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Abstract

Vancomycin-resistant Enterococcus faecium (VREfm) is a globally significant public health threat and was listed on the World 
Health Organization’s 2017 list of high-priority pathogens for which new treatments are urgently needed. Treatment options for 
invasive VREfm infections are very limited, and outcomes are often poor. Whole-genome sequencing is providing important new 
insights into VREfm evolution, drug resistance and hospital adaptation, and is increasingly being used to track VREfm transmis-
sion within hospitals to detect outbreaks and inform infection control practices. This mini-review provides an overview of recent 
data on the use of genomics to understand and respond to the global problem of VREfm.

INtRoductIoN
Enterococcus faecium, a species of Gram-positive cocci, is 
recognized as a globally important opportunistic pathogen 
that is capable of causing a range of human infections associ-
ated with high mortality rates, particularly in hospitalized 
individuals [1, 2]. Enterococci are inherently resistant to a 
number of antimicrobial classes, and over recent decades 
there has been a significant increase in the rates of acquired 
antimicrobial resistance (AMR) in E. faecium, including 
vancomycin-resistant E. faecium (VREfm) [3, 4]. Since the 
first reports in the late 1980s, VREfm have come to represent 
a globally significant public health threat, such that in some 
regions (e.g. the USA and Australia) up to 50 % or more of all 
blood culture isolates of E. faecium are vancomycin-resistant 
(Fig. 1) [5].

The World Health Organization (WHO) recently published 
their list of priority bacterial pathogens for which new 
antibiotics are urgently needed, and VREfm is listed in the 
high-priority category [6]. As well as being resistant to vanco-
mycin, VREfm usually exhibit resistance to a wide range of 
other antibiotics, including intrinsic resistance to cephalo-
sporins, lincosamides, aminoglycosides and trimethoprim/

sulfamethoxazole, almost universal resistance to penicillins, 
and increasing reports of acquired resistance to last-line 
agents such as linezolid and daptomycin [1, 5, 7, 8].

Genomic data can be used to understand the evolution of 
VREfm, determine resistance mechanisms and investigate 
the potential sources of human VREfm infection (Table 1). 
Clones of VREfm associated with invasive human infec-
tion are recognized as primarily healthcare-associated 
pathogens. Approaches to molecular typing of VREfm are 
therefore important for informing molecular epidemiology 
and methods of infection prevention in the healthcare setting. 
Approaches such as multilocus sequence typing (MLST) have 
been used to classify E. faecium [9], but this approach has a 
number of limitations, including the lack of fine resolution 
necessary for inferring putative transmission. Phylogenetic 
analyses based on whole-genome sequencing (WGS) data are 
increasingly being used in combination with – or in place 
of – MLST in order to overcome this limitation and identify 
transmission events [10, 11].

This mini-review will describe how genomic data have been 
used to understand the mechanisms of vancomycin resistance 
in VREfm, the clonal structure and evolution of E. faecium 
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Fig. 1. Rates of invasive VREfm worldwide. Map adapted from The Centre for Disease Dynamics, Economics and Policy (CCDEP), 
Resistance Map: Antibiotic Resistance, accessed 11 January 2019, at https://resistancemap.cddep.org/AntibioticResistance.php. Data 
include aggregated resistance rates for isolates (includes intermediate resistance) from blood and cerebrospinal fluid (i.e. invasive) from 
inpatients of all ages. Because of differences in the scope of collections and testing methods, caution should be exercised in comparing 
across countries.

and VREfm clinical isolates, and emerging mechanisms of 
resistance to last-line antibiotics.

Mechanisms of vancomycin resistance
Vancomycin resistance in hospital-adapted E. faecium can 
be conferred by a number of van operon variants, though 
the most common, and therefore most clinically relevant, 
are the VanA and VanB operons (Table 2) [3, 5]. Both van 
operons encode a ligase that alters the target binding site 
of vancomycin, which is critical for antibiotic binding [25]. 
Globally, vanA VREfm is most common, while in some 
regions, including in Australia, vanB VREfm has been the 
major issue. However, this trend is now changing, with a 
recent rapid increase in vanA VREfm being seen in some 
parts of the Australia [26] and some parts of Europe, such 
as Germany, reporting a rapid increase in vanB VREfm [27]. 
Other van types are less commonly reported.

