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Abstract: Cloud computing offers the services to access, manipulate and configure data online over
the web. The cloud term refers to an internet network which is remotely available and accessible at
anytime from anywhere. Cloud computing is undoubtedly an innovation as the investment in the
real and physical infrastructure is much greater than the cloud technology investment. The present
work addresses the issue of power consumption done by cloud infrastructure. As there is a need
for algorithms and techniques that can reduce energy consumption and schedule resource for the
effectiveness of servers. Load balancing is also a significant part of cloud technology that enables
the balanced distribution of load among multiple servers to fulfill users’ growing demand. The
present work used various optimization algorithms such as particle swarm optimization (PSO), cat
swarm optimization (CSO), BAT, cuckoo search algorithm (CSA) optimization algorithm and the
whale optimization algorithm (WOA) for balancing the load, energy efficiency, and better resource
scheduling to make an efficient cloud environment. In the case of seven servers and eight server’s
settings, the results revealed that whale optimization algorithm outperformed other algorithms in
terms of response time, energy consumption, execution time and throughput.

Keywords: load balancing; energy efficiency; resource scheduling; power consumption; cloud
computing; whale optimization

1. Introduction

Cloud computing represents a fusion of two major trends that are IT efficiency and
business agility. The cloud has the provision of storing data without any limitation as well
as hiding a tremendous volume of data from other users. The users can access the required
files, documents and applications on demand. Users only pay for the services provided
by the cloud instead of buying the own expensive infrastructure. Cloud computing has
various features such as on-demand resource allocation, quality of service, elasticity, etc.
which makes this very engaging both in the academic as well as the business domain. The
continual demand for services provided by the cloud has led to the need to manage the
load of machines, energy produce by that machines and scheduling of resources. Load
balancing is the technique of allocating different tasks over different resources in the data
center to maintain balance [1]. The resources available can be a data center, a virtual
machine, or, a physical machine [2,3].

The resource and service dispensation must be done in a systematic way so that every
resource should experience the same loads at any instant of time and should improve the
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average utilization rate of resources [4]. If there is any kind of load imbalance, then the
system performance will be drastically decreased. While maintaining the load, energy
consumption should also be kept in mind. Green cloud computing is a term that covers
utilization of resources efficiently as well as reduces energy consumed by these resources [5].
The energy consumption resources in the datacenter are both due to cooling as well as
computational resources. While the computational resources cover around 60% of the total
energy consumption the other 30% is covered by the cooling infrastructure [6].

The energy consumption problem can be divided into two parts: (a) First, one with
server-side operations, and, (b) networking side communications. Optimizing resource
allocation as well as reducing the operational cost is a key concept. This can be implemented
in the platform as a service segment. Schedulers are used to schedule the resources and the
load balancers are used to balance the resources and to predict the load as well as to reduce
the energy. In case of cloud computing, the services or resources are either allocated or de
allocated. The major benefit of incorporating into cloud is that it removes the pressure of
upfront investment and hence lowers the cost of operation and maintenance. Also, Figure 1
below depicts a demonstration of cloud infrastructure. The scalability of cloud computing
provides users with a level of flexibility and can be scaled up and down according to the
need of users. Resources allocation is the task of allocating the resources while maintaining
the proper balance in the environment. To maintain a proper balance, resource scheduling
algorithms are applied to get an efficient performance.

Figure 1. Cloud Infrastructure Bala [7].

Nowadays fog computing and edge computing which are extensions of cloud com-
puting are also used, because IOT devices use cloud computing for storage of data. Fog
computing helps to reduce the network burden of data centers and edge computing is used
to minimize and manage the traffic [8,9]. A lot of work has already been done on cloud
systems using various optimization algorithms but there is still a need for improvement
due to the increase in cloud system usage on a daily basis. The number of users is increas-
ing, so companies are using more and more servers to make their services better, but this
additional usage is also increasing the load, energy consumption and resources needed in
the cloud system.

Hence, the key motivation behind this research was to improve various aspects
of the performance of cloud systems like load balancing, resource scheduling, energy
consumption using a novel metaheuristic approach named whale optimization algorithm
(WOA). Before implementing the WOA algorithm, we perform an experimental survey
on various algorithms that are good for load balancing, resource scheduling and energy
efficiency. We used particle swarm optimization (PSO) and cuckoo search algorithm (CSA)
algorithm for balancing the load over the clod system and calculate the corresponding
values. Then we test CSO and BAT algorithm, which was doing good task-resource
allocation as per literature and get their result for resource scheduling. Finally, we propose
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and implement the whale optimization algorithm which gives the best result for task
execution, response time and energy consumption for a cloud system.

