.2840971
https://doi.org/10.3390/s21113820
http://www.ncbi.nlm.nih.gov/pubmed/34073061
https://doi.org/10.1016/j.proeng.2012.01.876
https://doi.org/10.1109/ACCESS.2020.3022411
https://doi.org/10.1109/TSG.2011.2178044
https://doi.org/10.1109/TSG.2011.2178044
https://doi.org/10.1111/eth.12632
https://doi.org/10.1111/eth.12632
https://doi.org/10.1109/TEVC.2017.2743016
https://doi.org/10.1109/TEVC.2017.2743016
https://doi.org/10.1016/j.compchemeng.2011.01.009
https://doi.org/10.1371/journal.pone.0275849


27. Mackay D, Buist I, Mascarenhas R, Paterson S. Oil spill processes and models: Environment Canada

Manuscript Report No 8. EE-8, Ottawa, Ontario. 1980;.

28. Mackay D, Matsugu RS. Evaporation rates of liquid hydrocarbon spills on land and water. The Canadian

Journal of Chemical Engineering. 1973; 51(4):434–439. https://doi.org/10.1002/cjce.5450510407

29. Buchanan I, Hurford N. Methods for predicting the physical changes in oil spilt at sea. Oil and Chemical

Pollution. 1988; 4(4):311–328. https://doi.org/10.1016/S0269-8579(88)80004-2

30. Mooney M. The viscosity of a concentrated suspension of spherical particles. Journal of colloid science.

1951; 6(2):162–170. https://doi.org/10.1016/0095-8522(51)90036-0

31. Ye X, Chen B, Li P, Jing L, Zeng G. A simulation-based multi-agent particle swarm optimization

approach for supporting dynamic decision making in marine oil spill responses. Ocean & Coastal Man-

agement. 2019; 172:128–136. https://doi.org/10.1016/j.ocecoaman.2019.02.003

32. Chen J, Di Z, Shi J, Shu Y, Wan Z, Song L, et al. Marine oil spill pollution causes and governance: A

case study of Sanchi tanker collision and explosion. Journal of Cleaner Production. 2020; 273:122978.

https://doi.org/10.1016/j.jclepro.2020.122978

PLOS ONE A novel multi-agent simulation based particle swarm optimization algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0275849 October 13, 2022 22 / 22

https://doi.org/10.1002/cjce.5450510407
https://doi.org/10.1016/S0269-8579(88)80004-2
https://doi.org/10.1016/0095-8522(51)90036-0
https://doi.org/10.1016/j.ocecoaman.2019.02.003
https://doi.org/10.1016/j.jclepro.2020.122978
https://doi.org/10.1371/journal.pone.0275849

