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The impact of preweaning vaccination for bovine respiratory viruses on

cattle health and subsequent bovine respiratory disease morbidity has been

widely studied yet questions remain regarding the impact of these vaccines

on host response and gene expression. Six randomly selected calves were

vaccinated twice preweaning (T1 and T3) with a modified live vaccine for

respiratory pathogens and 6 randomly selected calves were left unvaccinated.

Whole blood samples were taken at first vaccination (T1), seven days later

(T2), at revaccination and castration (T3), and at weaning (T4), and utilized

for RNA isolation and sequencing. Serum from T3 and T4 was analyzed

for antibodies to BRSV, BVDV1a, and BHV1. Sequenced RNA for all 48

samples was bioinformatically processed with a HISAT2/StringTie pipeline,

utilizing reference guided assembly with the ARS-UCD1.2 bovine genome.

Di�erentially expressed genes were identified through analyzing the impact

of time across all calves, influence of vaccination across treatment groups

at each timepoint, and the interaction of time and vaccination. Calves,

regardless of vaccine administration, demonstrated an increase in gene

expression over time related to specialized proresolving mediator production,

lipid metabolism, and stimulation of immunoregulatory T-cells. Vaccination

was associated with gene expression related to natural killer cell activity and

helper T-cell di�erentiation, enriching for an upregulation in Th17-related gene

expression, and downregulated genes involved in complement system activity

and coagulationmechanisms. Type-1 interferon production was una�ected by

the influence of vaccination nor time. To our knowledge, this is the first study

to evaluate mechanisms of vaccination and development in healthy calves

through RNA sequencing analysis.
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Introduction

Vaccination remains one of the most important tools for

controlling bovine respiratory disease (BRD) in beef calves (1).

Increasing adaptive immunity against known pathogens is the

goal of vaccination; however, the presentation of antigens to

the immune system elicits multiple cascading events within

an animal as part of both innate and adaptive immunity. The

most commonly measured indicators of adaptive immunity

are serum antibody titers to specific pathogens of interest.

Although useful, antibody titers have some limitations including

multiple samples must be taken for accurate diagnosis of

infection by endemic respiratory agents, and sufficient time

must pass for the immune system to respond adequately (2, 3).

One alternative to antibody titers is to evaluate differential

gene expression to identify markers that indicate immune

competency, immune responsiveness, and/or predict future

immunity to those pathogens. However, knowledge gaps remain
regarding the impact of vaccination on gene expression and

how that gene expression may correlate with the development

of adaptive immunity.

Although commercially available vaccines have been
evaluated and approved by the USDA APHIS Center for

Veterinary Biologics for purity, safety, potency, and efficacy,
the requirements for efficacy studies are often quite different

than the conditions under which the vaccine will be used

in the field. While challenge studies can be very useful

tools (4), they do not accurately model natural bovine

respiratory disease and are often done with seronegative

calves that have not been exposed to any pathogens or

stressors. Strict protocols and timing of administration are

also followed. In contrast, beef producers often use vaccines

at different intervals from the label, in animals with a variety

of backgrounds and nutritional, immune function, or passive

transfer status, and often in the face of bacterial or viral

exposure or other stressors (5). These differences can make it

difficult to achieve the efficacy seen in the tightly controlled

approval studies and raises the question whether vaccines, as

commercially employed, are influencing rates of morbidity

and performance in a consistent manner. To answer this

question, the cattle industry needs additional research on

these vaccines as they are employed in natural field conditions

and the impact they have on cattle health, performance, and

immune function.

Given this background, our objective was to explore

differences in host gene expression in calves that were vaccinated

preweaning with a modified live vaccine for respiratory

pathogens or not via time-course transcriptomics, and to pair

those data with antibody titers and health records. These

data will support exploration of associations and generation of

hypotheses regarding the immune response to vaccination that

may influence future research and use of vaccines in preweaned

beef calves.

Materials and methods

Animal use and study enrollment

All animal use and procedures were approved by the

Mississippi State University Animal Care and Use Committee

(IACUC protocol #19-169) and carried out in accordance with

relevant IACUC and agency guidelines and regulations. This

study was carried out in accordance with Animal Research:

Reporting of In Vivo Experiments (ARRIVE) guidelines (6).

Eighty-four bull calves were enrolled in a split plot design

study to evaluate the impact of different management strategies

on BRD morbidity, mortality, and performance (7). Animals

were randomly assigned to whole plot (VAX or NOVAX) which

were housed in 6 pastures during the cow-calf phase with no

nose-to-nose contact. They were also randomly assigned to split

plot level treatment of being directly transported to Texas for

backgrounding after weaning (DIRECT) or sent to an auction

market and then an order buyer facility for 3 days prior to

transport to Texas for backgrounding (AUCTION); this event

occurred after the timepoint T4, described below. All animals

were visually assessed each day for signs of BRD and/or other

disease by trained university employees and detailed health

histories were kept on each calf. The observed signs of BRDwere

assigned a severity score of 0–4, adapted from the scoring system

previously described by Holland et al. (8).