In the first phase, we implement the two algorithms PSO and CSA. PSO is a useful
algorithm to allocate loads to different machines that is based on the social behaviors of
animals as they find their food. PSO is useful to find the machines which have less load
and assign tasks to that particular machine but the algorithm also has some limitations
in that it takes more execution time [7]. The CSA algorithm is based on the strategy of
cuckoos to lay eggs in the best nest and this strategy of cuckoos helps find the best machine
for task allocation so that loads can be balanced properly [10]. This algorithm is best suited
for job scheduling but the algorithm has limitations like resource scheduling. Both these
algorithms give best results for load balancing but are not good for resource scheduling.
Then in a second phase, implementation of the cat swarm optimization (CSO) and BAT has
been done. The CSO algorithm uses the concept of cats based in two modes—seeking and
tracing—which aims to efficiently allocate the available resources to a number of tasks in
a cloud environment with minimum cost [11]. This algorithm gives good task-resource
allocation strategy results. The bat algorithm is based on the strategy used by bats to catch
them pray [12]. This approach is implemented to allocate the resources to tasks in such
way that resources can be successfully scheduled using less budget and time, but it does
not give good results as far as energy consumption is concerned. Both BAT and CSO give
better results as compared to PSO and CSA.

Lastly, the whale optimization algorithm (WOA) algorithm that gives the best result
as compared to all algorithms that were implemented in previous phases has been imple-
mented [13]. WOA starts with a random solution by considering the current solution is
the best solution and based on that position the population is updated. It is based on the
strategy of exploitation and exploration. The WOA algorithm gives comparative results
for load balancing, resource scheduling and energy efficiency of cloud systems. For this
testing, Cloud Analyst has been used.

This paper includes various sections that cover a brief introduction to cloud computing,
the proposed algorithms and results. Section 1 covers the introduction to the cloud concept.
Section 2 is a review of the load balancing, energy efficiency and resource scheduling
literature. Section 3 includes the proposed algorithms, while Section 4 shows the simulation
results of our research and compares the results of existing and the proposed algorithms.
Finally, Section 5 gives the conclusions and future scope of the research.

2. Related Work

Here we present a detailed review of recently developed systems based on resource
scheduling and energy optimization. Also, we provide a review of existing systems that
use various techniques to perform load balancing in the cloud.

2.1. Recently Developed Load Balancing Mechanisms

The subsequent section lists and describes different load balancing mechanisms that
have been recently developed. Bhargavi et al. [14] recommended a scheme for public clouds
that employs a raven roosting optimization policy (RROP) to achieve load balancing. The
RROP architecture consists of two functional modules, namely, task-subset formulator (TF),
and Physical Machine formulator (PMF). Liu et al. [15] presented PMK-ELM based on the
K-extreme learning machine algorithm and TS-non-dominated sorting genetic algorithm
version II based on NSGA-II which are integrated into a heterogeneous cloud environment.
The PMK-ELM facilitates the prediction of task execution time while TS-NSGA-II facilitates
the selection of suitable reducers. Jain et al. [2] proposed a load balancing approach that
is designed in multiple phases for the cloud environment. The system demonstrates a
two-level scheduler (JIJS) which combines: (a) join shortest queue approach, and, (b) join
idle queue approach. It involves three main steps: (a) a scheduler with the maximum
idle queue length is selected from the table, the assignment of the job is done and, the
necessary updates are performed, (b) if the queue of all schedulers is void, then a VM
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with the least queue length is selected to assign the job, and, (c) on task completion, VM
updates the VM table, and, finally the scheduler make suitable updates in the scheduler
table. Joshi et al. [16] presented a new technique to relocate the load from an overloaded
virtual machine to a VM that is under loaded. This technique helps in avoiding the swift
load allocation on the under loaded machines. It results in an efficient resource utilization.
It lets a suitable continuation with service level agreement. Faustina et al. [17] proposed
a self-governing agent-based mechanism for balancing the workload of virtual machines
using an independent agent. The load balancing task is performed by an autonomous
migration agent that efficiently balances the workload. The SGA_LB algorithm mainly
consists of three agents: (a) in-house agent, (b) external agent, and, (c) migration agents.
When a machine gets overloaded, the in-house agent finds another suitable VM that resides
on another data center. Kumar et al. [18] presented a flexible approach for balancing the
workload. It employs a multi-time-based approach. The MTBLB algorithm utilizes many
techniques in a single algorithm namely, aws cloud watch, algorithm for crone jobs, and
the round-robin algorithm. Initially, when the watch is set to 0, all the requests begin to
operate. Further, crone jobs are used for processing followed by a round-robin algorithm
that is applied so that no starvation occurs and the whole operation time is reduced.

