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Manganese (Mn) and Zinc (Zn) are essential micronutrients whose concentration and
location within cells are tightly regulated at the onset of infection. Two families of Zn
transporters (ZIPs and ZnTs) are largely responsible for regulation of cytosolic Zn levels and
to a certain extent, Mn levels, although much less is known regarding Mn. The capacity of
pathogens to persevere also depends on access to micronutrients, yet a fundamental gap
in knowledge remains regarding the importance of metal exchange at the host interface,
often referred to as nutritional immunity. ZIP8, one of 14 ZIPs, is a pivotal importer of both
Zn and Mn, yet much remains to be known. Dietary Zn deficiency is common and
commonly occurring polymorphic variants of ZIP8 that decrease cellular metal uptake
(Zn and Mn), are associated with increased susceptibility to infection. Strikingly, ZIP8 is the
only Zn transporter that is highly induced following bacterial exposure in key immune cells
involved with host defense against leading pathogens. We postulate that mobilization of Zn
and Mn into key cells orchestrates the innate immune response through regulation of
fundamental defense mechanisms that include phagocytosis, signal transduction, and
production of soluble host defense factors including cytokines and chemokines. New
evidence also suggests that host metal uptake may have long-term consequences by
influencing the adaptive immune response. Given that activation of ZIP8 expression by
pathogens has been shown to influence parenchymal, myeloid, and lymphoid cells, the
impact applies to all mucosal surfaces and tissue compartments that are vulnerable to
infection. We also predict that perturbations in metal homeostasis, either genetic- or
dietary-induced, has the potential to impact bacterial communities in the host thereby
adversely impacting microbiome composition. This review will focus on Zn and Mn
transport via ZIP8, and how this vital metal transporter serves as a “go to” conductor
of metal uptake that bolsters host defense against pathogens. We will also leverage past
studies to underscore areas for future research to better understand the Zn-, Mn- and
ZIP8-dependent host response to infection to foster new micronutrient-based intervention
strategies to improve our ability to prevent or treat commonly occurring infectious disease.
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1 INTRODUCTION

1.1 Zinc and Manganese in Host Defense
Against Infection
1.1.1 Zinc and Infection Prevalence
Within the vertebrate host, zinc (Zn) is the second most prevalent
trace metal (Kehl-Fie and Skaar, 2010). Zn has a role in cellular
metabolism and is a key component of proteins involved in cell
structure and membrane stability (Maret and Li, 2009;
Bonaventura et al., 2015). It enables immune defense, protein
and DNA synthesis, wound healing, cell division and
proliferation (Prasad, 1995; Maret and Li, 2009; Bonaventura
et al., 2015). As a result, Zn nutritional deficiency has been
associated with a variety of disorders, including immunological
diseases. Studies in the 1960s first recognized the importance of
Zn in host defense against infection. These assumptions were
made due to records of premature death in Zn-deficient dwarfs,
where infection was assumed to be the cause of mortality (Prasad
et al., 1963).

Over the years, epidemiologic and clinical studies on the
impact of Zn deficiency revealed that Zn-deficient individuals
are more susceptible to infection. In developing countries,
insufficient Zn intake in children less than 5 years of age has
been associated with new-onset upper respiratory tract and
gastrointestinal tract infections (Caulfield et al., 1998; Black
et al., 2013). In fact, perinatal Zn deficiency decreases the
acquistion of maternal antibodies, as well as impairing
development of the immune system (Caulfield et al., 1998).

The importance of Zn in the development and maintenance of
immune function is further supported by the significant
reduction in the incidence of respiratory infections, diarrhea,
and bacterial infections in infants, children, adults, and sickle cell
disease patients following Zn supplementation (Sazawal et al.,
1998; Prasad et al., 1999; Hemilä, 2011). This is supported by
experimental infectious diarrhea models that demonstrate a
beneficial role of Zn supplementation akin to what has been
observed in infection-induced diarrhea in humans (Bolick et al.,
2014; Sarwar et al., 2017; Wiegand et al., 2017). Additionally, Zn
has been shown to maintain the integrity of epithelial barriers,
decrease leukocyte infiltration and cytokine expression, and
reduce E. coli and cholera toxin translocation into epithelial
cells (Bolick et al., 2014; Sarwar et al., 2017; Wiegand et al., 2017).

1.1.2 Manganese and Infection Prevalence
Manganese (Mn) is an essential trace element that maintains a
variety of physiological functions including immune function and
host defense and is also an important cofactor for many enzymes.
At the onset of infection or inflammation the concentration of
Mn in the circulation and tissues is altered. Mn levels are
increased in pleural fluid and sputum in patients with thoracic
empyemata, asthma, or bronchiectasis (Domej et al., 2000; Gray
et al., 2010). In contrast, the concentration of Mn in
Chlamydophila pneumoniae infected thoracic tissue was
significantly lower compared to uninfected tissue (Nyström-
Rosander et al., 2009). Similarly, the plasma levels of Mn in
children with chronic hepatitis B virus infection was lower than
uninfected control (Balamtekin et al., 2010). Mn supplementation

in animal models of infection have been shown to bolster host
defense against infection (Gajula et al., 2011; Zhang et al., 2020;
Pan et al., 2018). In contrast, other studies have shown that Mn
supplementation can increase pathogen virulence while reducing
the innate and adaptive immune function including phagocytosis,
superoxide dismutase (SOD) activity, Th1 and Th2 cell numbers,
and complement C3 activity (Wu et al., 2021). In summary, Mn
has an important role in immune function and defense against
pathogens. However, in comparison to Zn, much less is known
and the examples above illustrate that systemic and tissue Mn
levels may increase or decrease in response to infection and reveal
that more research is warranted to determine the functional roles
of Mn in innate and adaptive immune-mediated host defense.

1.2 Dietary-Induced Zinc and Manganese
Deficiency
Zn deficiency is typically caused by insufficient dietary intake and
impacts approximately two billion people world-wide. It is
responsible for 4% of the global burden of morbidity and
mortality in children under the age of 5 years (Black et al.,
2008; Mocchegiani et al., 2013). Severe Zn deficiency in
humans, which is uncommon in the United States, adversely
impacts growth and immune function and symptomatically
manifests as dermatitis, diarrhea, delayed bone maturation,
and altered neurologic function (Gibson, 2012; Mocchegiani
et al., 2013). Moderate Zn deficiency, which is most prevalent
in developing nations but also common in the United States, is
commonly caused by a diet lacking protein-based foods that are
high in Zn (Gibson, 2012; Sapkota and Knoell, 2018). Increased
consumption of phytates, abundant in grains, legumes, nuts and
tubers, is also amajor contributor of Zn deficiency, as phytates are
known to adsorb Zn in the gastrointestinal tract thereby
preventing systemic absorption (Gibson, 2012; Sapkota and
Knoell, 2018). Metabolic factors also increase the incidence of
Zn deficiency. For example, infancy, adolescence, pregnancy and
lactation, malabsorption syndromes, and excessive losses through
urine, and intestinal secretions, as well as aging and alcoholism
are all associated with an increased incidence of Zn deficiency
(Gibson, 2005; Gibson, 2012; Mocchegiani et al., 2013). Likewise,
acrodermatitis enteropathica and sickle cell disease are two
hereditary illnesses that cause Zn deficiency (Gibson, 2005).
Excessive Zn intake and corresponding toxicity is relatively
rare, although doses above 1 g/day can cause acute
gastrointestinal symptoms, fever and lethargy (Brown et al.,
2001). Chronic intake of high doses of Zn can also lead to
reduced absorption of copper and iron, impaired hematologic
and immune functions and drive abnormalities in lipoprotein
metabolism (Brown et al., 2001). Therefore, the upper limit of
dietary intake has been set to 25–40 mg/day and the
recommended dietary allowance (RDA) for Zn in adults is
11 mg/day for males and 8 mg/day for females (Mocchegiani
et al., 2013).

The majority of Zn in humans (90%) is contained primarily in
muscle, bone, liver, and other organs (Brown et al., 2001). Plasma
contains less than 0.2% of the total body Zn content and adults
have an average concentration of 15 μmol/L (corresponding to
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approximately 100 μg/dl) (Brown et al., 2001). Serum or plasma
Zn levels have been used to assess the Zn status although it is
often unreliable especially when acute or chronic inflammatory
conditions are present (Brown et al., 2001; Mocchegiani et al.,
2013). For example, increasing age, pregnancy, infection,
hypoalbuminemia, surgery, and excessive exercise alter plasma
Zn levels (Brown et al., 2001; Mocchegiani et al., 2013). In general,
due to a lack of clinical awareness and accurate diagnostic
markers, Zn deficiency is commonly overlooked. Overall,
accurate assessment of Zn status in humans remains an
obstacle with ongoing research to find reliable biomarkers
(Mocchegiani et al., 2013).

In contrast to Zn, there exist far fewer reports of Mn deficiency
in humans. Experimentally induced Mn deficiency via decreased
dietary intake can cause dermatitis, clotting disorders, hair
reddening, decreased fertility and birth abnormalities, aberrant
glucose tolerance, altered metabolism, impaired growth and bone
formation, and skeletal deformities (Finley and Davis, 1999;
Aschner and Aschner, 2005). Since Mn deficiency is not well
documented in humans, there is no RDA for Mn. Instead, an
intake of 2–5 mg/day for adults has been set as the estimated safe
and adequate daily dietary intake (Finley and Davis, 1999).

Mn toxicity has been reported in humans specifically inminers
that inhale Mn laden dusts (Huang et al., 1989). Consequently, an
upper limit of Mn intake has been established at 10 mg/day
(Finley and Davis, 1999). Most cases of Mn toxicity that have
been reported were associated with neurological symptoms and
classified as Mn-induced Parkinsonism (Calne et al., 1994).
Similar to Zn, there are currently no clinical standardized
assays for the assessment of Mn status in humans.
Experimentally, Mn concentrations in whole blood, magnetic
resonance imaging of the globus pallidus of the brain, lymphocyte
Mn superoxide dismutase (SOD) activity, and blood arginase
activity have been studied (Greger, 1999). Overall, there are still
no accurate, clinically accepted, standardized methods to assess
Zn and Mn status in humans demanding further investigation in
this area.