Calves were evaluated at four time points, described as T1,

T2, T3, and T4. At T1, calves were vaccinated with 2ml Pyramid

5 (Boehringer Ingelheim Animal Health) subcutaneously (VAX)

or given 2ml 0.9% saline subcutaneously (NOVAX) (median

age = 107 days). Additionally, calves were tested via ear

notch ELISA to evaluate PI status at T1; no PI positive calves

were found. At T2, or 7 days post-vaccination (median age

= 114 days), all calves were weighed and sampled. At T3

VAX calves were again administered (revaccinated with) 2ml

Pyramid 5 subcutaneously and NOVAX calves were given 2ml

0.9% saline subcutaneously (median age = 183 days); all calves

were castrated by knife with no analgesia on T3. All calves

also received 5ml of a multivalent clostridial bacterin-toxoid

(Covexin 8, Merck Animal Health) subcutaneously at time point

T1 and T3). All calves were handled so that no contact between

vaccinated and non-vaccinated calves would occur. Calves were

abruptly weaned at T4 (median age= 230 days) and entered the

next phase of the study where they were kept in their original

pastures in Mississippi for 3 days before being transported

directly fromMississippi to Texas for backgrounding (DIRECT)

or sent to an auction market where they stayed in a pen not in

contact with other cattle for approximately 6 h, and then were

transported for housing at an order buyer facility for 3 days

prior to transport to Texas (AUCTION) Non-study calves from

other sources were housed at the order buyer facility at the same

time as the study calves, but they were not mixed with the study

calves. In Texas (samples not evaluated in this study), calves were
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kept in one of 12 pens corresponding to their original random

assignment to whole and split plot treatments (n= 3 pens of each

pair of treatments). Whole blood was collected from all calves

into Tempus RNA blood tubes (Applied Biosystems) and into

serum tubes via jugular venipuncture immediately prior to first

vaccination (T1), seven days post-vaccination (T2), immediately

prior to vaccine booster administration and castration (T3), and

at time of abrupt weaning (T4; 47 days post-booster). Overall,

there were 7 days between T1 and T2, 70 days between T2 and

T3, and 47 days between T3 and T4.

Twelve calves that remained clinically unaffected by BRD

during the cow-calf and backgrounding phases of production

were selected for RNA sequencing via stratified random

sampling within the calves that remained healthy throughout

the study within each backgrounding pen which resulted in

1 calf selected per backgrounding pen (n = 3 VAX/DIRECT,

n = 3 NOVAX/DIRECT, n = 3 VAX/AUCTION, and n

= 3 NOVAX/AUCTION). A total of 48 blood samples

across the four time points were analyzed for whole blood

transcriptomes. Metadata for all selected calves are found in

Supplementary material 1.

Antibody titers

Serum collected at T3 and T4 was stored at −20◦F

before analysis at the University of Georgia’s Athens Veterinary

Diagnostic Laboratory. Serum neutralizing antibodies were

assayed for bovine herpesvirus−1 (BHV-1), bovine viral

diarrhea virus type 1a (BVDV1a), bovine respiratory syncytial

virus (BRSV), and parainfluenza-3 virus (PI-3) per SOP #

Ser013. Resulting titer levels for these antibodies are found in

Supplementary material 1 and is limited to descriptive analysis

only due to the small number of calves (n= 12).

Average daily gain

Differences in average daily gain between T1 and T4

were evaluated via generalized linear mixed effect models

estimated via restricted pseudolikelihood with the Kenward-

Rodgers adjustment for degrees of freedom in SAS 9.4. The

model included vaccination status as a fixed effect and a random

intercept for backgrounding pastures. Differences in least square

means are reported and a cutoff of p ≤ 0.05 was used to

determine significance.

Next-generation RNA sequencing and
bioinformatic data processing

Total RNA isolation, quality control, sequencing library

preparation, and sequencing was performed by the Texas

A&M University Institute for Genome Sciences and Society

(TIGSS; College Station, TX, USA). Total RNA was isolated

with Tempus Spin RNA Isolation Kit (Applied Biosystems),

based on manufacturer’s instructions. Total RNA from

each sample was analyzed for RNA concentration and

integrity with a Qubit 2.0 Fluorometer (ThermoFisher)

and an Agilent 2,200 Bioanalyzer (Agilent), respectively;

all RNA samples were of high quality (RIN: 7.8–9.5;

mean = 8.8, s.d. = 0.3) and concentrations (ng/µL: 84.1–

380.0; mean = 222.4, s.d. = 71.4). Library preparation for

mRNA was performed with the TruSeq Stranded mRNA

Library Prep Kit (Illumina), following manufacturer’s

instruction. Paired-end sequencing for 150 base pair

read fragments was performed on an Illumina NovaSeq

6000 analyzer (v1.7+; S4 reagent kit v1.5) in one flow

cell lane.

Quality assessment of reads was performed with FastQC

v0.11.91 and MultiQC v1.12 (9), and read pair trimming for

unambiguous base calls, adaptors, and retained minimum

read length of 28 bases was performed with Trimmomatic

v0.39 (10). Trimmed reads were mapped and indexed to

the bovine reference genome assembly ARS-UCD1.2 with

HISAT2 v2.2.1 (11). Sequence Alignment/Map (SAM) files

were converted to Binary Alignment Map (BAM) files,

prior to transcript assembly, with Samtools v1.14 (12).