2.2. Energy Optimization in the Cloud

Energy utilization of a data center also produces various environmental issues [19,20].
These issues can be solved by calculating the consumption of equipment at regular intervals
in real time for immediate and future processing. This section presents a review on
various energy reduction techniques and evaluation methods. Duan et al. [21] proposed
a prediction scheme which may predict the future length of intervals when a CPU is
idle; it selects the most successful sleep state to reduce power consumption at run-time.
It uses statistical models that predict the interval lengths. Goyal et al. [22] suggested
a hybrid efficient method to reduce the consumption of energy in the cloud as well as
ensuring QoS by reducing the SLA breaches. The approach uses two policies to reduce
energy consumption namely, hybrid VM selection policy and low utilization host policy.
This technique reduces the consumption of energy and CO2 emissions that significantly
decreases health-related problems. Jiang et al. [23] presented a model for optimization
that aims at decreasing the consumption of energy where data centers are dispensed area
wise. Also, an intelligent heuristic algorithm called IOEN is proposed to handle dynamic
requests between the DCs as well as between the DCs and users. This is executed using the
combination of two algorithms namely: a) niche genetic algorithm, and, b) random depth-
first search. Jasuja et al. [24] proposed a hybrid approach for optimizing the energy that
produces good results in migration and energy consumption terms. The proposed system
uses a combination of algorithms, namely ACO and a gravitational search algorithm. ACO
aids in solving NP-hard problems and is utilized for dynamic VM-consolidation while the
gravitational search algorithm is a local search algorithm that employs the law of gravity
in which all agents tend to move towards the agent with a high gravitational mass which is
considered as the best agent. The results infer that the method significantly improves energy
optimization in a cloud environment. Khan et al. [25] introduced an energy optimization
method that exploits information entered by the user in dynamic VM consolidation. An
algorithm named release time-based DVMC (RTDVMC) is proposed which minimizes
energy consumption. This algorithm is applied mainly in two phases, where the first
phase deals in limiting the violations of SLA while the second phase comprises relocating
the VMs and merging them in lesser PMs that are active. Majeed et al. [26] has done a
survey on various techniques that can help to reduce energy consumption in the cloud
environment. Various applications over the cloud consume high amount of energy but
using integrated techniques and this way energy consumption can be reduced.
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2.3. Resource Scheduling in a Cloud Based Environment

To make work be efficient, proper scheduling of resources is a must. For this, there is
need to apply resource scheduling algorithms which check that jobs are properly allocated
only to those VMs which are free and also free up VMs after completion of tasks Santhiya
et al. [27] as shown in Figure 2. Some of the existing works based on the scheduling of
resources are reviewed in the section below.

Figure 2. Workflow of Resource Scheduling Santhiya et al. [27].

Zhu et al. [28] recommended a 3D virtual resource scheduling technique in that is
subdivided into following parts, namely, (a) virtual resource allocation, (b) virtual resource
scheduling, and, (c) virtual resource optimization. The method reduces power as well as
analyses how to keep cloud data centers balanced. Samadi et al. [29] proposed an algorithm
to balance the workload known as DT-MG. The algorithm works in a certain fashion:
(a) basic task scheduling is designed, (b) the under loaded as well as overloaded PMs
are identified, (c) selection of the tasks that are to be migrated, and, (d) finally it chooses
the best migration targets. Hassan et al. [30] presented an energy-efficient, scalable cloud
resource allocation model for the processing of monitored body-censored data in real time.
It works by employing two main models: (a) a LP model that applies linear programming
which substantially optimizes the allocation of VM, and, (b) formulation to model virtual
machine allocation that solves the issues of resource allocation by using different heuristics
that are first—fit decreasing (FFD), best—fit decreasing (BFD), and worst-fit decreasing
(WFD). Karpagam et al. [31] presented a heuristic and a novel shuffled frog leaping (SFLA)
algorithm for workflow scheduling. The proposed technique is compared with SFLA
without clustering and opportunistic load balancing (OLB). This algorithm keeps every
computer busy while the SFLA method is inspired by the natural behavior of a group
of frogs as they look for sources full of food. Raj et al. [32] recommended a two pass
scheduling policy (TPSP) for resource scheduling using map reduce and Hadoop. This
algorithm consists of two phases where the first pass focuses on building a scheduling
queue list plus the same list is saved as a temporary list while the second pass emphasizes
a temporary list. Pourghaffari et al. [33] also defined a resources allocation method based
on cloud computing with a load balancing approach. The data center selection is executed
using the fuzzy algorithm followed by the load balancing in the system performed using
the DVFS algorithm, and the task scheduling that is done with the EDF-VD algorithm.
Kumar et al. [34] presented a system that uses a cloud service provider which dispenses
the load fairly amongst the existing VMs. The system begins the load balancing operation
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by calculating the load at VM and at the DC at a specific point in time and further it finds
the capacity of each VM and data center.