The VanA operon is carried on Tn1546-type transposons, 
which display a high degree of heterogeneity. Point muta-
tions, deletions and various insertion sequences have all been 
associated with Tn1546-type transposons [46, 47]. Tn1546 is 
found on pRUM-like plasmids (predominant in the USA) 
and Inc18 plasmids (predominant in Europe) [5], however, 
much remains unknown and the molecular epidemiology of 
VanA-containing plasmids may differ significantly between 
regions. In addition to contributing to the spread of vanco-
mycin resistance, Inc18 and pRUM-like plasmids can also 
harbour resistance genes for multiple other antibiotics [48].

The human gastrointestinal tract is a natural reservoir of non-
enterococcal species containing the VanB operon [49], and 
the in vivo transfer of a VanB-containing transposon from 

a non-enterococcal species to vancomycin-susceptible E. 
faecium may explain the emergence of VREfm in some cases 
[20]. The human bowel has also been shown to be a potential 
reservoir for the VanD and VanG operons [50]. The natural 
reservoir of the VanA operon remains unknown [49, 51].

classification and adaptative evolution of VRE 
clones associated with human colonization and 
infection
Strain classification methods and the role of WGS
Historically, VREfm have been classified based on a number 
of typing methods, including MLST, which characterizes the 
diversity of isolates based on the allelic variation of seven 
housekeeping genes in order to assign a sequence type (ST) 
[9]. Classifying VREfm, and E. faecium more broadly, by 
ST has allowed the identification of persistent or dominant 
clones on both a local and a global scale; however, MLST has a 

Impact Statement

The rise of vancomycin-resistant Enterococcus faecium 
(VREfm) poses a public health threat, especially within 
healthcare settings. To monitor and limit the spread of 
VREfm we need to understand how it evolves and acquires 
vancomycin resistance, how transmission networks are 
operating and how VREfm is developing resistance to 
last-line antibiotics. This mini-review provides an over-
view of how whole-genome sequencing is being used to 
address these questions.
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Table 2. Characteristics of van operons in Enterococcus spp.

Van operon Level of resistance Location and mobility (transposon) References

Vancomycin Teicoplanin

vanA High High Chromosome,
transferable (Tn1546), plasmid

[28, 29]

vanB High (variable) Susceptible Chromosome, transferable (Tn1547, Tn1549, Tn5382) [28, 30–33]

vanC Low Susceptible Chromosome [34–37]

vanD Low to high (variable) Low to high (variable) Chromosome [38–40]

vanE Low to moderate Susceptible Chromosome [28, 35, 41]

vanG Low Susceptible Chromosome, transferable [42]

vanL Low Susceptible Chromosome [43]

vanM High High Unknown, transferable [44]

vanN Low Susceptible Plasmid, transferable [45]

Note: table adapted from [8] with additional material as per the references column.

number of significant limitations, including poor discrimina-
tory power [21]. Additionally, some VREfm isolates have been 
identified that lack the pstS gene, one of the seven MLST loci 
[19], and recombination has been shown to affect the VREfm 
genome in the regions of key MLST loci [17, 20]. The highly 
dynamic nature of the E. faecium genome, with the constant 
flux of accessory genes and horizontal gene transfer events 
[52, 53], further exacerbates the shortcomings of the MLST 
method. WGS has proven to be the ultimate molecular typing 
method for VREfm [21, 54, 55]. Comparative analyses have 
been based on pairwise single-nucleotide polymorphism 
(SNP) comparisons, and more recently a core genome MLST 
(cgMLST) approach using 1423 target genes that has a similar 
resolution to that of an SNP-based approach [15].