Transcript assembly and gene-level expression estimation

for differential expression analysis was performed with

StringTie v2.1.7 (13), as described by Pertea et al. (14).

All sequencing data produced in this study are available at

the National Center for Biotechnology Information Gene

Expression Omnibus (NCBI-GEO), under the accession

number GSE205004.

Di�erential gene expression analysis

Gene-level count matrices were processed and analyzed in

RStudio, using R v4.1.2. Samples were classified by vaccination

group and time point, where raw gene counts were processed

and filtered by procedures described by Chen et al. (15).

Any gene with a minimum total count above 100 and a

count-per-million (CPM) of 0.2 in at least twelve samples

was retained for further analysis. Post filtering, the complete

dataset was considered non-sparse, and therefore normalized

for differential expression analysis with the trimmed mean of

M-values method (TMM) (16). Tagwise dispersion estimates

of gene counts were supplied into the Bioconductor package

glmmSeq v0.1.02 for negative binomial mixed effect modeling

of gene counts. The following linear mixed-effect model was

fitted to account for time points and vaccination group as

1 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

2 https://github.com/KatrionaGoldmann/glmmSeq
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fixed effects, and housing (pasture) and individual ID as

random effects:

Model : ∼ Timepoint ∗ Vaccine ∗ Timepoint :Vaccine

+ (1|Pasture) + (1|ID)

Model adaptation allowed for the assessment of differentially

expressed genes (DEGs) across timepoints, vaccine groups, and

the interactions between timepoints and vaccine group,

where p-values were adjusted for false discovery rates

(FDR) with the Benjamini-Hochberg method; genes were

considered significantly expressed with an FDR≤ 0.05. Pairwise

comparisons for DEGs between each vaccination groups at

every time point and within each vaccination group across

each time point was performed with edgeR v3.36.0 (15, 17),

fitting genes under generalized linear model (GLM) framework

and employing quasi-likelihood F-tests (QLF); pairwise

gene comparisons were considered significant with an FDR

≤ 0.10.

Dimensional reduction and unsupervised
clustering analyses

Heatmap, principal component, and clustering analyses

were performed with all filtered and log2 count-per-million

(log2CPM) values of TMM-normalized gene counts between

all 48 samples. Heatmap and exploratory clustering analysis of

samples, with respect to vaccination, time points, and individual

IDs, were performed with the Bioconductor package pheatmap

v1.0.12,3 utilizing Canberra distances and Pearson correlation

coefficients for unsupervised hierarchical clustering of samples

and DEGs, respectively. Specifically, z-scores were calculated

and utilized for heatmap analysis from log2CPM values of

normalized (TMM) expression values. Gene expression was

grouped into 48 distinct clusters with the k-means algorithm

embedded within pheatmap; the number of clusters was

determined from the Elbow method. High dimensional data

exploration and reduction via principal component analysis

(PCA) was conducted with the Bioconductor package PCAtools

v2.0.0,4 utilizing a correlation matrix; normalized gene counts

were processed through mean centering and variance scaling.

A scree plot was generated to determine the number of

principal components (PCs) to retain for analysis, utilizing

Elbow and Horn’s parallel analysis methods (18). A Spearman’s

rank correlation matrix of retained PCs was constructed

with metadata components from all samples, which included

individual identification (ID), birthweight, age of animal for

each sample (Age), housing pen at Mississippi (Pasture),

vaccination group (Vaccine), sampling time point for each

sample (Timepoint), and the slope of weight gain over time

3 https://CRAN.R-project.org/package=pheatmap

4 https://github.com/kevinblighe/PCAtools

starting at birth (i.e., growth rate; GR); correlations were

considered significant with an FDR ≤ 0.10. To determine

genes which were driving the variation seen among each

significantly correlated PC, a loadings plot was generated with

the top/bottom 2% retained variables across each component

loading range. A PCA biplot was constructed from the PCs with

significant correlation to vaccination groups; data ellipses were

calculated from multivariate t-distributions and encompassed

80% confidence levels of expressional t-distribution across each

time point.

Functional enrichment analyses of DEGs

Differentially expressed genes were analyzed for functional

enrichment of gene ontology (GO) terms, Reactome pathways,

and KEGG pathways with KOBAS-i (19) (accessedMay 2, 2022),

utilizing hypergeometric testing and Benjamini-Hockberg

adjusted p-values (FDR ≤ 0.05). Functional enrichment of

DEGs were analyzed in three separate analyses: (1) DEGs

shared between time points in both glmmSeq and QLF testing of

vaccinated and non-vaccinated calves (i.e., shared genes between

glmmSeq–timepoints, QLF Vax T1vsT2, and QLF Novax

T1vsT2), (2) DEGs identified between vaccination groups across

each time point by both glmmSeq–vaccination and QLF testing

(i.e., glmmSeq–Vaccine and Vax vs. Novax at T1), removing

DEGs identified by method #1, and (3) DEGs solely identified

in glmmSeq analysis of Timepoint: Vaccine interactions; this

approach allowed for the independent assessment of functional

enrichment influenced by calf development (i.e., time) and

vaccine administration. Enriched GO terms and pathways

were evaluated for directionality (increased or decreased)

based on log2 fold changes of associated DEGs. Clustering and

visualization of enriched KEGG terms was performed with

the embedded enrichment visualization tool within KOBAS-i,

utilizing edge (correlation) thresholds of 0.40 and top n clusters

set to 8; more information regarding the embedded enrichment

visualization tool framework is provided by Bu et al. (19).