Table 1 provides the comparison of various techniques that are used in cloud environ-
ment for load balancing, resource scheduling and efficiently managing energy.

Table 1. Comparison of Various Techniques.

Author Technique Benefits Limitation

Adhikari et al. [35] LB-RC Achieve less execution cost with QoS
parameter

Qualities of task deployment
policies is not considered

Jena et al. [36] QMPSO

balances the load by reassigning the
load to the appropriate VMs by
considering the fitness value of

each VMs

It is limited to independent tasks

Golchi et al. [37] hybrid firefly and
IPSO

Response time of task has
been increased Energy efficiency not maintained

Haidri et al. [38] CPDALB
Provide better result of load
balancing in heterogeneous

environment

Various other parameter also need
to be focussed other than Load

balancing

Pourghaffari et al. [33] EDF-VD Give better results of load balancing
by spiting task

Much more better results can come
for task scheduling

Kaur et al. [39] TSFPA Makespan of tasks has been reduced
as compared to other techniques

Load balancing between tasks need
to be consider

Mishra et al. [40] ACO-Fuzzy
Optimize cost and provide optimal

computer network path for
resource allocation

Multiobjective optimization of
resources, energy consumption and

task migration need to be
implement.

Xiaolong et al. [41] MTSS Give the result of better network
utilization, reduction in packet loss Not consider various load cnditions

3. Proposed Work
3.1. Working Methodology

The optimized energy efficient resource management model for cloud computing
architectures uses certain algorithms for load balancing that help reduce the energy con-
sumption effectively while balancing the loads among the servers [42]. The central aim
of the system is to perform load balancing by the load transfer from overloaded servers
to under loaded servers as well as perform task scheduling efficiently that helps in mini-
mizing the energy consumption in a cloud environment. Although many such systems
have been designed to achieve this purpose, the consumption of energy can be significantly
decreased by applying a combination of algorithms. The proposed system utilizes the
Cloud Analyst tool to model and imitate the cloud infrastructures. This work follows a
certain procedure to perform balancing of workload and resource allocation to decrease
the consumption of energy. Figure 3 depicts the workflow of the newly designed energy
efficient load balancing system.

In the Figure 3 workflow, first of all there is the Json file which provides parameters to
different tasks and collect their inputs in the form of the task then there is scheduler that
allocates the task to different virtual machines based on the load given to that particular
machine. After that a proposed algorithm checks the performance of different machines
based on their functions and then redistributes the resources to improve the performance
of the system.
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Figure 3. Workflow diagram of the proposed system.

The proposed optimized energy efficient load balancing model works by following
certain algorithm steps. These methodology steps are as follows:

i. Input the required number of parameters to create the number of tasks.
ii. Host the number of servers on each virtual machine to allocate the different re-

sources on it.
iii. Use the data center to launch all the virtual machines on it and to allocate the

storage for them.
iv. Use the optimization methods to best schedule the resources and to balance the

load from one server to another by migrating the resources and to compute the
energy consumption.

v. We need to compute the pre-migrations and post migrations time for migration and
energy consumption and execution time for load balancing on cloud.

vi. To build the GUI for each optimization methods with proper executing button by
using we can fire the event to execute the optimization methods one by one.

vii. By executing all the proposed methods, we can come to identify the best method
for the research work at hand.

viii. Perform all the proposed work by using Java programming and the Cloud
Analyst toolkit.

3.2. Energy Consumption over the Cloud System

Many models are available to calculate the energy consumed by servers, like CPU
models, system models, and parallel system models [43]. Cloud systems use servers
with many hardware parts, but an essential part of physical machines is the CPU, which
consumes most of the energy. Software can be developed based on less CPU utilization,
while other software can also manage the consumption. Based on this, we can find a
solution to improve the energy consumption of a cloud system.

Chedid et al. [43] have given an equation for the energy consumption of
CMOS circuits:

E ∝ Ce f f V2 fCLK (1)

where Ce f f is the effective switching capacitance of the operation, V is the supply volt-

age, and fCLK is the clock frequency and fCLK ∝ (V−VK )α

V is related to supply voltage
Kumar [44].
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In a cloud system, we assign loads to virtual machines which increase or decrease
their CPU utilization and we can formulate that as follows:

E(u) = (Pmax − Pmin) ∗
u

100
+ Pmin (2)

Here E(u) is the energy consumed by the CPU expressed as a utilization u% and u
is the percent value of the processor utilization, where as Pmax and Pmin are the power
consumption at maximum performance in Watt and at idle status, respectively.