1.3 Zinc and Manganese in Immune
Function
1.3.1 Innate Immunity
New roles for Zn as a regulator of innate immune function
continue to be identified in a variety of cells that include but
are not limited to polymorphonuclear neutrophils (PMNs),
monocytes, macrophages and dendritic cells (DCs)
(Bonaventura et al., 2015; Maares and Haase, 2016; Sapkota
and Knoell, 2018). Zn influences a broad range of cellular
processes that include chemotaxis, phagocytosis, neutrophil
extracellular traps regulated cell death (NETosis), apoptosis,
and production of superoxides, cytokines and chemokines
(Maares and Haase, 2016). Zn can also act as a
chemoattractant and mediate phagocytosis via the Zn protein,
early endosome antigen 1 (Hujanen et al., 1995; Simonsen et al.,
1998).

Following phagocytosis, granulocytes and macrophages kill
pathogens by the generation of nicotinamide adenine

dinucleotide phosphate (NADPH) oxidase mediated reactive
oxygen species (ROS) formation (Maares and Haase, 2016).
Physiological concentrations of Zn are required for generation
of ROS, whereas both lack of or excessive amounts of Zn inhibit
NADPH oxidase (Hasegawa et al., 2000; Wessels et al., 2013).
Analogous to Zn, studies have shown that Mn also exerts
bactericidal activity by maintaining the optimal function of
NADPH oxidase and myeloperoxidase-hydrogen peroxide-
chloride antimicrobial system within neutrophils (Wu et al.,
2021).

However, opposing data suggest that both Zn and Mn act as
anti-oxidants that reduce the generation of ROS via the
antioxidant functions of via both SOD and non-SOD-based
mechanisms. SODs are an ubiquitous family of enzymes that
catalyzes the dismutation of superoxide radicals into less harmful
species, which are then removed by catalase and glutathione
peroxidase (Zelko et al., 2002). There are three types of SOD; Cu/
ZnSODs, found in the cytoplasmic space that uses copper or Zn
for catalysis; nickel-containing SODs; and the Mn/FeSOD family
that uses either Mn or iron and are found exclusively in the
mitochondrial space (Zelko et al., 2002; Aguirre and Culotta,
2012). Previously, in a non-mammalian model, it was observed
that Zn andMn dependent SODs work in synergy to maintain the
redox balance for immune defense against infection (Lu et al.,
2015). However, whether the two types of SODwork in synergy in
mammals is yet to be determined.

Zn deficiency promotes increased differentiation of monocytes
into macrophages (Dubben et al., 2010). The polarization of
macrophages into the pro-inflammatory M1 and anti-
inflammatory M2 subtypes depends on Zn and
phosphorylation of signal transducer and activator of
transcription (STAT) 6. In a murine colitis model, inadequate
Zn aggravated colonic inflammation by increasing the proportion
of M1 macrophages in the colon with excessive Th17 cell
activation (Higashimura et al., 2020). Knockdown of the Zn
transporter, ZIP7, which leads to reduced Zn uptake in
macrophages, drove macrophage differentiation toward an M2
phenotype and reduced production of interleukin (IL)-6 and
tumor necrosis factor (TNF)-α (Xie et al., 2020). In another
study, Zn treatment of THP-1 cells inhibited M2 polarization
whereas differentiation into M1 macrophages was promoted by
both physiological doses of Zn treatment and Zn deficiency
(Dierichs et al., 2018). Thus, it is evident that Zn has a role in
determining macrophage phenotype and function; however,
results varied across studies likely as a consequence of the
model and study conditions. Whether Mn is involved in
macrophage differentiation remains to be determined.

Zn has both stimulatory and inhibitory effects on the secretion
of cytokines frommonocytes and macrophages depending on the
dose, duration, and cell type. In human peripheral blood
mononuclear cells (PBMCs), incubation with high Zn
concentrations (100 mM) stimulated the release of pro-
inflammatory cytokines, IL-6, IL-1β, and TNF-α
(Wellinghausen et al., 1997; Maares and Haase, 2016). Zn also
potentiated the effects of lipopolysaccharide (LPS). Specifically,
when cells were incubated under “nonstimulatory
concentrations” of Zn (<100 µM Zn) treatment with LPS lead
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to increased secretion of cytokine, IL-1β, compared to LPS
treatment alone (Driessen et al., 1995). In contrast, low Zn
levels inhibited monocyte activation caused by the
superantigens, staphylococcal enterotoxins A and E, the
mycoplasma arthritidis-derived superantigen, but not by toxic
shock syndrome toxin-1 (Driessen et al., 1995). Zn reduced the
release of LPS-induced TNF-α and IL-1β in primary human
monocytes and the monocytic cell line Mono Mac1 by
inhibiting enzyme activity of phosphodiesterase (PDE)-1, 3,
and 4 and thus increasing cyclic guanosine-3′,5′-
monophosphate (cGMP) (Von Bülow et al., 2005).
Furthermore, Zn deficiency in HL-60 cells, a promyelocytic
cell line, potentiated phorbol 12-myristate 13-acetate (PMA)-
stimulated release of IL-1β, TNF-α, and IL-8 by decreasing the
levels of the Zn finger protein, A20 (Bao et al., 2003; Prasad et al.,
2011).

The presence of Zn transporters such as, Zrt/Irt-like protein
(ZIP) 6 and 10 on the surface of DCs indicate that intracellular Zn
concentrations play a vital role in DC maturation and function.
For example, during infection, altered expression of Zn
transporters decreases levels of intracellular free Zn in DCs,
which contributes to the upregulation of major
histocompatibility complex class II and co-stimulatory
molecules required for antigen presentation to CD4+ T cells
(Kitamura et al., 2006).

Zn also provides catalytic and/or structural functions in
different proteins including enzymes and transcription factors
involved in immune defense against pathogens. More
importantly, in immune cells labile Zn and Zn finger proteins
(ZFPs) regulate signal transduction pathways, including the
nuclear factor-κB (NF-κB) signaling pathway, now one of the
most extensively studied Zn-regulated cell signaling pathways
(Haase and Rink, 2014; Gammoh and Rink, 2017). Following toll-
like receptor (TLR)-4 activation by LPS, a rapid Zn-dependent
signal is generated leading to the activation of the myeloid
differentiation primary response gene 88 (MyD88) pathway
and the downstream production of cytokines via NF-κB
(Haase and Rink, 2014). In contrast, Zn has been shown to
inhibit toll/IL-1R domain-containing adapter inducing interferon
(IFN)-β-mediated activation of IFN regulatory factor 3 (IRF3)
signals resulting in decreased IFN-β-production (Brieger et al.,
2013). Labile Zn also regulates signal transduction in immune
cells through inhibition of dephosphorylating enzymes including
protein tyrosine phosphatases, cyclic nucleotide PDE, and dual
specificity phosphatases (Haase and Rink, 2014; Gammoh and
Rink, 2017). For example, high Zn concentrations inhibit PDE
activity, leading to elevated cGMP levels and protein kinase A
(PKA) activation resulting in impairment of NF-κB activation
(Von Bülow et al., 2007). One of the well-known Zn finger
transactivating factors, A20, is an inhibitor of the TNF
receptor and TLR initiated NF-κB pathways and ultimately
inhibitor of cytokine release from T cells and monocytes
(Prasad et al., 2011). Additionally, Zn upregulates the
expression of A20, which inhibits NF-κB and the subsequent
production of cytokines (Prasad et al., 2004).

Our lab has demonstrated the importance of Zn in monocyte
and macrophage signaling pathways in response to infection.

Using a polymicrobial mouse sepsis model dietary-induced Zn
deficiency was shown to enhance Janus kinase (JAK)-STAT3 and
NF-κB signaling in the lung and liver resulting in increased
bacterial burden, overactivation of the inflammatory and acute
phase response, and higher mortality (Bao et al., 2010; Liu et al.,
2014; Sapkota and Knoell, 2018). Similar studies have been
conducted in mice and humans with supplementation of Zn;
however, results have been inconsistent and inconclusive with
some recording lower mortality rates while others observed no
difference compared to treatment control groups. Mixed results
from these studies may be due to differences in the timing and
dose of Zn administered, since in animal models Zn was
administered before the onset of sepsis, whereas in human
studies, Zn was supplemented after the onset of sepsis. Clearly,
more well-controlled, large, randomized studies will need to be
conducted to determine whether Zn has a beneficial, neutral, or
detrimental role (Alker and Haase, 2018).

In contrast to Zn, which predominantly decreases the
activation of proinflammatory pathways, Mn has been shown
to promote inflammation via activation of the NF-κB pathway.
Mn treatment of microglia cell lines, the resident macrophage of
the brain, potentiated the effects of LPS leading to increased
expression of cytokines, IL-6 and TNF-α, nitric oxide, inducible
nitric oxide synthase and heme-oxygenase- 1 (Chang and Liu,
1999; Filipov et al., 2005; Dodd and Filipov, 2011). Similarly,
administration of Mn to mixed astrocyte-glial cultures
augmented the expression of inflammatory cytokines and
chemokines via the NF-κB pathway (Popichak et al., 2018). In
human monocyte-derived macrophages Mn alone or in
combination with LPS resulted in NF-κB activation and the
production of IL-1β, IL-6, IL-8, IFN-γ, and TNF-α (Mokgobu
et al., 2015). In a related study, Mn was shown to induce the
translocation of NF-κB into the nucleus by decreasing
mitochondrial membrane potential through the production of
mitochondrial ROS. ROS accumulation resulted in
phosphorylation of the NF-κB inhibitor, IκBα, and p65
translocation into the nucleus (Barhoumi et al., 2004).