VREfm clonal types associated with human disease
The majority of sequenced strains are human clinical isolates, 
with an overrepresentation of isolates from Europe and North 
America, but these only form a small part of the total E. 
faecium population [52]. A comparison of 100 core genes in 
all available E. faecium genomes initially found that most of 
the genes split into 2 clades, differing by 3.5–4.2 % nucleo-
tide divergence [14]. The two distinct, highly genetically 
divergent clades can be grouped by origin: clade A (hospital-
associated; consisting mainly of common clinical isolates and 
some isolates of community origin) and clade B [community 
associated; consisting almost entirely of isolates from the 
community (both human and animal)] [14, 16–18]. Initial 
comparative genome studies suggested that clade A could be 
subdivided into clade A1 (hospital-associated) and clade A2 
(animal-associated) [16, 18], a distinction not fully supported 
by some later studies [17]. The majority of hospital-associated 
VREfm are part of clonal complex 17 (CC17) and common 
STs within CC17 include ST17, ST18, ST80 and ST203 [56].

Genomic studies on global populations of E. faecium, 
including VREfm, have revealed that in some cases close 
genetic relationships exist between vanB VREfm isolates and 
vancomycin-susceptible E. faecium (VSE) from the same 
institutions, suggesting possible frequent generation of new 
vanB VREfm clones within resident VSE isolates [20], while 
other studies indicate frequent intra-regional and inter-
regional spread of VREfm clones [17, 21, 53].

Role of genomic plasticity in adaptation to the 
healthcare environment
WGS has revealed that horizontal gene transfer – involving 
plasmids, prophages, genomic islands, homologous recombina-
tion and the recently identified enterococcus cassette chromo-
some [57] – is an important driver of the diversity and adaptive 
evolution of the dynamic E. faecium genome [52, 58, 59]. 
Complete sequencing of VREfm genomes has revealed a large 
number of these accessory elements, as well as many insertion 
sequences in clade A VREfm genomes [12]. The ability of E. 
faecium to acquire foreign DNA has been central in the evolu-
tion of drug resistance and hospital adaptation in this species. 
At the core genome level, chromosome regions have been 
identified that predominantly recombine in specific hospital-
associated E. faecium strains [59]; these regions include those 
involved in the biosynthesis of cell wall polysaccharides and 
carbohydrate uptake and metabolism. Genes involved in these 
processes have been shown to be important in successful colo-
nization and overgrowth of hospital-adapted E. faecium during 
antibiotic therapy [60], with the gain and loss of carbohydrate 
metabolism genes reflecting the environmental/colonizing 
niche of the isolates. Clade B isolates tend to contain genes 
involved in complex carbohydrate utilization, while clade A, 
hospital-adapted VREfm, contain genes involved in the utiliza-
tion of amino sugars found at the epithelial surface [61].
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A pan-genome analysis by van Schaik et al. [58] indi-
cated that the total available gene pool within the species 
is expanding (open pan-genome), with E. faecium able to 
acquire genes from many different bacteria. However, the 
majority of imported DNA is from other E. faecium popula-
tions [53, 59], with clade B (community-associated) being 
the most important reservoir for foreign DNA for clade A 
(hospital-associated) [59]. Multidrug-resistant, hospital-
adapted E. faecium have also been shown to lack clustered 
regularly interspaced short palindromic repeats (CRISPR) 
self-defence systems that protect from genomic modifica-
tion by plasmids and phage, thereby making them more 
susceptible to changes through horizontal gene transfer 
[62]. A recent study by Pinholt et al. [24] comparing over 
800 VREfm strains suggested that the success of a dominant 
VREfm clone was due to the acquisition of a heterogenous 
accessory genome, with no single successful combination 
of accessory genes. This flexibility and large variation in the 
accessory genes is an important driver of the evolution of E. 
faecium and its adaptation to the healthcare environment 
[53, 58, 59], as it is readily able to acquire genes that increase 
fitness under adverse conditions.

WGS has also shown that the E. faecium genome contains 
a variety of loci encoding key virulence factors that make it 
particularly suited to persistence in a hospital environment 
and cause invasive infections, as summarized in a review by 
Gao et al. [63]. A recent study identified a unique botulinum 
neurotoxin gene cluster (host species target to be determined) 
in a commensal strain of E. faecium and demonstrated the 
ability of E. faecium to horizontally acquire and possibly 
disseminate this gene cluster [64].