Our proposed algorithm effectively schedules the task, so that server load is appropri-
ately maintained. When the server picks up the load for executing the tasks, that state of the
server is at maximum power consumption while if there is no load on the server, the server
is consuming minimum power. We assumed that Pmin, the minimum power consumption
on an ideal server is 200 Watts and the maximum power consumption considered, Pmax,
is 400 Watts. It is better to maintain 70–80% CPU utilization otherwise, there will be a
compromise in system performance.

3.3. Mathematical Model

In a cloud system, there are basically two concepts: one is resource allocation and the
second is task allocation. Resources allocation means allocation of virtual machines that
act as resources of the cloud system. These virtual machines are allocated to tasks based on
some assumptions like which machine is ideal, machines performing the same kind of task
and more. The second is task allocation, where tasks are those assignments that come from
consumers and we have to perform that on our virtual machines [44]. Every task comes
with some parameters like its ID, arrival time, CPU utilization, etc. Resource allocation is
done only if we have matching resources available for that particular task.

For minimizing the energy resource allocation of cloud system, a linear programming
equation can be used as represented in Equation (3):

Minimize E =
T

∑
T=1

m

∑
i=1

Ei(T) (3)

Here Ei(T) = (Pmax − Pmin) ∗
Ui(T)

100 + Pmin and:

Ui(T) =
n
∑

j=1
u(i,j) ≤ peak load at time T, ∀ Ri ∈ R and ∀ tj ∈ T

u(i,j) = 0; when task j is not assigned to node Ri.
u(i,j) = u(i,j); when task j is assigned to node Ri.

3.4. Algorithm Used for Load Balancing, Scheduling, Energy Efficiency

The proposed optimized energy efficient load balancing model is designed in various
phases that are described in this section. Every phase employs certain algorithms to achieve
load balancing as well as resource scheduling in the system. In the first phase PSO and
CSA have been implemented. Then, after that in the second phase CSO and BAT was
implemented for better resource utilization. Finally, the whale optimization algorithm
has been implemented which gives the best results for optimizing the cloud system. This
section discusses about these algorithms used in this system.

• PSO
• CSA
• CSO
• BAT
• WOA

These algorithms are discussed below:

(i) Particle Swarm Optimization (PSO)
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Particle swarm optimization is a metaheuristic algorithm has inhabitants—called a
swarm—of contender solutions known as particles [45]. These particles tend to progress
around the search-space in accordance with the following statement: the particle movement
is controlled by their own best known position and the entire swarm’s finest position. When
the better locations are found, then they come to guide the swarm movements. Many
empirical evidences have showed that this algorithm is an effective optimization tool. The
workings of PSO are also described by various authors Bala [7], Satapathy et al. [45], and
Liu et al. [46]. The above algorithm is explained in Figure 4 below.

Figure 4. PSO algorithm.

Pseudo code
For each particle

Initialize particle
End
Do

For each particle
Calculate Fitness value
If fitness value is better than the best fitness in history
Set current value as new pbest.

Set current value as new pbest.
End

Choose the particle with best fitness value of all particles as the gbest
For each particle

Calculate particle velocity
Update particle position

End
While max iterations or minimum error criteria is not attained

(ii) Cuckoo Search Algorithm (CSA)

This is an optimization algorithm that is utilized to perform load balancing inspired
by the required or compelled parasitic behavior of some cuckoo species that lay their
eggs in the nests of some other host birds of some other species [10]. The nest which will
be best with high quality of eggs carries out the next generation. The number of host
nests is constant or fixed. The host nest he wants to throw out eggs to make a new nest
solution [47,48].
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Pseudo code

Begin
Objective function f(x)
Generate initial population of n host nest
Evaluate fitness and rank eggs

While (t > MaxGeneration) or Stop criterion
T = t + 1
Get a cuckoo randomly/generate new solution by Levy flights
Evaluate quality/fitness, Fi
Choose a random nest j

If (Fi > Fj)
Replace j by the new solution

End if
Worst nest is abandoned with probability Pa and new nest is built
Evaluate fitness and Rank the solution and fit current best

End while
Post process results and visualization

End

(iii) Cat Swarm Optimization (CSO)

This algorithm is an intelligent algorithm that gets its motivation from the natural
behavior of cats – their tracing mode and the seeking mode. In this algorithm, initially the
number of cats that are to be used is decided, then the cats are applied in the algorithm to
resolve the issues. To merge the two modes in CSO, a mixture ratio needs to be defined that
must be a small value [11]. The action of cats normally comprises spending their most of
the time resting but attentive, with a relaxed and intended approach called seeking mode.
There is another mode called tracing mode when hunting targets as they travel with great
velocity. This technique is inspired by the behavior of cats to get a difficult answer for
optimal explanations. Complete mathematical models have been explained by various
authors Bilgaiyan et al. [49], and Ahmed et al. [50].