Unlike Zn, there are no known Mn containing transcription
factors (Nebert and Liu, 2019). Rather, Mn mechanistically
regulates physiological processes as a cofactor for a broad
array of enzymes that include hydrolases (e.g., arginase),
ligases (e.g., glutamine synthase), lyases (e.g.,
phosphoenolpyruvate decarboxylase), and transferases (e.g.,
glycosyltransferase).

Among the glycosyltransferases, β-1,4-galactosyltransferase, a
Golgi enzyme essential for the synthesis of the carbohydrate
moiety of glycoproteins require Mn as a cofactor (Riley et al.,
2017; Nebert and Liu, 2019). Many proteins require post-
translational glycosylation and perturbations in the Mn
homeostasis have been shown to contribute to many
congenital and acquired diseases. In particular, Mn deficient
mice exhibit skeletal abnormalities due to reduced synthesis of
N-acetylgalactosamine containing chondroitin sulphate (Park
et al., 2015). In type II congenital disorder of glycosylation, an
inherited disease, impaired Mn transport (via a defective ZIP8
variant; discussed more in depth later) reduced blood and tissue
Mn levels adversely impacting glycosylation of vital proteins
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resulting in skull deformation, severe seizures, psychomotor
retardation, and deafness (Park et al., 2015; Riley et al., 2017).
Mn-dependent, post-translational glycosylation is also important
for proper immune function and host defense against microbes as
highlighted in a recent study involving Crohn’s disease (CD)
(Nakata et al., 2020). A large human genome-wide association
study (GWAS) study revealed that a commonly occurring variant
of the SLC39A8 gene was highly associated with CD patients.
Based on this, a mouse Slc39a8 A393T allelic equivalent knock-in
(KI) model was generated that recapitulated Mn deficiency in the
colon and impaired glycosylation of key proteins causing gut
barrier disruption and increased inflammation (Nakata et al.,
2020). Taken together, Zn and Mn each play important roles in
innate immune development, maintenance, and activation
although they have distinctively different footprint with regard
to the mechanisms by which they influence cellular function.
Clearly, both are required for host defense, but it remains unclear
to what extent their impact is integrated overall in response to
invading pathogens since very few if any studies have yet
examined the influence of both in cell culture or animal
studies, let alone clinical trials.

1.3.2 Adaptive Immunity
Zn plays an important role in the development, differentiation
and function of T and B cells thereby impacting host defense, as
well as autoimmune diseases. Zn is required for lymphopoiesis as
exhibited by thymic atrophy and T cell lymphopenia in Zn
deficient children and related animal models (King et al.,
2005; Maares and Haase, 2016). Zn deficiency over time
induces glucocorticoid production that enhances apoptosis of
premature T cells (Fraker et al., 2000; Fraker and King, 2001;
Haase and Rink, 2014). Additionally, thymulin levels, a thymus
specific hormone that is crucial for T cell differentiation, is
reduced by Zn deficiency and corrected by Zn
supplementation (Prasad, 2007; Maares and Haase, 2016). Zn
also helps maintain the balance between different types of T cells.
Zn deficiency decreases the production of Th1 cytokines (IL-2,
IFN-γ, and TNF-α), whereas Th2 cytokines (IL-4, IL-10) are
unaffected all of which drive a Th2 predominant environment
(Beck et al., 1997; Prasad, 2000). Suboptimal Zn levels also reduce
the recruitment of naïve T cells and the activity of CD8+ cytotoxic
T cells, which predisposes Zn deficient individuals to infection
(Beck et al., 1997). Furthermore, Zn suppresses the development
of Th17 cells by inhibiting IL-6-induced STAT3 activation
(Kitabayashi et al., 2010). Whereas Zn can also promote IL-2-
mediated T cell proliferation (Kaltenberg et al., 2010 #1)
Regulatory T cells (Treg) that suppress the inflammatory
response are central to immune homeostasis. Zn also regulates
hyper-responsive immune reactions by increasing the Treg
numbers through transforming growth factor (TGF)-β1
signaling, increased forkhead box P3 (Foxp3) expression, and
inhibition of histone deacetylase Sirt-1 mediated Foxp3
degradation (Rosenkranz et al., 2016b; Maywald et al., 2017).
Zn-mediated Treg polarization also helps to temper allergic
responses in the setting of transplant organ rejection in both
mouse and in vitromodels (Campo et al., 2001; Rosenkranz et al.,
2016b; Rosenkranz et al., 2017). Similarly, an experimental model

for multiple sclerosis, revealed that Zn supplementation increased
Treg numbers in the central nervous system with a corresponding
reduction of Th17 cells that attenuated inflammation
(Kitabayashi et al., 2010; Rosenkranz et al., 2016a).

Zn and Mn have also been linked to T cell receptor (TCR)
signaling. Multiple signaling pathways in T cells are regulated by
cytoplasmic free Zn that acts as second messengers. Zn stabilizes
the TCR signaling complex by facilitating the binding of the src
kinase, Lck to CD4, which initiates tyrosine phosphorylation of
ZAP70 and CD3d (Kim et al., 2003). TCRs when stimulated with
superantigens presented by DCs, trigger the influx of Zn, which
decreases the TCR threshold to respond to suboptimal antigenic
stimuli by decreasing the recruitment of SHP-1 to the TCR
activation complex (Yu et al., 2011). In addition, stimulation
of T cells increases the expression of the Zn transporter on the
lysosomal membrane resulting in increased cytosolic Zn,
inhibition of calcineurin phosphatase activity and increased
IFN-γ synthesis (Aydemir et al., 2009). Mn ions are essential
for CD28 phosphorylation in human peripheral T cells
(Hutchcroft et al., 1996). Mn can also regulate TCR signaling
via activation of calcineurin (Wu et al., 2021). In Jurkat T cells,
Mn in the presence of PMA promoted the activation of AP-1,
upregulation of c-Fos and c-Jun, and increased IL-2 production
(Tanaka et al., 2012). Furthermore, in the setting of TCR cross-
linking, Zn was involved in tyrosine phosphorylation of the TCR-
associated membrane signal transduction molecules Lck, LAT,
ZAP70, PLCγ1, and SLP76, all of which modulated mitogen-
activated protein kinase (MAPK) signaling through the c-Jun
N-terminal kinase (JNK)/cJun pathway. Interestingly, TCR
signalling was not regulated by Cu/ZnSOD enzyme (Gill and
Levine, 2013).

Like T cells, B cell development is dependent on Zn. Zn
deficiency rapidly depletes precursor and immature B cells
with relatively no change in the pro and mature B cell
populations. These differences were later explained by low
expression levels of bcl-2 in pro and mature B cells that
prevented apoptosis (Fraker et al., 2000; Fraker and King,
2001). In contrast to acute Zn deficiency, chronic Zn deficient
mice are able to maintain B cell lymphopoiesis for an extended
time period possibly due to the adaptation via increased Zn
absorption and reduced excretion (King et al., 2005).
Furthermore, Miyai and colleagues investigated the
mechanisms underlying Zn-mediated lymphopoiesis using
ZIP10−/− mice, a Zn transporter that imports Zn across the
plasma membrane. ZIP10−/− mice had decreased levels of
intracellular Zn, increased caspase activity and apoptotic cell
death in both pro and pre B cells. ZIP10−/− mice also had
significant reductions in B cell populations and serum
immunoglobulin (Ig) levels, demonstrating that Zn
homeostasis is critical for early B cell development and
survival (Miyai et al., 2014). In the same model of ZIP10−/−, it
has also been shown that Zn modulates B cell function by
regulating B cell antigen receptor (BCR) signal transduction
(Hojyo et al., 2014). Similarly, mice with hypomorphic
mutations in ZIP7, a Zn transporter that is expressed on the
Golgi membrane, exhibited profound B cell immunodeficiency.
B cells from ZIP7 hypomorphic mice had significantly decreased
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cytoplasmic free Zn, increased phosphatase activity and reduced
BCR signalling (Anzilotti et al., 2019). In addition, several ZFPs
including leukemia/lymphoma-related factor (LRF), B
lymphocyte-induced maturation protein 1 (Blimp-1) and
ZNF521 have been shown to modulate maturation of B cell
lineage and humoral immune response (Solomons, 2013).

Overall, far fewer studies have been conducted with Mn and
B cell development and function so its potential role(s) is much
less clear. Mn does have a pro-apoptotic effect on activated
tonsilar B cells, Epstein Barr virus (EBV)-negative Burkitt’s
lymphoma cell lines (BL-CL) and EBV-transformed B cell
lines in a caspase-dependent manner (Schrantz et al., 1999). In
contrast, Zn has been shown to prevent apoptosis in B and T cells
by directly inhibiting caspases 3, 6, 7, 8, and 9, with caspase 3
having a dominant role (Stennicke and Salvesen, 1997; Maret
et al., 1999; Huber and Hardy, 2012). Collectively, past studies
demonstrate vital roles for Mn and Zn in response to pathogens
yet strikingly, each has distinct and in some cases, opposing
effects on basic vital functions. More recently it has been shown
that both metals enter cells through the zinc transporter ZIP8.
Accordingly, we will now focus on cellular uptake as a common
feature shared by both metals in order to begin to better
understand how mammals orchestrate host defense.

1.4 Metal Transport in Mammals
Studies over the past two decades that involve metal ion
transporters have created an ever-expanding mosaic of the
coordinated action of uptake and secretion systems that
achieve proper metal homeostasis for all tissues and cells in
mammals. Metal transit occurs at the plasma membrane, as
well as cellular organelle membranes through coordination of
low and high affinity transporters that often act in concert to
maintain metal balance (Hediger, 1997; Eide, 1998; Radisky and
Kaplan, 1999). Metal ion homeostasis overall is governed by two
evolutionary consequences. 1) Redox reactions that are
fundamental life processes coupled to transition metals that
are essential for the function of most proteins involved in
redox reactions. This includes eukaryrotic and prokaryotic
cells that ferociously compete for metal ions; and 2) essential
cellular biological processes that generate toxic reagents that,
when present in abnormal amounts, cause damage or dysfunction
to proteins and nucleic acids. Consequently, in response to
pathogen invasion, metal ion transporters provide effective
tools to competitively acquire metal ions, and at the same
time regulate or buffer the changing environment in favor of
the host to mitigate potential damage and cell death induced by
pathogen invasion.