Results

Antibody titers and average daily gain

Comparison of antibody titers indicated calves were likely

naturally infected with BRSV and PI-3, because antibody titers

to these agents increased between T3 and T4 in both vaccinated

and non-vaccinated calves. Given the small number of calves

evaluated, this somewhat clouds our ability to detect the effect

of vaccination using serology of samples collected at only two

timepoints. However, vaccinated calves appeared to respondwell

to MLV vaccination as indicated by the BVDV1a titer response

(Supplementary material 1). Average daily gain between T1 and

T4 was not significantly different (p = 0.31) between the
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VAX (model-adjusted least square mean 1.89 lbs) and NOVAX

(model-adjusted least square mean 2.13 lbs) groups.

Di�erential gene expression patterns and
enriched biological mechanisms

Read mapping and alignment of the 48 transcriptomes

to the ARS-UCD1.2 bovine reference genome resulted in

an overall mapping rate average of 95.50% (s.d. = 0.96%).

In total, gene-level alignment resulted in a total of 33,310

unique features, with a median library size of 41,089,614

(s.d.= 4,111,721) (Supplementary Figure 1). Pre-processing and

filtering of low expression values resulted in a total of 17,371

genes used for downstream analyses (Supplementary Table 2).

Analysis of genes from glmmSeq resulted in 1213, 435, and 85

DEGs when evaluating time, vaccination, and the interaction

of time and vaccination, respectively (Supplementary Table 3).

Comparative analyses for DEGs between vaccination groups

and time points was conducted with edgeR GLM-QLF testing.

Analysis of the NOVAX group over time yielded a total of

3,271 DEGs across six comparisons (Supplementary material 4).

Analysis of the VAX group over time yielded a total of

4,085 DEGs across six comparisons (Supplementary material 5).

Analysis of each time point between the VAX and NOVAX

groups yielded a total of 861 DEGs across four comparisons

(Supplementary material 6). Visualization of the number and

directionality of DEGs identified from GLM-QLF testing and

overlapping of DEGs from glmmSeq and edgeR QLF analyses,

are found in Figure 1.

Heatmap and unsupervised clustering analysis, seen in

Figure 2, demonstrated that the majority of calves (n = 7)

were highly similar in global gene expression prior to vaccine

administration (T1; right side). Time of sampling (Timepoint)

emerged as a considerable factor in determining distinction

between groups (Vaccine) and individual calves (ID), as the

majority of samples on the left side of the heatmap (i.e., furthest

from the T1 samples) were at time of vaccine boostering (T3)

and weaning (T4). Several individuals (J015, J022, J027, J053,

J109, J113, J124) demonstrated high self-similarity in global gene

expression between time points.

Multidimensionality analysis and visualization of global

gene expression patterns via PCA is found in Figure 3.

Utilizing both the elbow method and Horn’s parallel analysis,

a total of 14 principal components (PCs) were determining

as optimal for demonstrating explained variation across the

48 transcriptomes; the first 14 PCs retained 70.15% of the

variance within the data (Figure 3A). Pairwise plotting of

selective PCs (Figures 3B,C) was performed with those PCs

which demonstrated significant correlations with timepoints

and/or vaccination status (Figure 3D). The first PC, accounting

for 14.20% of the total explained variance, was positively

correlated with Age (r = 0.34, FDR < 0.10), Vaccine (r =

0.34, FDR < 0.10), and Timepoint (r = 0.44, FDR < 0.05).

Two PCs, PC3 and PC4, accounting for 7.67 and 5.94% of

total explained variance, respectively, demonstrated significant

correlations with Timepoint but not Vaccine; PC3 demonstrated

negative correlation with Timepoint (r = −0.38, FDR < 0.10)

and ID (r = −0.39, FDR < 0.10) and PC4 demonstrated

positive correlation with Timepoint (r = 0.38, FDR < 0.10)

and Age (r = 0.47, FDR < 0.05), confounded by ID (r =

−0.38, FDR < 0.10). Accounting for 5.74% of total explained

variance, PC5 possessed significant negative correlation with

Timepoint (r = −0.32, FDR < 0.10). While confounded by

Pasture (r = −0.54, FDR < 0.01), PC10, accounting for

2.72% of total explained variance, possessed significant positive

correlation with Vaccine (r = 0.36, FDR < 0.10). Notably, the

strongest correlation found within this analysis was between

PC11, accounting for 2.33% of total explained variance, and

GR (r = 0.58, FDR < 0.01). The resulting pairwise plotting of

PCs 1, 3, 4, 5, and 10 demonstrated relative overlapping of all

samples at T1, with increasing dissimilarity of samples over time

(Figure 3B). A biplot with statistical ellipses (multivariate C.I.=

80.00%) of the two PCs with significant correlation with Vaccine

(PC1 and PC10) demonstrated high dissimilarity between

timepoints T1 and T3, with relative high overlap of timepoints

T2 and T4, with T3 variation driven by vaccinated calves J009,

J022, J023, and J113 (Figure 3C). Genes driving the variation

among each PC possessing significant metadata correlations

are found in Figure 3E. Specifically, genes influencing variation

within PC1 and PC10 (i.e., correlated PCs with Vaccination)