Pseudo code

Randomly initialize cats.
While (is terminal condition reached)

Distribute cats to seeking/tracing mode
For (i = 0; i < NumCat;i++)
Evaluate Fitness for cat.
If (Cati in seeking mode) THEN

Search by seeking mode process.
Else

Search by tracing mode process.
End

End For
End While

(iv) Bat Algorithm

This is a metaheuristic algorithm inspired by the reverberation characteristic of bats
with variation in pulse rates of emission as well as loudness Cai et al. [51]. It is created to
perform global optimization tasks. Bats follow some rules [52,53]:

â Bats use echolocation to find the distance between food sources but they also have
knowledge of the difference between background barriers and food.

â Bats search for their food with velocity vi at position xi with fixed frequency fmin with
varying wavelength. They adjust their position and wavelength based on the target.

The pseudo code of the bat algorithm is as follows:
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Pseudo code

Objective function f(x),x = [x1, x2, . . . , xd]T

Initialize the bat population xi(i = 1,2, . . . n) and vi
Define Pulse frequency fi at xi initialize pulse rates ri and the loudness Ai

While (t< Max numbers of iterations)
Generate new solutions by adjusting frequency
And updating velocities and locations/solutions [(1)]

If (rand>ri)
Select a solution among the best solutions
Generate a local solution around the selected best solution

End if
Generate a new solution by flying randomly

If (rand < Ai and f(xi) < f(x*))
Accept the new solutions
Increase ri and reduce Ai

End if
Rank the bats and find the current best x*

End while
Postprocess results and visualization

(v) Whale Optimization Algorithm (WOA)

Whales can find out the location of their prey and then encompass them. Since the
situation of the ideal plan in the pursuit space isn’t known earlier, the WOA algorithm
considers that the present current best up-and-comer arrangement is the objective prey or
is near the ideal solution [13]. When a best representative is defined then other one will
also try to change their values according to the best one. The mathematical model has been
explained by Thennarasu et al. [54]. This algorithm is explained in Figure 5 below.

Figure 5. Flowchart of the whale optimization algorithm.

The pseudo code of Whale Optimization algorithm (WOA) is as follows:
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Pseudo code

Randomly initialize the whale population
Evaluate the fitness values of whales and find out the best search agent X*

While t < tmax
Calculate fitness function for each agent
For each search agent

If h < 0.5 where h is the random number between 0 and 1 then

If
→
|A| < 1 then

→
X(t+1) =

→
X*(t) −

→
A·
→
Dn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . Equation (1)

Else if |A| ≥ 1 then
→

X(t+1) =
→

Xrand(t)−
→
A·
→
Dn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . Equation (2)
end If

Else If h ≥ 0.5 then
→

X(t+1) =
→
D′.ebl·cos(2πl) +

→
X*(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . Equation (3)
End If

End For
Evaluate the fitness of X(t + 1) and updates X′

End While

In WOA, h is the random number between 0 and 1. In Equation (1), X(t + 1) is the
updated position, X* (t) is the best solution and method A = (2*a*r)-a where a is linearly
decreased from 2 to 0 depends on max iteration number shrinking encircling and r is
random vector between [0,1] and D = |(2∗r∗X∗(t))− (X(t))| where X (t) is position vector

In Equation (2), D = |(2∗r∗Xrand(t))− (X(t))| and Xrand(t) is position vector. In
Equation (3), b defines the logarithmic spiral shape, L is random number between −1 and
1 and D = X∗(t)− X(t).

3.5. Simulation Toolkit

Cloud Analyst is a simulation toolkit which provides modelling as well as simulation
of the core functionality of the cloud such as event processing, creation of cloud enti-
ties, communication between varying entities, etc. This toolkit provides many services
and features:

â Test the services of applications in a reoccurring and controlled environment.
â Performs experiments with varying workload mix and with different performance

scenarios on imitated infrastructure for development.
â Tune the system limitations before deployment of apps in an actual cloud.
â It is a complete platform for modelling cloud’s service agents, provisioning, and,

allocation strategy.
â It provides imitation of a cloud-environment which can inter-connect resources of

both public as well as private domains.
â Virtualization engine availability that helps in creation as well as management of

several independent virtual services on a DC node.

3.6. Parameters Used in Toolkit

There is datacenter tab in the Cloud Analyst simulation toolkit which allows defining
the configuration of the datacenter. There is need to give values to various parameter fields
like name, region, operating system, number of servers, etc. Under data center, a second
table appears which require more parameter values like machine id, memory, storage,
processor speed, VM allocation policy as shown Figure 6. Other than this there are some
important parameters that are:

â User Grouping Factor: This parameter is used to guide simulator that in a single bundle
of traffic, how many users will be treated simultaneously.
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â Executable instruction length (in bytes): Simulator execute instructions based on length
setting under this parameter.