Different transporters can generally be grouped into those that
are driven by the chemical energy of ATP and those that are
driven by electrochemical gradients of protons and other ions.
Some of the systems include coupled transporters, one of high
affinity and low capacity and the other of low affinity and high
capacity (Eide, 1997). Transition and trace metals are typically
grouped into two categories that include redox-active ions such as
Fe2+, Cu2+, Co2+ and to a lesser extent Mn2+; and non-redox-
active ions such as Ca2+ and Zn2+. The redox-active ions normally
function in enzymes that directly participate in redox reactions

and the conversion of active oxygen-containing components.
Although Zn is redox inert, it has a propensity to interact
with transcription factors and other enzymes and proteins,
including metallothioneins, involved in cellular metabolism
either as a catalyst, inhibitor, or binding reservoir in part
because the presence of redox-active species in these spaces
can lead to the promotion of radicals that result in tissue damage.

In contrast, Mn has no known interaction with transcription
factors but does have direct impact on proteins involved in
glycosylation. All these processes require coordination of
defined amounts of specific metal ions at the right place and
at the right time whether it be for day-to-day maintenance or, for
example, mounting a host response against invading pathogens.
Overall, the field of metal ion transporters is now in its third
decade of study. Although much has been revealed relative to
their collective role in human health and disease, much remains
to be elucidated. For example, trace metals often share the same
transporter with similar or different affinity for transit into or out
of cellular compartments. Under normal conditions where metals
are sufficiently available and transporters sufficiently functioning,
balance is maintained. However, what happens when equilibrium
is off balance due to metal deficiency or transporter dysfunction
or both? Further, does either predispose the host to greater risk
under these circumstances when challenged by an invading
pathogen?

In this review, we will focus our attention primarily on the Zn
transporter, ZIP8, that has been shown to efficiently transport Zn
andMn (as well as Fe2+, Se+2, Co+2, and Cd2+) into the cytosol of a
variety of cells involved in host defense. ZIP8, is unique, relative
to other family members, in that it is highly induced following
pathogen recognition and required by myeloid-lineage,
lymphoid, and parenchymal cells to maintain proper host
defense against pathogen invasion as discussed later (Liu et al.,
2013; Pyle et al., 2017a; Pyle et al., 2017b). We will also briefly
touch on ZIP14, the closest homologue to ZIP8, and also a known
transporter of Zn and Mn but with different expression patterns
across different tissues. In addition, recent human GWAS studies
have revealed that a frequently occurring ZIP8 variant allele that
leads to defective intracellular metal transport (rs13107325;
Ala391Thr risk allele), is strongly associated with
inflammation-based disorders (Pickrell et al., 2016; Costas,
2018) and bacterial infection (Ye et al., 2014). When
considering the high incidence of dietary Zn deficiency due to
inadequate dietary intake and the relatively high frequency of
ZIP8 variant alleles across populations, the potential impact on
host defense through alteration of the innate and adaptive
immune systems in vulnerable individuals becomes highly
relevant and deserving of additional investigation.

1.4.1 The Role of Zinc Transporter Proteins
Zn and Mn are both required for the growth and sustenance of
eukaryotic and prokaryotic cells thereby effectively creating a “tug
of war” for nutrient acquisition between host and microbe.
Microbes also possess a variety of metal transporters to
maintain normal function, as well as potentially evade host
defense mechanisms, although this will not be discussed
further in this review, please see the review by Johnstone and
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Nolan (2015) for a description of bacterial metal transport
systems. Mammalian transmembrane spanning metal ion
transporters serve as the primary conduit of micronutrient
biodistribution once pathogen invasion has occurred in an
effort to eradicate the pathogen (Rowland and Niederweis,
2012; Stafford et al., 2013). Transporter-mediated increases in
eukaryotic cytosol metal ion content lead to disruption of protein
function in pathogens, (Kühn, 1999; Rowland and Niederweis,
2012), and result in nutrient deprivation of elements essential for
bacterial growth and survival (Nairz et al., 2010). It has also been
shown that transporters can concentrate metal content in niches
within the cell where microbes congregate thereby toxifying the
local environment ridding the host of pathogen. Likewise,
granulocyte macrophage-colony stimulating factor (GM-CSF)
was shown to induce Zn sequestration within macrophages
thereby enhancing elimination of Histoplasma capsulatum
(Subramanian Vignesh et al., 2013 #2).

In particular, 10 Zn export proteins (ZnT1–10) and fourteen Zn
import, Zrt-Irt-like-Proteins (ZIP1–14) control Zn homeostasis in
mammals (Lichten and Cousins, 2009). Collectively, these highly
conserved ZnT and ZIP family transporters regulate Zn
homeostasis under normal and stress-induced conditions in
humans and all other mammals, including mice. The Zn
transporter ZIP8 was first discovered following its induction in
monocytes in response to Mycobacteria (Begum et al., 2002).
Bacteria-mediated ZIP8 induction in human monocytes resulted
in the production of a membrane-bound, glycosylated, 140 kDa
protein, which chaperoned extracellular Zn into the cytosol (Pyle
et al., 2017a). The gene that codes for ZIP8, SLC39A8, is
evolutionarily highly conserved in all vertebrates. The
SLC39A8 gene is ubiquitously expressed with SLC39A8
expression occurring in most cell types, including pluripotent
embryonic stem cells; with ZIP8 mediating the uptake of multiple
cations including Zn2+, Mn2+, as well as Fe2+, Se2+, Co2+, and the
toxic metal Cd2+. The extent of constitutive versus inducible
SLC39A8 expression varies across cell types and different stimuli.
Early transfection studies with ZIP8 cDNA utilizing cell culture
models revealed that ZIP8 expression had Km values for Mn2+

that were slightly higher than Zn2+ with both determined to be
the best physiological substrate for ZIP8 compared to other
divalent cations including Fe2+ and Co2+ (He et al., 2006;
Wang et al., 2012). The ZIP8 protein is expressed in most if
not all mammalian tissues (https://www.proteinatlas.org/
ENSG00000138821-SLC39A8/tissue). Transporter and metal
uptake studies revealed that the complex moves across the cell
membrane as a Metal2+/(HCO−) electroneutral species that does
not require ATP.

Although a crystal structure remains to be elucidated, ZIP8 is
predicted to be an eight-transmembrane protein under
physiological conditions that is secreted from the Golgi-ER as
a heavily glycolsylated protein, which is then trafficked
predominantly to the cell-surface membrane (Liu et al., 2008).
In addition, ZIP8 has been shown to be located in the membrane
of intracellular organelles that include, (He et al., 2006; Wang
et al., 2012), the Golgi body, (Kelleher et al., 2012; Park et al.,
2015), lysosome, (Aydemir et al., 2009), endoplasmic reticulum,
(Choi et al., 2018), and mitochondrial membranes (Riley et al.,

2017). In the case of polarized cells such as kidney and lung
epithelia, ZIP8 has been shown to be predominantly expressed on
the apical surface (Besecker et al., 2008).

Whether expressed on the cellular or organelle membrane, the
net result is increased Zn concentrations in the cytosol.
Presumably the same occurs for Mn although this has been
much less studied. It bares recognition that of the 14 ZIP
transporters, ZIP14 is most evolutionarily closely related to
ZIP8. Both are within the LIV-1 subfamily (Taylor and
Nicholson, 2003) that are distinguished by a signature
sequence (HEXPHEXGD) in TM domain V that is not found
in other ZIP transporters. Interestingly, both transporters possess
a glutamic acid (E) at this key position, which likely confers the
ability to bind/transport metal ions other than Zn (Taylor et al.,
2007). Both proteins are similar in length (489 vs. 462 amino
acids) and possess about 50% similarity in composition with each
having at least three N-linked glycosylation sites in the
N-terminal region. They possess very highly conserved TM
domains IV and V which have been proposed to comprise
part of an ion channel (Eng et al., 1998). Tissue distribution is
remarkably different with Slc39a14 gene expression highest in
liver > duodenum > kidney/brain > testis, (Girijashanker et al.,
2008), whereas Slc39a8 expression is highest in kidney ≥ lung >
testis (Wang et al., 2007). Using a Xenopus oocyte system to assess
the metal-ion substrate profile of ZIP14, it was revealed that it is
able to transport Zn2+, Mn2+, Fe2+, and Cd2+, but not Cu2+ similar
to what was previously shown for ZIP8 (Pinilla-Tenas et al.,
2011).

In the context of development, Slc39a8 is expressed in mouse
gastrula, (Harrison et al., 1995), and visceral endoderm (Moore-
Scott et al., 2007) at gestational day 7.5 and a potential factor in
cell differentiation in embryonic stem (ES) cells and
embryogenesis, as well as later in adult life (Zhu et al., 2007).
In sharp contrast, SLC39A14 is not expressed in ES cells
providing strong evolutionary evidence that SLC39A14 arose
from a gene-duplication event from the earlier gene, SLC39A8
(Nebert and Liu, 2019). For the remainder of this review, we will
focus primarily on ZIP8 in part, because more investigation
involving Zn and Mn transport has been conducted in the
context of immune function, as well as more extensive GWAS
studies identifying clinically relevant polymorphic variant alleles
that are associated with pathogenic traits in humans have been
studied with respect to ZIP8.