include AP5M1, CLOCK, EIF3K, HDAC3, MKLN1, MYNN,

OCIAD1, PHIP, RACK1, RBM12B, RBM26, RPL37A, SNX17,

STK16, TMEM208, TRAPPC1, UBXN7, and ZDHHC17 in

PC1 and KIR3DL1, LOC112447728, and LOC786987 in PC10,

respectively. Those PCs having significant correlation with

Timepoint, and not Vaccine (PC3, PC4, and PC5), possessed

variance-driving genes which overlapped with glmmSeq–

timepoint findings; BATF, EXTL2, PRDX2, RNF122, TIAM1,

and TMCC3 were identified in both PC3-5 loadings plots and

glmmSeq–timepoint analysis.

Analysis of GO terms, KEGG pathways, and Reactome

pathways of genes identified between glmmSeq–timepoints and

edgeR QLF testing within both vaccination groups across time

allowed for the assessment of enriched processes and pathways

at three specific timepoint comparisons: (1) T1 vs. T3, (2) T1 vs.

T4, and (3) T2 vs. T4 (Supplementary material 7). Shared DEGs

from T1 vs. T3 comparisons enriched for 88 GO terms and 72

functional pathways. These GO terms were related to zinc ion

binding, cytokine-mediated signaling, specifically interleukin-

12, gene expression regulation, regulation to inflammatory

response, including negative regulation of I-kappaB kinase/NF-

kappaB signaling, and fatty acid metabolism and biosynthesis.

Enriched pathways included the immune system (both innate

and acquired immunity) retrograde endocannabinoid signaling,
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FIGURE 1

Visualization of di�erentially expressed genes (DEGs) identified through edgeR Quasi Likelihood F-testing and glmmSeq analyses. (A) Bar graph

depicting the number and directionality of DEGs found in each edgeR pairwise test. Directionality is based on the first testing group within each

pairwise test. For example, Vax T3vsT4 depicts 524 DEGs upregulated and 302 DEGs downregulated at T3 when compared to T4. (B) Upset plot

demonstrating the number of DEGs overlapped between all di�erential expression analyses. Novax T2vsT4 possessed the most (1356) unique

DEGs of any analysis, while Vax T1vsT3 and glmmSeq–Timepoint possessed the highest number of genes identified in multiple analyses (219).

FIGURE 2

Heatmap and unsupervised hierarchical clustering analysis of global gene expression patterns across all 48 sample libraries (n = 17,371)

following optimal k-means clustering of genes (k = 48). Gene clusters were labeled by clustering order (Cluster) and the total number of genes

embedded within each cluster (Size). Sample libraries were labeled top-to-bottom with individual identification (ID), time point for each sample

(Timepoint; T1, T2, T3, and T4), and vaccination group (Vaccine; Yes or No).

interleukin-4/13 signaling, glucose metabolism, glucagon

signaling, TP53 expressional and degradation regulation, and

the biosynthesis of specialized proresolving mediators (SPMs),

including SPMs derived from both docosahexaenoic acid

(DHA) and eicosapentaenoic acid (EPA). These GO terms

and pathways were primarily enriched by the following DEGs:

ADAMTS12, ALOX15, ALOX5, CFL1, CPT1A, FBP1, FSCN1,

IL5RA, LOC100297044 (CCL14), LOC615278 (TRIM39),

LOC789732 (CD300C), MIF, OTUD7B, PEG10, PIKFYVE,

PLP2, POLR2L, PPP2R1A, PRKCG, PYGM, TK1, and TP53.
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FIGURE 3

Principal component analysis of global gene expression patterns for all samples. (A) Scree plot[[Inline Image]] analysis depicting the maximum

number of components to retain. Horn’s parallel analysis method was ultimately utilized to retain the first 14 principal components (PCs), which

explained 70.15% of total variance across the dataset. (B) Multiple biplot analysis (pairs plot) of PCs possessing significant correlation with

timepoint and/or vaccination. Each point (vector) represents a PC score of an individual sample, in which the further from plot-center the point

is, the more variation that sample contributes to the total variation. The colors yellow, orange, violet, and blue represent the timepoints T1, T2,

T3, and T4, respectively; the shapes square or circle represent the vaccination status as no or yes, respectively. (C) Specific multivariate biplot

analysis of PC1 and PC10, as influenced by timepoint and vaccination (see 3B color and shape coding). (D) Spearman’s Rank correlation matrix

heatmap of retained PCs and corresponding metadata components. Metadata components included the slope of weight gain over time (i.e.,

growth rate; GR), weight at birth (Birthweight), age at sampling (Age), pasture assignment (Pasture), vaccination status (Vaccine), time of

sampling (Timepoint), and individual identification (ID). (E) Loading plot analysis with associated genes driving the variation explained by PCs

with a significant correlation identified by 3D. Only the top 2% of genes based on component loading scores (i.e., most responsible for explained

variation) were retained for each PC.