â Load balancing policy: This parameter is used to allocate request to various virtual
machine based on policy setting.

â Request Grouping Factor: Simulator treat multiple requests for single unit of processing
using this parameter.

Figure 6. Parameter Setting in Cloud Analyst.

The data center contains various physical servers which all have different kinds of
properties of resources like storage, CPU, speed, storage, architecture, etc. as shown in
the XML configuration file (see Figure 7). In the proposed algorithm, we have considered
eight servers with different configurations, meaning that some servers have 2 GB RAM,
some have 3 GB RAM. Similarly, few servers are of 32-bit architecture, others are of 64-bit
architecture. These values are used when the system load the machines. For the proposed
WOA algorithm, the XML file also includes Pmin and Pmax values for each server because
our algorithm is not only scheduling tasks but also calculating energy consumption by that
particular machine during the task allocation as per Equation (4):

Power Consumed = Pmin + (Pmax − Pmin) * Utilization (4)

where Pmin is set as minimum power consumed by the server in its ideal state and Pmax
is the maximum power consumed by the server in its utilization state [55] and these values
are set in the configuration file. These values have been set as 200 and 400 as min and max
values, respectively, because it has found that most servers consume near to 200 Watts of
power when they are in an ideal state and if they contain a large number of resources then
they can consume nearly 400 Watts of power [56–58].

Based on all these values, when our proposed WOA algorithm schedules the tasks to
different virtual machines, the corresponding energy consumption is calculated based on
the utilization of resources of that server [59].

3.7. Simulation Output Screen

The following snapshots show the result in terms of response time, execution time,
throughput, and, energy consumption when PSO, CSO, BA, and, CSA, WOA are applied
to multiple numbers of servers. Figures 8 and 9 shows the simulation results of PSO, CSO,
BA, and, CSA, WOA algorithms using seven and eight servers, respectively.
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Figure 7. Servers specification in XML File.

Figure 8. Algorithm results with seven servers.

Figure 9. Algorithm results with eight servers.

4. Results and Discussion

In this section, a comparison of different algorithms with our proposed algorithm
is presented.
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4.1. Seven Servers

Figure 8 displays the simulation result of the PSO, CSA, CSO, BAT and WOA algo-
rithms when we are use seven servers of different capacity. Each server has different RAM,
imps speed and different numbers of virtual machines. Cloud Analyst simulator shows re-
sults of these algorithms for various parameters like throughput, response time, execution
time and energy efficiency. The simulation results showed that PSO and CSO have 0.116
and 2.466 ms response times but the CSA, BAT and WOA algorithms take 0 ms. There is big
variation in energy consumption between the various algorithms and WOA gives the best
result. When we implement PSO, the cloud system consumes 19,624,612 Joules, in the case
of CSA the energy consumption is 5492 Joules, CSO consumes approximate 6224 Joules,
BAT consumes 7828 Joules but when WOA is implemented, the energy consumption is
reduced to 4536 Joules. Similarly, in the case of the execution time parameter, PSO takes
218 ms, CSA takes 60 ms, CSO takes 69 ms, BAT takes 84 ms, but WOA takes only 50 ms
for task execution. This finding shows that WOA outperforms PSO, CSA, CSO, BAT in
terms of throughput, response time, execution time and energy efficiency.

4.2. Eight Servers

Figure 9 represents the simulation results of PSO, CSA, CSO, BAT and WOA regarding
throughput, response time, execution time and energy consumption using eight different
kind of servers. The simulation results show that PSO and CSO have 0.116 and 2.095 ms
response times, but the CSA, BAT and WOA algorithms take 0 ms. The time taken by the
different algorithms for task execution is also good in the WOA algorithm as compared to
the others. WOA takes only 90.72 ms, while PSO takes 248.390 ms, CSO uses 94.405 ms,
CSA needs 103.633 ms, and Bat takes 101.633 ms. When we compare energy consumption
using the WOA algorithm as compared to the other algorithms is also gives the best
results. Energy consumption in the case of PSO is 22,355.16 Joules while for CSO it is
8496.522 Joules, for CSA it is 9322.227 Joules, BAT consumes 9147.006 Joules and WOA
consumes 8165.603 Joules which is much less as compared to PSO, CSA, CSA and BAT. The
above results demonstrate that WOA beats PSO, CSA, CSO, BAT in terms of throughput,
response time, execution time and energy consumption.