1.4.2 The Role of ZIP8 in Zinc and Manganese
Transport and Immune Function
Manipulation of the Slc39a8 gene in mice including Slc39a8-
overexpressing, Slc39a8 (neo/neo) knockdown, and cell type-
specific conditional knockout (KO) mouse lines have revealed
multiple vital roles for ZIP8 in mammals. For example, the
Slc39a8 (−/−) global KO mouse is embryonic lethal. Slc39a8
(neo/neo) hypomorphs die prematurely and exhibit severe
anemia, dysregulated hematopoiesis, hypoplastic spleen,
dysorganogenesis, stunted growth, and hypomorphic limbs.
More recently, GWAS have revealed human SLC39A8-
defective variants that exhibit striking similarities including
defects in multiple organs, tissues, and cell-types, as well as
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influence the development of virtually every organ system and
relevant to this review, the immune system. For a more
comprehensive and up-to-date review of these traits and
comorbid conditions please refer to an excellent review by
Nebert and Liu (2019). Relevant to this review article, GWAS
studies have revealed both Zn-mediated and Mn-mediated
pathogenic traits in humans as a consequence of defective
intracellular transport. More recently, a myeloid-specific Zip8
KOmouse model exhibited significantly increased morbidity and
mortality in a pneumococcus model that was mediated in part by
a defective Zn transport (Hall et al., 2021). Relevant to the A391T
variant allele found in humans, a mouse Zip8 A393T KI model
exhibits increased vulnerability to chemically induced
inflammatory bowel disease (IBD) as a consequence of
defective Mn transport, (Sunuwar et al., 2020), which is
consistent with previous GWAS studies conducted in patients
with IBD, discussed more in depth below.

Upon bacterial challenge and depending on cell type, ZIP8
translocates to plasma, endosomal and/or lysosomal membranes
and transports Zn into the cytosol (Aydemir et al., 2009; Besecker
et al., 2008). Zn and ZIP8 are coupled to antiapoptotic, as well as
anti- and pro-inflammatory mechanisms demonstrating their
critical roles in maintaining a balanced host response. One of
the first examples revealed that ZIP8-mediated Zn transport into
primary human lung epithelia protects against apoptosis
(Besecker et al., 2008). To first reveal that Zn and ZIP8
coordinate cytoprotection to inflammatory stress, mRNA
transcripts for all Zn transporters including ZIPs and ZnTs
were screened following stimulation with TNFα. Of all 24
transcripts examined, only SLC39A8 mRNA was markedly
induced by TNFα (Besecker et al., 2008). Increased SLC39A8
expression resulted in elevated intracellular Zn content and cell
survival in response to TNFα whereas, siRNA silencing of
SLC39A8 prior to cytokine treatment resulted in significantly
more apoptosis.

More recently, using a novel myeloid-specific, Zip8 KOmodel,
a vital role of ZIP8 in macrophage and dendritic cell (DC)
function was revealed following pneumococcal infection in the
lung (Hall et al., 2021). Administration of S. pneumoniae into the
lung resulted in increased inflammation, increased tissue damage,
and increased bacterial dissemination leading to increased
morbidity and mortality in Zip8-KO mice compared to wild
type (WT) counterparts. This was associated with increased
numbers of myeloid cells, cytokine production, and cell death.
In vitro analysis of macrophage and DC function revealed deficits
in phagocytosis and increased cytokine production upon bacterial
stimulation that was, in part, due to increased NF-κB signaling.
Strikingly, alteration of myeloid cell function via lack of ZIP8
resulted in imbalance of Th17/Th2 responses, thereby also
potentially impacting adaptive immune function, although
more investigation is required to determine the impact on the
memory response. These results for the first time reveal a vital
ZIP8- and Zn-mediated axis that alters the lung myeloid cell
landscape and the host response against pneumococcus. As
touched on previously, other groups have revealed that related
Zn transporters are essential mediators of immune function in
DCs, (Kitamura et al., 2006) B-lymphocytes, (Anzilotti et al.,

2019), and T-lymphocytes (Colomar-Carando et al., 2019) clearly
establishing the importance of Zn homeostasis in defense against
harmful pathogens. It remains unclear from these recent animal
studies whether ZIP8-mediated deficits in Mn also contributed to
altered immune function and worse outcomes although knowing
that Mn likely influences major pathways involved in immune
function including the NF-κB, cGAS-STING, and TCR signaling
pathways (Wu et al., 2021).

We have previously shown that intracellular transport of Zn
via ZIP8, dampens LPS-induced inflammation and pro-
inflammatory cytokine production (IL-6, IL-1β, TNFα, IL-8) in
monocytes and macrophages through blockade of IKK and NF-
κB activity, (Liu et al., 2013) and also blocks LPS-induced IL-10
expression and release in macrophages (Pyle et al., 2017a). The
NF-κB signaling pathway participates in many cellular responses
to a broad array of stimuli including but not limited to cytokines,
free radicals, and bacterial or viral infections. SLC39A8 gene
expression is induced by the transcription factor, NFKB1;
resulting in a rapid influx of Zn into monocytes and
macrophages and coordination of NFKB1-mediated
transcriptional activation of downstream host defense factors
including cytokines and chemokines. Importantly, the new
pool of cytosolic Zn brought into the cell by ZIP8 then
negatively regulates pro-inflammatory responses by means of
Zn-mediated downregulation of IκB kinase (IKK) activity (Liu
et al., 2013). Moreover, Slc39a8 (neo/neo) fetal fibroblasts
exhibited decreased Zn uptake and increased NF-κB
activation. Related to Zn itself, mice fed a Zn deficient diet
exhibit increased inflammation in response to polymicrobial
sepsis (Knoell et al., 2009). Collectively, these findings identify
a negative feedback loop involving ZIP8 that directly controls
innate immune function through coordination of Zn homeostasis
and NFKB1 gene transcription. In other studies, Zn
supplementation in culture medium decreased nuclear
localization and activity of C/EBPβ, a transcription factor that
drives IL-10 expression (Pyle et al., 2017a). It was concluded that
Zn regulates LPS-mediated immune activation of human
macrophages in a ZIP8-dependent manner, as well as lowering
IL-10 levels; these findings further indicate that Zn-mediated
homeostasis in macrophages plays a pivotal role in host defense
against pathogens.

Phytohemagglutinin (PHA), which causes potent mitogen-
inducing activation and proliferation of lymphocytes, was used to
stimulate T cells grown in culture that were isolated from human
subjects who had received oral Zn supplementation (15 mg/day)
and T cell activation was assessed (Aydemir et al., 2009).
Compared to volunteers not receiving oral Zn, those on Zn
supplementation showed higher expression of PHA-activated
interferon-γ (IFNγ)—indicating that Zn potentiates T cell
activation. Similarly, Zn treatment of PHA-activated T cell
cultures resulted in increased IFNγ expression. When
SLC39A8 mRNA was knocked down by siRNA, decreased
ZIP8 levels resulted in less T cell activation; transiently
transfected ZIP8 overexpression led to enhanced T cell
activation. These findings indicate that, along with the role in
human monocytes and macrophages, ZIP8 also participates in
Zn-mediated T cell activation. Clearly, ZIP8-mediated transport
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of both Zn and Mn are critical to host defense with much more
known regarding Zn compared to Mn. Further, there currently
exists a paucity of studies centered upon ZIP8 in relation to the
tandem role(s) of both metals during host defense against
infection whether it be with a focus on innate or adaptive
immune function. It also remains unclear whether both metals
complement each other to synergize host defense or possibly,
compete with each other for transport thereby negating some of
their beneficial effects.

1.5 Zip8 Polymorphic Variants and
Inflammation-Based Disease and Infection
As mentioned above, recent human GWAS studies have revealed
that a frequently occurring ZIP8 variant allele that leads to
defective intracellular metal transport (rs13107325; Ala391Thr
risk allele), is strongly associated with inflammation-based
disorders (Pickrell et al., 2016; Costas, 2018) and bacterial
infection (Ye et al., 2014). In this section we will highlight the
current literature regarding our understanding and potential
role(s) of the various polymorphic variants of SLC39A8 in
human disease Nebert and Liu (2019).

1.5.1 Association of the Ala391Thr Risk Allele and
Clinical Disease
Following work from our group demonstrating the protective role
of SLC39A8 against inflammation and cytotoxicity in human
lung cells (Besecker et al., 2008), several GWAS have reported
correlations between a SLC39A8 genetic variant and various
clinical disorders.

To date there have been seven single nucleotide variants
(SNVs) of SLC39A8 identified (Table 1) (Nebert and Liu,
2019) SLC39A8 variants include; 1) c.112G > C (p.Gly38Arg),
2) c.1019T > A (p.Ile340Asn), 3) c.97G > A (p.Val33Met), 4)
c.1004G > C (p.Ser335Thr), 5) c.610G > T (p.Gly204Cys), 6)
c.338G >C (p.Cys113Ser) and 7) c.1172C > T (p.Ala391Thr). The
p.Ala391Thr (rs13107325) is the most well documented SNV of
SLC39A8 and has been associated with alterations/disease of the

cardiovascular system (HDL-Cholesterol levels, BMI,
hypotension, coronary artery disease, atherosclerotic plaques,
NT-proBNP levels, acute coronary syndrome, and
cardiovascular death), (Speliotes et al., 2010; Teslovich et al.,
2010; Waterworth et al., 2010; International Consortium For
Blood Pressure Genome-Wide Association Studies et al., 2011;
Willer et al., 2013; Johansson et al., 2016; Pickrell et al., 2016;
Esslinger et al., 2017; Haller et al., 2018), the respiratory system
(response to albuterol, and allergy), (Pickrell et al., 2016; Mak
et al., 2018), the liver (inflammation and fibrosis), (Parisinos et al.,
2020), and the gastrointestinal system (CD and IBD), (Li et al.,
2016; Collij et al., 2019; Nakata et al., 2020), as well as with
neurological disorders (Parkinson disease, schizophrenia, and
cerebrovascular disease) (Carrera et al., 2012; Schizophrenia
Working Group of The Psychiatric Genomics Consortium,
2014; Pickrell et al., 2016; Costas, 2018; McCoy et al., 2019).
Conversely, to date the other rare SLC39A8 variants (p.Gly38Arg,
p.Ile340Asn, p.Val33Met, p.Ser335Thr, p.Gly204Cys, and
p.Cys113Ser) have only been reported to be associated with
dysmorphogenesis and Mn-deficient hypoglycosylation
(Boycott et al., 2015; Park et al., 2015; Riley et al., 2017).