Shared DEGs from T1 vs. T4 comparisons enriched for 34

GO terms and 35 functional pathways. These GO terms were

related to inflammatory response, cytokine-mediated signaling,

magnesium ion binding, cellular response to oxidative stress,

positive regulation of autophagy, T-cell co-stimulation, and

actin/microtubule organization and development. Enriched

pathways included the acquired immune system, interleukin

signaling, cellular stress response, CD28 co-stimulation and

signaling, and gap junction trafficking and regulation. These GO

terms and pathways were primarily enriched by the following

DEGs: ALOX15, CD80, HMGA1, HSPB8, IL17REL, IL5RA,

LOC100297044 (CCL14), LOC533307 (LRRK2), LOC789732

(CD300LD), MAP3K8, NCF2, SLC7A11, TUBB, TUBB3, and

ZC3H12A. Shared DEGs from T2 vs. T4 comparisons enriched

for 94 GO terms and 29 functional pathways. These GO

terms were related to inflammatory and cytokine-mediated

response, specifically including interleukin-17 receptor activity,

MHC class I protein complex binding, response to mercury

and magnesium ions, antigenic stimuli and macrophage

differentiation, and fatty acid metabolism and biosynthesis.

Enriched pathways included cellular metabolism involving

fructose, mannose, pyruvate, and lipid metabolism, cytokine-

cytokine receptor interaction, and the biosynthesis of specialized

proresolving mediators (SPMs), including SPMs derived from

both docosahexaenoic acid (DHA) and eicosapentaenoic

acid (EPA). These GO terms and pathways were primarily

enriched by the following DEGs: ALOX15, CEBPE, DECR2,

FBP1, IL17REL, IL5RA, LOC100297044 (CCL14), LOC788694

(KLRC1), and SLC7A11. Visualization of the enriched KEGG

pathway terms is found in Figure 4. Expressional trends of DEGs

identified in all three timepoint comparisons between the two

vaccination groups (ALOX15, IL5RA, IL17REL, LOC100297044

(CCL14), and SCL7A11) are found in Figure 5.

A total of 435 genes were identified by glmmSeq-Vaccination

to be differentially expressed (Supplementary material 3),

with 109 unique DEGs identified by overlapping

glmmSeq–Vaccination and GLM-QLF testing results,

post-removal of DEGs identified in Timepoint evaluation

(Supplementary material 8). Specifically, a total of one, 24,

and 92 DEGs were identified between vaccination groups

at timepoints T1, T2, and T3, respectively; no genes were

found to be differentially expressed between vaccinated and

non-vaccinated calves at T4 (Supplementary material 8).

Only one DEG was identified at T1 (HEXDC; increased in

Vaccinated) between vaccinated and non-vaccinated calves,

therefore possessed no enriched GO terms nor pathways.

Shared DEGs identified at T2 between vaccinated and non-

vaccinated calves enriched for 139 GO terms and 61 functional
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FIGURE 4

Clustering of enriched KEGG pathways by term identity from KOBAS-i analysis of DEGs influenced by time in both vaccination groups. Each

node represents an enriched term, with color corresponding to the unique cluster based on term identity. Each edge (line between nodes)

represents a significant correlation between pathway terms. Bar graphs represent the pathway terms found within each pathway (by color) and

the level of enrichment (Enrich ratio). Gray nodes and bargraphed terms represent enriched pathways which did not associate within the

clustering model. (A) KEGG pathways derived from T1 vs. T3 analysis clustered into eight unique clusters. (B) KEGG pathways derived from T1 vs.

T4 analysis clustered into eight unique clusters. (C) KEGG pathways derived from T2 vs. T4 analysis clustered into seven unique clusters.
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FIGURE 5

Gene pairplots and modeled expression trends of key DEGs found in timepoint analyses. Pairplots (left side) demonstrate the log10 normalized

gene expression of each sample across all timepoints, overlapped with a violin plot (depicting numerical distributions by density).

Box-and-whisker plots represent median expression values (black line), the first (lower) and third quartiles (boxplot limits), 1.5 times the

interquartile ranges (whiskers), and outlier expression levels for each timepoint (points outside whiskers). Modeled expression trends (right side)

depict the overall di�erences between groups over each timepoint. Points represent the mean log10 normalized expression value for each

group within a timepoint, and bars represent the standard error of log10 normalized expression for each group; orange represents the

vaccinated group and black represents the non-vaccinated group. These plots depict the relative expression and glmmSeq level of significance

for (A) ALOX15, (B) IL5RA, (C) IL17REL, (D) LOC100297044 (CCL14), and (E) SLC7A11.
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FIGURE 6

Clustering of enriched KEGG pathways by term identity from KOBAS-i analysis of DEGs identified between vaccinated and non-vaccinated

calves at T2. Each node represents an enriched term, with color corresponding to the unique cluster based on term identity. Each edge (line

between nodes) represents a significant correlation between pathway terms. Bar graphs represent the pathway terms found within each

pathway (by color) and the level of enrichment (Enrich ratio). KEGG pathways identified between vaccine groups at T2 clustered into five unique

clusters. Gray nodes and bar graphed terms represent enriched pathways which did not associate within the clustering model.