4.3. Load Balancing

Table 2 shows the comparison of response time, execution time and energy consump-
tion of PSO, CSO, CSA, BAT and WOA that has been implemented in various phases of
research. The load balancing, throughput and response time of each algorithm has been
tested, and the results show that the throughput is same—100 ms—for all the algorithms,
but the response time of PSO is 0.116, of CSO it is 0 ms, for CSA it is 2.095 ms, for BAT
it is 0 ms and for WOA it is also 0 ms. The execution time taken by machines for PSO
is 248.390 ms, for CSO it is 94.405 ms, for CSA it is 103.633 ms, for Bat it is 101.633 ms
and for WOA it is 90.7289 ms. The energy consumption of PSO is 22,355.16 Joules, for it
CSO is 8496.522 Joules, for CSA it is 9322.227 Joules, BAT consumes 9147.006 Joules and
WAO consumes 8165.603 Joules. It has thus been found that overall the whale optimization
algorithm gives the best results as compared to the PSO, CSA, CSO and Bat algorithms
for load balancing, resource scheduling and energy optimization. Hereafter, in terms of
response time, execution time, energy consumption, WOA showed better performance as
compared to the rest of algorithms used in the study.
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Table 2. Comparison of the proposed algorithm with the other implemented algorithms.

Algorithms
Parameters

Response Time Execution Time Energy Consumption

PSO 0.116 248.390 22,355.146
CSO 0 94.405 8496.522
CSA 2.095 103.580 9322.227
BAT 0 101.633 9147.006

WOA 0 90.7289 8165.603

4.4. Energy Consumption

Figure 10 depicts the graphical comparison of energy consumed by the PSO, CSO,
CSA, BAT and WOA algorithms when large numbers of servers are active. It shows that
when we use the WOA algorithm, the energy consumption is 8165.603 Joules, while in
CSO implementation, the energy consumption is 8496.522 J, so WOA gives a 4% better
result as compared to CSO. When we use the BAT algorithm, the cloud system consumes
9147.006 Joules of energy, oo WOA is 12% better than BAT. CSA implementation requires
9322.227 Joules of energy consumption, so WOA is 13.22 % better. WOA is 92 % better as
compared to PSO because PSO consumes 22355.146 Joules of energy. Therefore, we can say
WOA outclasses all the other algorithms in terms of energy consumption.

Figure 10. Comparison of the energy consumption of the PSO, CSO, CSA, BAT with WOA algorithms.

4.5. Execution Time

Figure 11 shows the execution times of the PSO, CSO, CSA, BAT and WOA algorithms
using a graphical comparison. The results show that WOA takes 90.7289 ms, while CSO
takes 94.405 ms which shows that WOA gives 4% better execution time results compared
to CSO.

Figure 11. Comparison of execution time of PSO, CSO, CSA, BAT with WOA.

Similarly, when we compare WOA with the BAT algorithm, WOA is 11% better
because BAT takes 101.633 ms for task execution. WOA is also compared with CSA and
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PSO. WOA is 13% better than CSA, and 92% better than PSO. CSA takes 103.580 ms
execution time and PSO takes 248.390 ms for task execution. From this we can conclude
that WOA needs less execution time as compared to the rest of the algorithms.

For the testing environment, different servers with different speeds, RAM and band-
width are considered with different numbers of jobs. As the results show, the WOA
algorithm gives the best results as compared to the other algorithms. In the implemen-
tation of WOA, energy consumption used by cloud systems is much less and response
time and execution time is also less as compared to other algorithms. With less energy
consumption and less response and execution time WOA is cost effective in comparison
with other algorithms.

5. Conclusions and Future Work

Cloud computing has appeared to be one of the most sought after network config-
urations to which IT and other data storage facilities are leaning with a cost effective
approach. The utilization of cloud computing has increased significantly which indeed has
led to traffic clogging at the web servers. Due to the large number of clients, the demand
for resources has also increased thereby creating an imbalance in the distribution and
allocation of resources. The proposed work addresses the problem of load balancing and
resource scheduling with a cost effective approach. It is also seen that implementation of
different algorithms for effective resource allocation and balancing of workload in cloud
causes great a consumption of energy. To harness greater output, firstly we have imple-
ment algorithms like PSO, CSO, CSA and BAT and check their result using Cloud Analyst
simulator. Finally, our proposed work uses the whale optimization algorithm which lowers
the energy consumption rate and also decreases the execution time as compared with
other algorithms.

One of the limitations of the present work is that we have not compared WOA using
other parameters like cost, makespan, etc. In future work, we will compare different
algorithms with different parameter settings. We can implement various meta-heuristics
techniques for the improvement of the work. Secondly, we can also move towards different
computing system such as fog computing along with cloud for load balancing and energy
efficiency. We can also implement our proposed algorithm in a real cloud system like
Amazon’s EC2, Microsoft’s Azure etc. rather than just use the Cloud Analyst simulator.
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