1.5.2 Ala391Thr Risk Allele Mechanistic Insight
While many mechanistic steps remain to be elucidated, several
important studies have begun to determine the mechanisms by
which the A391T SLC39A8 variant affects health. Several
mechanistic studies involved in a variety of disease states have
begun to be elucidated using expression of the A391T variant in a
variety of human cell lines. To examine the role of the A391T
variant in cardiovascular disease, HEK293 (Human Embryonic
Kidney cells) expressing either WT SLC39A8 or the A391T
SLC39A8 variant were cultured with Cd (Zhang et al., 2016).
Surprisingly, following co-culture with Cd the cells that
overexpressed the defective variant were found to have higher
intracellular Cd levels, increased Cd-induced toxicity, increased
phosphorylation of mitogen-activated protein kinase-1 (MAPK1),
and elevated NF-κB activation when compared to cells expressing
the WT variant. These results were then duplicated in vascular
endothelial cells (Zhang et al., 2016). These data suggested that
altered Cd uptake in vascular endothelial cells could explain, in
part, lower serum HDL-Cholesterol levels, coronary artery disease,
and hypotension that is associated with the A391T variant.

Further, to investigate the role of the A391T SLC39A8 variant in
celiac disease (CD), both intestinal enteroids and overexpressing
SLC39A8 variant in HEK cells were employed (Melia et al., 2019).
First, it was demonstrated that ZIP8 expression in intestinal
enteroids was dependent on IFNγ levels, which is consistent with
the observed relationship between NF-κB and ZIP8. However, over-
expression of the ZIP8 A391T variant in HEK293A cells resulted in
increased TNFα-induced NF-κB activation compared to WT ZIP8,
which is consistent with past studies indicating that in cells
expressing the A391T variant there is a marked loss of the ZIP8/
Zn-mediated negative regulatory NF-κB response (cells lose the
ability to stop NF-κB signaling) (Melia et al., 2019). These data
suggest that in the intestinal epithelial compartment the alterations
to the negative regulation of NF-κB due to the A391T variant may
contribute to CD pathogenesis via augmented inflammation.

TABLE 1 | Minor Allele Frequencies of SLC39A8.

Single
Nucleotide
Variant

Minor Allele Frequency Reference

Ala.391.Thr • 0.05 in American populations Sunuwar et al.
(2020)• 0.08 in Northern European

populations
• 0.14–0.25 in Ashkamzi Jewish

populations
• Monomorphic in African and South

Asian populations
Gly.38.Arg • 0.0001255 in European populations Park et al. (2015)
Ile.340.Asn • Unknown frequency Boycott et al. (2015),

Park et al. (2015),
Riley et al. (2017)

Val.33.met • Identified using penetrant
autosomal recessive models with a
rare disease allele frequency of
0.0001

Ser.335.Thr
Gly.204.Cys
Cys.113.Ser
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Finally, to assess the impact of the A391T SLC39A8 variant on
the neuroinflammatory response the A391T variant was
overexpressed in both Chinese hamster ovary (CHO) cells and
primary pyramidal neurons (Tseng et al., 2021). Both CHO and
primary neuronal cells expressing the A391T SLC39A8 variant
exhibited reduced zinc transport into the cell. Additionally,
electrophysiological recordings from perturbed neurons
revealed a significant reduction in N-methyl-D-aspartate
(NMDA)- and α-Amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA)-mediated spontaneous
excitatory postsynaptic potentials and a reduction in
GRIND2A and GRIA1/A2/A3 receptor surface expression in
cells with knockdown/deletion of SLC39A8. However, the
phenotypes were rescued by re-expression of WT SLC39A8 or
application of the membrane-impermeable Zn chelator ZX1, but
not by re-expression of the A391T SLC39A8 variant (Tseng et al.,
2021). Likewise, loss of ZIP8 resulted in decreased blood-brain
barrier integrity, increased IL-6/IL-1β protein expression, and
increased NF-κB expression following TNFα stimulation (Tseng
et al., 2021). These data suggest that the A391T SLC39A8 variant
is associated with decreased Zn transport into the cell culminating
in altered glutamate and immune function and may explain, in
part, the association of A391T SLC39A8 variant and
schizophrenia.

Recently a human A391T (A393T in mice) KI mouse was
developed (Nakata et al., 2020; Sunuwar et al., 2020). This model
has become a critical tool in advancing our mechanistic insight
regarding the role of the SLC39A8 A391T variant. Similar to
observations from human GWAS studies, Zip8 393T-KI mice
exhibit reduced Mn-levels in the blood (Sunuwar et al., 2020).
These mice also exhibited abnormal tissue Mn homeostasis,
with decreased content in liver and kidney with a reciprocal
increase in biliary Mn, providing in vivo evidence of
hypomorphic Zip8 function. Upon challenge in a chemically
induced colitis model, male Zip8 393T-KI mice exhibited
enhanced disease susceptibility. Homozygous mice expressing
the variant allele had reduced triantennary plasma N-glycan
species similar to a population-based cohort that possessed a
genotype-specific glycophenotype hypothesized to be linked to
Mn-dependent glycosyltransferase activity (Sunuwar et al.,
2020). At the same time another group also developed a
human A391T KI mouse model via alternative genetic
methods (Nakata et al., 2020). Similarly, the SLC39A8 A391T
mice exhibited Mn deficiency in the colon, which was associated
with impaired intestinal barrier function and epithelial
glycocalyx disruption with a corresponding increased
sensitivity to epithelial injury and pathological inflammation
in the colon (Nakata et al., 2020).

Taken together these data strongly support the critical role of
ZIP8 in regulating inflammation via NF-κB, and that the
commonly occurring SLC39A8 A391T variant results in
increased NF-κB activation, due at least in part to impaired
Zn-mediated, negative regulatory feedback. However, whether
deficits in both Zn and Mn transport via ZIP8 enhance risk of
infection and pathogenesis, or if there are additive, and
synergistic effects with Zn and Mn during disease and
inflammation remains to be determined.

1.5.3 Dysmorphogenic Manganese-Deficient
Hypoglycosylation Risk Alleles and Mechanistic
Insight
Clinically, individuals carrying the SLC39A8 Gly38Arg variant
exhibit variably low levels of Mn and Zn in blood, and elevated
Mn and Zn levels in urine, as well as an impairment of the Mn-
dependent enzyme β-1,4-galactosyltransferase, a Golgi enzyme
essential for biosynthesis of the carbohydrate portion of
glycoproteins (Park et al., 2015). Importantly, high-dose Mn
therapy was found to be effective in reversing impaired
galactosylation, which suggests a critical role of SLC39A8 for Mn
uptake and normal glycosylation (Park et al., 2015). In addition, to
determine the function of SLC39A8 mutants associated with
congenital disorder of glycosylation (CDG) and Leigh syndrome,
cell transfection studies were performed. Specifically, HeLa cells were
transfected with cDNA encoding on the following SLC39A8
variants: 1) Gly38Arg, 2) Gly38Arg + Ile340Asn, 3) Val33Met +
Gly204Cys + Ser335Thr, and 4) Cys113Ser (Choi et al., 2018). HeLa
cells expressingWT SLC39A8 exhibited increased Mn uptake, while
all four SLC39A8 variants exhibited significantly impaired Mn
uptake into the cells; however no differences in Zn, Fe, or Cu
uptake were observed. In addition, all four SLC39A8 variants failed
to localize to the cell surface and were retained within the
endoplasmic reticulum. Cells expressing the SLC39A8 variants
also exhibited decreased Mn levels in mitochondria and MnSOD
activity, which was accompanied by enhanced oxidative stress (Choi
et al., 2018). These data suggest that severe Mn deficiency seen in
subjects with CDG and Leigh syndrome patients is at least partially
explained by stuntedmobilization of SLC39A8 to the cell surface and
defective Mn uptake. Further studies will be required to better
understand differences in Mn and Zn transport, or lack thereof,
with allelic variants in the context of host defense.

1.5.4 Mechanistic Insight Gained From Zip8 Deficient
Mice
Unfortunately, as previously stated, Slc39a8 (−/−) global KO mouse
is embryonic lethal, and Slc39a8 (neo/neo) hypomorphs die
prematurely thereby limiting the utility of these models to
development studies. As an alternative, the development of
several cell type-specific conditional KO mouse lines has revealed
multiple vital roles for ZIP8 in mammals. For example, hepatic ZIP8
deficiency was associated with Se dysregulation, liver inflammation
and fibrosis, and neoplastic changes consistent with hepatocellular
carcinoma (Liu et al., 2018). Additionally, in a study evaluating the
role of Zn homeostasis, Zn transporters, and Zn dependent
transcription factors during osteoarthritis (OA) pathogenesis
several key findings were described (Kim et al., 2014). First,
SLC39A8-mediated Zn influx results in the upregulation of
several matrix-degrading enzymes (MMP3, MMP9, MMP12,
MMP13, and ADAMTS5) in chondrocytes (Kim et al., 2014).
Interestingly, ectopic expression of Slc39a8 in mouse cartilage
tissue caused OA-related destruction of cartilage; however, in
chondrocyte-specific Slc39a8 (−/−) KO mice, surgically induced
OA-related degradation of cartilage was suppressed, which was
accompanied by lower levels of Zn influx and the matrix-
degrading enzymes. In addition, metal-regulatory transcription
factor-1 (Mtf1) was discovered to be essential for regulating
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Zn-dependent ZIP8-mediated catabolism, and genetic downregulation
of Mtf1 in mice decreased OA pathogenesis (Kim et al., 2014).

1.6 Zinc Deficiency, Zip8, and Zip8 Variants
and the Gastrointestinal Microbiota
Zn is also an essential trace metal for bacteria of the intestinal
flora, in fact approximately 20% of the dietary intake of Zn is
utilized by the intestinal microbiota (Smith et al., 1972). However,
very little is known about the role of Zn (even less about Mn)
regarding the maintenance and/or regulation of the composition
of the intestinal microbiota. Given the increasingly important role
that the intestinal microbiota plays in host health and immune
homeostasis more research is needed to understand the complex
interaction between dietary trace metals, the host, and the
intestinal microbiota.