pathways. These GO terms were related to immune response

and regulation (increased in Vaccinated), T-cell activation

(increased in Vaccinated), metal ion binding (increased in

Vaccinated), positive transcriptional regulation and protein

processing (increased in Vaccinated), cellular proliferation

and maintenance (increased in Vaccinated), complement

activity (decreased in Vaccinated), and apoptotic clearance and

phagocytosis (decreased in Vaccinated). Enriched pathways

included the immune system and cytokine signaling, including

interleukin-37 signaling (increased in Vaccinated), complement

and coagulation cascades (decreased in Vaccinated), enhanced

transcriptional activity, largely involving RNA polymerase

II (increased in Vaccinated), and vitamin B6 metabolism

(decreased in Vaccinated). These GO terms and pathways

were primarily enriched by the following DEGs: ARL4D, C3,

CNOT4, GTF2A1, LOC785873 (TRIM26), POU2F1, PUS10,

SMAD3, THBD, and ZBTB41. Visualization of the enriched

KEGG pathways is found in Figure 6. Expressional trends of

the aforementioned DEGs contributing to these GO terms and

pathways are found in Figure 7.

Shared DEGs identified at T3 between vaccinated and

non-vaccinated calves enriched for 71 GO terms and

25 functional pathways. These GO terms were related to

neutrophil degranulation (increased in Vaccinated), antigen

processing and presentation (increased in Vaccinated),

ubiquitin protein binding and positive regulation (increased

in Vaccinated), nuclear protein importing and response

to protein folding (increased in Vaccinated), heat shock

protein binding, specifically to Hsp70 and Hsp90 (increased

in Vaccinated), T-cell activation (increased in Vaccinated),

cellular response to interleukin-7 (increased in Vaccinated),

and the positive regulation to ATPase activity (increased

in Vaccinated). Enriched pathways included transcription

activation (increased in Vaccinated), endocytosis and antigen

processing and presentation (increased in Vaccinated),

neutrophil degranulation (increased in Vaccinated), and

cellular response to heat stress, including the regulation

of HSF1-mediated heat shock response, Hsp90 chaperone

cycle for steroid hormone receptors, and HSF1-dependent

transactivation (all increased in Vaccinated). These GO terms

and pathways were primarily enriched by the following DEGs:

AHSA2, BANP, C3, CACYBP, CCT2, DNAJA4, DNAJB1,

DNAJB4, HIST1H3G, HSP90AB1, HSPA14, HSPA1A, HSPA4,

HSPA6, HSPD1, HSPH1, KAT2A, MDM4, NUTF2, PTPRB,

RAB11FIP3, RCHY1, SMAD3, STIP1, SYMPK, TOMM34,

TRAF2, ZFAND2A, ZFP28, and ZNF473. Visualization of

the enriched KEGG pathway terms is found in Figure 8.

Expressional trends of the DEGs primarily involved in immune

mediated and heat shock response associated GO terms and

pathways (DNAJB1, DNAJB4, HSP90AB1, HSPA14, HSPA1A,

HSPA4, HSPA6, HSPD1, HSPH1, and TRAF2) are found in

Figure 9.

A total of 85 DEGs were identified by glmmSeq when

evaluating the interaction between Vaccination and Timepoints,

which enriched for 13 GO terms and six functional pathways

(Supplementary material 9). These GO terms were related to

extracellular space, actin filament organization, cytoplasmic

vesicles, copper ion binding, and natural killer cell activation

and mediated cytotoxicity. Enriched pathways included

small molecule transport, immunoregulatory interactions

between lymphoid and non-lymphoid cells, plasma lipoprotein

remodeling, natural killer cell mediated cytotoxicity, tyrosine
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FIGURE 7

Gene pairplots and modeled expression trends of key DEGs found in timepoint analyses. Pairplots (left side) demonstrate the log10 normalized

gene expression of each sample across all timepoints, overlapped with a violin plot (depicting numerical distributions by density).

Box-and-whisker plots represent median expression values (black line), the first (lower) and third quartiles (boxplot limits), 1.5 times the

interquartile ranges (whiskers), and outlier expression levels for each timepoint (points outside whiskers). Modeled expression trends (right side)

depict the overall di�erences between groups over each timepoint. Points represent the mean log10 normalized expression value for each

group within a timepoint, and bars represent the standard error of log10 normalized expression for each group; orange represents the

vaccinated group and black represents the non-vaccinated group. These plots depict the relative expression and glmmSeq level of significance

for (A) ARL4D, (B) C3, (C) CNOT4, (D) GTF2A1, (E) LOC785873 (TRIM26), (F) POU2F1, (G) PUS10, (H) SMAD3, (I) THBD, and (J) ZBTB41.

metabolism, and DAP12 interactions. Visualization of the

enriched KEGG pathway terms is found in Figure 10.

Expressional trends of the DEGs primarily involved in

immunoregulatory and natural killer cell associated GO terms

and pathways (AOC3, DCT, LOC100852061 (KIR2DS2),

LOC101905165 (NKG2D), LOC112441504 (ULBP3), and

LOXL4) is found in Figure 11.