Role of VREfm genomics in hospital infection 
control
WGS is providing the capacity for highly discriminatory 
identification of pathogen outbreaks and transmission, 
including in the hospital setting. The application of WGS 
to putative hospital outbreaks of VREfm has been reported, 
with clear evidence of utility (Table 1), and in some cases has 
resulted in changes in infection control practices [22, 54, 65]. 
WGS of VREfm has particular value in identifying complex 
transmission networks, especially where multiple wards 
are involved, where patients move wards between VREfm 
acquisition and the development of a clinical infection, and 
where environmental contamination is contributing [22]. 
Although many unknowns remain with regard to percentage 
genome-wide nucleotide identity and SNP thresholds for 
identifying transmission events, using WGS data comple-
mented by space–time epidemiological data can allow these 
more complex transmission links to be defined, informing 
appropriate interventions. In Australia, WGS has additionally 
been used to detect and describe the emergence of new clones 
of VREfm that have become regionally important, including 
pstS null strains (now ST1421-ST1425), which lack one of the 
MLST typing genes [19, 66].

Mechanisms and emergence of resistance to last-
line antibiotics
Treatment options for VREfm infections, especially vanA 
VREfm, are limited and last-line antibiotics such as linezolid, 
daptomycin, tigecycline and possibly quinupristin/dalfo-
pristin are often needed. The majority of linezolid-resistant 
VREfm cases have been found in North America and Europe 
[67] and although the majority of linezolid-resistant cases 
appear to emerge after linezolid treatment, linezolid-resistant 
enterococci have been shown to emerge in the absence of 
linezolid treatment [68, 69]. Of particular concern are the 
optrA, poxtA and cfr resistance genes, which can be rapidly 
disseminated in E. faecium on mobile genetic elements 
[70–72], particularly under the selective pressures found in 
clinical settings. Daptomycin non-susceptibility has been 
shown to emerge in VREfm both during daptomycin therapy 
[73] as well as in the absence of previous exposure to the 
antibiotic [74]. The recent review by Ahmed and Baptiste 
[8] outlines the genotypes associated with resistance to last-
resort antibiotics such as these. Teicoplanin remains an option 
for therapy for some vanB VREfm infections, although the 
emergence of resistance during therapy has been reported, 
especially in high-bacterial-load infections, and WGS-based 
studies have shown that this may be due to mutations in the 
vanS region of the VanB operon [75]. Genomics has been an 
important tool in understanding the mechanisms of resist-
ance to last-line agents, especially given the often polygenic 
nature of resistance mechanisms.

In addition to growing drug resistance, a recent study 
has also suggested that strains of VREfm are becoming 
more tolerant to alcohol-based disinfectants, with isolates 
collected after 2010 being significantly more tolerant to 
killing by alcohol compared to older isolates in Australia 
through mutations occurring in cell wall-associated trans-
port proteins [76]. Other studies have shown that repeated 
exposure to chlorhexidine, an antiseptic used in infection 
control practices, can lead to reduced chlorhexidine suscep-
tibility [77, 78]. The wider consequences of these findings 
on hospital-based infection prevention strategies remain 
to be seen, but these studies further highlight the highly 
adaptive nature of VREfm in the face of selective pressures. 
These data provide a warning about potential future adapta-
tions that will pose further challenges to the control of this 
important nosocomial pathogen.

conclusions and view to the future
VREfm represent a significant public health threat, causing 
opportunistic invasive infections that are often broadly 
resistant to available antibiotic treatments. E. faecium are 
highly adaptive and evolve rapidly; the level of variation 
within a population is rarely accurately represented by 
traditional typing approaches, although the use of WGS 
is now providing important new insights into the genetic 
mechanisms underlying the evolution and adaptation of this 
nosocomial pathogen. Studies implementing WGS have been 
able to define both local and large-scale spread of clones, as 
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well as elucidating genomic aspects related to host specificity, 
resistance and hospital adaptation. These studies have also 
highlighted the importance of vancomycin-susceptible E. 
faecium (VSE) as a nosocomial pathogen that underpins the 
further evolution and spread of VREfm. These studies have 
helped identify risk factors, adaptations and mechanisms 
for transmission and treatment failure that now need to be 
leveraged to inform and direct efforts to limit the further 
evolution and spread of VREfm. While in some regions the 
burden of VREfm in the healthcare setting may appear over-
whelming, the precision of WGS has the potential to reveal 
the complexity of this problem and provide the evidence for 
real action.
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