Several studies have evaluated the effects of both Zn-deficient
diets and Zn-fortified diets in commercial-food animals and found a
significant association between Zn status and the composition of the
microbiome. Specifically, Zn deficiency in broiler chickens (Gallus
gallus) was associated with a significant reduction in abundance of
Firmicutes and an increase in Proteobacteria phyla, which were
further characterized (genus levels) as a significant increase in
Enterococcus, Enterobacteriaceae, and Ruminococcaceae
abundance, as well as a decrease in the prevalence of
Peptostreptococcaceae and Clostridiales (Reed et al., 2015).
Conversely, several studies have examined the effects of Zn-
fortified diets on chick microbiome diversity (Reed et al., 2018).
Specifically, the abundance of Ruminococcus in chicks fed a Zn-
fortified wheat diet was found to be a key genus in discriminating
between Zn deficiency and Zn repletion (Reed et al., 2018). Similarly,
supplementation of chicks with Zn bacitracin increased gut
microbiota diversity, with a significant reduction in Lactobacillus
and Eubacterium genus and an increase in the abundance of
Clostridiales and Faecalibacterium (Crisol-Martínez et al., 2017).
Finally, Zn hydroxychloride supplementation of broiler chickens
significantly decreased total bacteria and Bacillus abundance,
whereas Lactobacillus abundance was increased in parallel with
cecal lactic acid production and up-regulation of intestinal tight
junction proteins (indicators of intestinal health) (Nguyen et al.,
2021).

Similarly, dietary exposure to coated ZnO in piglets resulted in a
significant improvement in intestinal morphology and immunity,
including increased villi length, elevated immunoglobulin A (IgA)
levels, increased gene expression of IGF-1, occludin, zonula occludens
1, IL-10 and TGF-β1, as well as reduced gut microbiota diversity.
Changes in microbiota diversity were characterized by a decrease in
the relative abundance of Lactobacillus, and Clostridium and E. coli.;
however, E. coli abundance was increased at lower doses and
decreased at higher concentrations of coated ZnO in diets (Shen
et al., 2014; Wang et al., 2019). Similar studies further demonstrate
that high dietary ZnO supplementation inweaned piglets reduced the
abundance of Lactobacillus genus, and especially Lactobacillus
acidophilus, Lactobacillus mucosae, and Lactobacillus amylovorus.
In addition, high-dose dietary ZnO supplementation to piglets was
shown to significantly modulate ileal bacterial diversity and relative
abundance of Lactobacillus, Escherichia, as well as other minor

species. Specifically, the majority of Enterobacteriaceae were
characterized by a significant Zn-induced increase in relative
abundance. Additionally, bacterial species with relative abundance
of >1%, Zn exposure resulted in a significant increase in Weissella
cibaria, Weissella confusa, Leuconostoc citreum, and Streptococcus
equinus. In contrast, the most abundant species Leuconostoc reuteri
decreased from45% to 18% in response to Zn exposure (Vahjen et al.,
2011). Lastly, a significant increase in intestinal microbiota richness
and relative abundance of Lachnospiraceae, with a parallel decrease in
Ruminococcus flavefaciens was observed in response to coated nano
ZnO supplementation (Liu et al., 2021). Interestingly, the effect of Zn
on the gut microbiota in weaned piglets seems to be specific for
intestinal sites. For example, ZnO nanoparticle (ZnONP)
supplementation significantly reduced bacterial abundance and
diversity in ileum with increases in Streptococcus and decreases in
Lactobacillus numbers. In turn, cecal and colonic microflora
biodiversity and abundance were increased, with a specific
elevation in Lactobacillus numbers and a decrease in Oscillospira
and Prevotella abundance. ZnONP-induced modulation of gut
microbiome was associated with increased expression of tight
junction and antioxidant proteins, as well as reduced IL-1β,
TNFα, and IFNγ mRNA expression due to inhibition of NF-κB
signaling, altogether resulting in lower incidence of diarrhea (Xia
et al., 2017). Zn has also been shown to modulate microbial
metabolite production in pigs. Specifically, ZnO supplementation
significantly increased volatile fatty acids, acetate, and butyrate in the
ileum. However, the increase in short-chain fatty acids (SCFAs) was
dose dependent as low ZnO increased concentrations, while high
ZnO concentrations lead to a decreased concentration (Pieper et al.,
2012).

Surprisingly there are a limited number of studies that have
described the effects of Zn deficient diets or Zn supplementation on
the intestinal microbiota of laboratory rodents. One of the first
studies to investigate the role of Zn and the microbiota, found that
dietary Zn deficiency significantly affects gut microbiota of pregnant
mice. Specifically, low dietary Zn significantly decreased the
abundance of Proteobacteria and Verrucomicrobia, whereas
Actinobacteria, Bacteroidetes, and Firmicutes phyla were
increased. Importantly, the intake of Zn uptake inhibitors also
significantly altered the composition of the gut microbiota,
although the patterns were quite different. Changes in the gut
microflora composition were associated with reduced claudin3
protein levels in the gastrointestinal tract, and increased hepatic
LPS levels, (Sauer and Grabrucker, 2019), suggesting that Zn is
required as a factor not only for gut microbiota homeostasis but for
gut epithelial barrier function as well. Similarly, a recent study, which
utilized a global Znt7 KO mouse model, found that Zn transport
dysfunction results in alteredmicrobiota biodiversity in a sex-specific
manner (Kable et al., 2020). Specifically, Znt7+/− and Znt7−/−

genotypes were characterized by increased abundance of
Allobaculum and unidentified members of the family
Coriobacteriaceae in females, but not males. These changes were
likewise associated with distinct patterns of mucin production
(upregulated in male and down-regulated in female mice), which
may explain the observed differential effects on the composition of
the intestinal microbiota (Kable et al., 2020). Finally, our group has
recently demonstrated that myeloid-specific Zip8KO mice exhibit
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TABLE 2 | Effects of ZN and Zn-transporters on the intestinal microbiota composition.

Zn status Bacterial taxa (phylum,
class, family, genus,
species) all taxa
are classified to

the lowest taxanomic
level

Abundance change
(relative

to control)

Host species

Zn deficient Firmicutes Decreased Broiler Chickens
Proteobacteria Increased
Proteobacterial, Gammaproteobacteria, Enterobacterals, Enterobacteriaceae Increased
Bacillota, Clostridia, Clostridiales Decreased
Bacillota, Clostridia, Clostridiales, Ruminococcaceae Increased
Bacillota, Clostridia, Clostridiales, Peptostreptococcaceae Decreased
Bacillota, Bacilli, Lactobacillales, Enterococcaceae, Enterococcus Increased
Proteobacteria, Gammaproteobacteria, Enterobacterales,
Enterobacteriaceae, Escherichia, coli

Decreased Human (children)

Bacillota, Clostridia Decreased
Bacillota, Clostridia, Clostridiales, Ruminococcaceae, Subdoligranulum Decreased
Bcillota, Negativicutes, Vellionellales, Veillonellaceae, Veillonella Decreased
Bacillota, Negativicutes, Selenomonadales, Veillonellaceae, Megasphere Decreased
Bacillota, Bacilli, Lactobacillales, Streptococcaceae, Stretococcus Decreased
Bacillota, Bacilli, Lactobacillales, Lactobacillaceae, Leuconostoc Decreased
Bacteroidota, Bacteroidia, Bacteroidales, Bacteroidaceae, Bacteroides Decreased
Proteobacteria Decreased Mice (pregnant)
Verrucomicrobiota Decreased
Firmicutes Decreased
Bacteroidetes Decreased
Actinobacteria Decreased

Zn Fortifed (ZnONP) Proteobacteria, Gammaproteobacteria, Enterobacterales,
Enterobacteriaceae

Increased Pigs

Proteobacteria, Gammaproteobacteria, Enterobacterales,
Enterobacteriaceae, Escherichia, coli

Decreased(high dose)

Bacillota, Bacilli, Lactobacillales, Lactobacillaceae, Lactobacillus Decreased
Bacillota, Bacilli, Lactobacillales, Lactobacillaceae, Lactobacillus, acidophilus Decreased
Bacillota, Bacilli, Lactobacillales, Lactobacillaceae, Lactobacillus, mucosae Decreased
Bacillota, Bacilli, Lactobacillales, Lactobacillaceae, Lactobacillus, amylovorus Decreased
Bacillota, Bacilli, Lactobacillales, Lactobacillaceae, Lactobacillus, reuteri Decreased
Bacillota, Bacilli, Lactobacillales, Lactobacillaceae, Weissella, cibaria Increased
Bacillota, Bacilli, Lactobacillales, Lactobacillaceae, Weissella, confusa Increased
Bacillota, Bacilli, Lactobacillales, Lactobacillaceae, Leuconostoc, citreum Increased
Bacillota, Bacilli, Lactobacillales, Streptococcaceae, Streptococcus, equinus Increased
Bacillota, Clostridia, Clostridiales, Clostridiaceae, Clostridium Decreased
Bacillota, Clostridia, Clostridiales, Clostridiaceae, Ruminococcus, flavefaciens Decreased
Bacillota, Clostridia, Clostridiales, Lachnospiraceae Increased
Firmicutes Decreased Human in vitro fermentation

culturesBacteroidetes Increased

Zn Fortifed (Zn Bacitracin) Bacillota, Clostridia, Clostridiales Increased Broiler chickens
Bacillota, Bacilli, Lactobacillales, Lactobacillaceae, Lactobacillus Decreased
Bacillota, Clostridia, Clostridiales, Eubacteriaceae, Eubacterium Decreased
Bacillota, Clostridia, Clostridiales, Clostridiaceae, Faecalibacterium Increased

Zn-Fortifed (Zn
hydroxychloride)

Bacillota, Bacilli, Lactobacillales, Lactobacillaceae, Lactobacillus Increased Broiler chickens
Bacillota, Bacilli, , Bacillales, Bacillaceae, Bacillus Decreased

Zip8 KO Proteobacteria, Betaproteobacteria, Burkholderiales, Sutterellaceae,
Parasutterella

Increased Mice

Thermodesulfobacteriota, Desulfovibrionia, Desulfovibrionales,
Desulfovibrionaceae, Desulfovibrio

Decreased

Bacillota, Clostridia, Clostridiales, Clostridiaceae, Intestinimonas Decreased
Bacillota, Clostridia, Clostridiales Family_XIII Decreased
Bacillota, Clostridia, Clostridiales, Lachnospiraceae Decreased
Bacillota, Clostridia, Clostridiales, Ruminococcaceae Increased
Bacteroidetes, Bacteroidia, Bacteroidales, Muribaculaceae, Muribaculum Increased
Bacteroidetes, Bacteroidia, Bacteroidales, Prevotellaceae_UCG-001 Increased

Increased
(Continued on following page)
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marked differences in the cecal microbial communities when
compared to WT mice (Samuelson et al., 2022). Specifically, we
found that the loss of ZIP8 expression inmyeloid lineage cells resulted
in significant differences in beta-diversity and specific bacterial taxa.
Precisely, we found that bacteria from the genuses Desulfovibrio and
Intestinimonas, as well as the families Clostridiales Family_XIII and
Lachnospiraceae, were enriched in WT mice compared to Zip8KO
mice. Conversely, bacteria from the genuses Muribaculum,
Erysipelatoclostridium, Mucispirillum, Parasutterella, and
Prevotellaceae_UCG-001, as well as from the family
Ruminococcaceae were enriched in Zip8KO mice compared to
WT mice (Samuelson et al., 2022). Most strikingly, upon a S.
pneumoniae lung infection, mice recolonized with Zip8KO-
derived microbiota exhibited an increase in weight loss, bacterial
dissemination, and lung inflammation compared tomice recolonized
with WT microbiota (Samuelson et al., 2022), which suggest that
impaired Zn uptake not only influences the gastrointestinal
microbiota, but that these changes also significantly influence host
immune regulation. While most of the literature support the
hypothesis that Zn deficiency or impaired Zn uptake alters the
microbiome, one study did not observe any substantial alterations
to the gut microbiota in mice with dietary Zn deficiency (Mayneris-
Perxachs et al., 2016). Please refer to Table 2 for a review of the
literature as it relates to effects of Zn and Zn-transporters on intestinal
microbiota composition in mammals and birds.

Finally, a limited number of studies have demonstrated the
potential association between Zn status and the composition of
the human gut microbiota. Specifically, in vitro reactors of the
human colon microbiota demonstrated that ZnONP exposure at
high concentrations significantly reduced the abundance of gut
microbiota, as well as decreased bacterial biodiversity, SCFA
production, and antibiotic resistance genes, which was
associated with an increase in relative abundance of
Bacteroidetes and a lower percentage of Firmicutes (Zhang
et al., 2021). A preliminary study in a cohort of Pakistani
children demonstrated that formula-fed children with Zn
deficiency are characterized by lower abundance of
Escherichia, as well as decreased relative number of Veillonella,

Streptococcus, Bacteroides, Leuconostoc, Subdoligranulum,
Megaspheare, and Clostridia (Durrani et al., 2021). However,
correlation analysis did not reveal a strong association between
serum Zn levels and intestinal bacteria (Durrani et al., 2021).
Similarly, humans with the SLC39A8 A391T variant exhibited
significantly altered gut microbiota communities, including
reduced abundance of Anaerostipes, Coprococcus, Roseburia,
Lachnospira, SMB53, Ruminococcaceae, Eubacterium, Dorea,
and Bacteroides. The patterns of gut microbiota observed in
SLC39A8 A391T variant carriers shared several similarities
with those shown in patients with CD and obesity (Li et al.,
2016). At the same time, another study did not reveal any
significant association between SLC39A8 missense variant and
gut microbiota, although SLC39A8 A391T risk allele was
significantly associated with CD (Collij et al., 2019).

Taken altogether, these data demonstrate that Zn status has a
significant impact on gut bacteria biodiversity, in food-
production animals, rodents and human subjects (Table 2).
Effects of physiological and nutritional Zn doses also result in
improved gut wall integrity, thus contributing to reduced
translocation of bacteria and gut microbiome metabolites
into the systemic circulation. However, more research is
clearly needed to not only understand the effects of Zn on
the gut microbiota, but to gain a complete understanding of the
downstream consequences of Zn-mediated intestinal
microbiota changes on host defense against harmful,
commonly occurring pathogens.

1.7 Summary
Mn and Zn to some extent, share chemical similarity, so it is not
surprising that they also compete for uptake into eukaryotic cells
via identical transport pathways. The same holds true for divalent
transition and trace metal uptake in pathogens.

Environmental factors, primarily dietary intake, influence the
abundance of Mn and Zn in humans. Manganese deficiency due
to insufficient dietary intake is relatively unheard of whereas Zn
deficiency is common through the world, often a result of low
abundance in common food sources.

TABLE 2 | (Continued) Effects of ZN and Zn-transporters on the intestinal microbiota composition.

Zn status Bacterial taxa (phylum,
class, family, genus,
species) all taxa
are classified to

the lowest taxanomic
level

Abundance change
(relative

to control)

Host species

Firmicutes, Erysipelotrichia, Erysipelotrichales, Erysipelotrichaceae,
Erysipelatoclostridium
Deferribacterota, Deferribacteres, Deferribacterales, Deferribacteraceae,
Mucispirillum

Increased

SLC39A8 A391T Bacillota, Clostridia, Clostridiales, Lachnospiraceae, Anaerostipes Decreased Humans
Bacillota, Clostridia, Clostridiales, Lachnospiraceae, Coprococcus Decreased
Bacillota, Clostridia, Clostridiales, Lachnospiraceae, Roseburia Decreased
Bacillota, Clostridia, Clostridiales, Lachnospiraceae, Lachnospira Decreased
Bacillota, Clostridia, Clostridiales, Lachnospiraceae, Dorea Decreased
Bacillota, Clostridia, Clostridiales, Clostridiaceae, SMB53 Decreased
Bacillota, Clostridia, Clostridiales, Ruminococcaceae Decreased
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More recently, alteration of the gene that codes for the Zn
transporter ZIP8, has shed new light on disease pathogenesis due
to deficits in Mn and Zn intracellular uptake. Clearly, patients
that harbor defective ZIP8 alleles that alter metal transport have
been shown to have increased incidence of inflammatory-based
diseases. One of the most studied is the defective A391T
hypomorphic allele and IBD which results in defective
glycoslyation and subsequent insufficient intracellular Mn
uptake. Similar studies in humans that possess the variant
allele and explore the potential impact of insufficient
intracellular Zn uptake remain to be conducted but are
warranted. Clearly, Mn and Zn are essential metals that
humans require to carry out normal day-to-day functions as
well as prepare the host to conduct battle against harmful
pathogens. Despite the essentiality of both metals very few if
any studies have determined their dual impact in host defense
creating a number of important questions that remain to be
addressed. For example, upon infection ZIP8 is rapidly induced
and translocates to the plasma and organelle membranes to raise
intracellular metal content. In the setting of Mn and Zn
sufficiency and infection, does ZIP8 coordinate the spatial
distribution of both metals simultaneously to enhance the
impact of each in an additive or synergistic manner? Or, do
Mn and Zn compete for uptake and by doing so, potentially
mitigate the impact of one over the other?

In addition, in humans that carry defective ZIP8 alleles, can Zn
or Mn supplementation at supraphysiologic doses overcome
deficits in intracellular metal composition thereby correcting

immune function to eradicate infection? This is important to
understand given that the biologic footprint of Mn and Zn are
in many cases, distinctly different and in some instances, opposite
of one another (Figure 1). For example, Zn has been shown by a
variety of investigators to inhibit the NF-κB signaling pathway
whereas Mn has been shown to augment signaling activity.
Likewise, Zn has been shown to inhibit B-cell apoptosis and
Mn has been shown to enhance B-cell apoptosis. At the cellular
level, we have yet to fully characterize different upstream signals
that determine where ZIP8 needs to be at the correct time andwhat
it must do as a function of extracellular or intracellular signals to
afford protection to the host. Further, it remains to be determined
whether the rate of metal transport and whether ZIP8 can be
instructed to distinguish preference toward individual metals in a
given context in specific cell types that regulate immune function.

Whether ZIP8 has any role in controlling the dichotomous
influence of both metals is not known, let alone other transporters
that are capable of mobilizing both metals. Finally, the impact of Mn
and Zn transport and cellular function is much more far reaching
than individual cells and tissues. Both have influence on microbial
communities within the host, not limited to the gut, that determine
the composition of and number of microbes as well as the chemical
mediators that they produce. More recently it has been shown that
alteration ofmetal content can have profound impact on the host and
that in metal deficient states, increase vulnerability of the host to
leading pathogens within the gut or other tissues such as lung.
Collectively, continued advancements in this area are warranted to
better understand the impact ofMn andZn (in addition to other trace

FIGURE 1 | Comparison of the roles of zinc and manganese in immune-mediated host defence against infection. Zn deficiency is common worldwide and
physiological Zn concentrations protect against infections by: triggering a variety of transcription factors involved in the immune response, preventing apoptosis of B cells
and inhibiting the NF-κB pathway following intracellular transcript via ZIP8. In contrast Mn deficiency is rare and it helps protect against infection but different mechanisms
that include acting as cofactor for glycosyltransferase enzymes essential for post translational protein glycosylation, enhancing apoptosis of B cells and activating
the NF-κB pathway. Whereas each metal has contrasting and distinct functions, they both have antioxidant properties and help facilitate T cell receptor (TCR) signalling.
Stars indicate the common polymorphic variants of ZIP8. Red arrows indicate inhibition, black arrows indicate activation.
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metals) on the host response to dangerous pathogens and by doing
so, improve surveillance and therapeutic strategies to prevent or treat
infectious diseases.
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