Discussion

Use of modified live viral respiratory
vaccines in beef cattle production
systems

The use of modified live viral (MLV) vaccines in beef

cattle backgrounding and feeding operations remains one of the

leading practices in managing risk of BRD in cattle populations

(1). Multiple recent reviews have evaluated the peer-reviewed

literature regarding the use of various vaccines for respiratory

pathogens in beef cattle (20–22). However, vaccination is not

always helpful (23) and questions remain regarding which

cattle are most likely to benefit from vaccination and which

may not. Assessment of the transcriptome may reveal new

pathways that will explain why vaccination appears to prevent

disease in certain situations but not others. The significance

of some of the differences in observed gene expression

between VAX and NOVAX calves is not yet clear, but

provides a foundation for future studies to determine how

multiple components of the immune response change following

vaccination. To our knowledge, there is no comparable data

set available.

Although variable in terms of individual efficacy, several

studies suggest that vaccinating herds of cattle with MLV

vaccines reduces herd-level risk of BRD-associated morbidity

and mortality and is associated with improved weight gain

overtime (i.e., production) (24–27). Our study was limited

to a small subset of calves that remained clinically healthy
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FIGURE 8

Clustering of enriched KEGG pathways by term identity from KOBAS-i analysis of DEGs identified between vaccinated and non-vaccinated

calves at T3. Each node represents an enriched term, with color corresponding to the unique cluster based on term identity. Each edge (line

between nodes) represents a significant correlation between pathway terms. Bar graphs represent the pathway terms found within each

pathway (by color) and the level of enrichment (Enrich ratio). KEGG pathways identified between vaccine groups at T3 clustered into eight

unique clusters. Gray nodes and bar graphed terms represent enriched pathways which did not associate within the clustering model.

which may have influenced the subsequent lack of difference

in performance.

For years, responses to vaccination have been measured via

serology (4), and occasionally, cell-mediated immune responses

(20). Such studies usually describe only a small number of

outcomes of a vast and diverse network of interactions that

influence health vs. disease. While we attempted to assess serum

neutralizing titer responses to the viruses we vaccinated against,

the timing of sample collection was not optimized to find peak

titer responses. Additionally, it is important to note that in

this study the MLV was administered differently than the label

directions indicated. The current label for Pyramid 5 (28) does

not indicate a minimum age requirement or a specific interval or

requirement for revaccination of calves. However, administering

a booster vaccination, especially when the primary vaccination

was given to animals under 6months of age, is common industry

practice and according to current knowledge would be helpful

in initiating a protective immune response. Our serology results

indicated that the calves responded to our vaccination strategy

as expected but that there was likely a natural exposure to PI-3

and BRSV in the herd. The lack of differential gene expression at

T4 between VAX and NOVAX calves is further supported by the

titer data at T4. This may be due to the length of time between

sampling points T3 and T4, but our data suggest both VAX

and NOVAX individuals, across multiple pens, were exposed to

a potentially non-virulent strain of PI-3 and BRSV sometime

between T3 and T4. Furthermore, the similarities in gene

expression between the two groups at T4 may be confounded

due to this exposure and processing at T3. However, the results

of this study demonstrated that the driver of immunological

response and enhanced transcription over time, as influenced by

vaccination, was the initial (first) administration.

Development of clinically healthy cattle is
associated with increased specialized
proresolving mediator expression, fatty
acid and carbohydrate metabolism, and
cytokine-mediated immunity

When evaluating the influence of time (i.e., physiological

growth) on the gene expression of young calves, three

connected mechanisms continually increased over time across

all individuals: specialized proresolving mediator (SPM)

biosynthesis, fatty acid and carbohydrate metabolism, and

chemokine/cytokine mediated enhancement of acquired

immunity. Specialized proresolving mediators consist of

closely related classes of lipid mediators, derived from the

lipoxygenation of arachidonic acid into LXA4 (i.e., lipoxins)

(29) or from the metabolism of omega-3 and/or omega-6

essential polyunsaturated fatty acids (i.e., resolvins, protectins,

and maresins) (30–32). Collectively, six molecules (ALOX5,

ALOX15, GPX4, HPGD, LTA4H, and PTGS2) are directly

involved in the biosynthesis of SPMs,5 of which we identified

5 https://reactome.org/PathwayBrowser/#/R-HSA-9018679&DTAB=

MT
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FIGURE 9

Gene pairplots and modeled expression trends of key DEGs found in timepoint analyses. Pairplots (left side) demonstrate the log10 normalized

gene expression of each sample across all timepoints, overlapped with a violin plot (depicting numerical distributions by density).

Box-and-whisker plots represent median expression values (black line), the first (lower) and third quartiles (boxplot limits), 1.5 times the

interquartile ranges (whiskers), and outlier expression levels for each timepoint (points outside whiskers). Modeled expression trends (right side)

depict the overall di�erences between groups over each timepoint. Points represent the mean log10 normalized expression value for each

group within a timepoint, and bars represent the standard error of log10 normalized expression for each group; orange represents the

vaccinated group and black represents the non-vaccinated group. These plots depict the relative expression and glmmSeq level of significance

for (A) DNAJB1, (B) DNAJB4, (C) HSP90AB1, (D) HSPA1A, (E) HSPA4, (F) HSPA6, (G) HSPA14, (H) HSPD1, (I) HSPH1, and (J) TRAF2.

three to be differentially increased in all calves over time

(ALOX5, ALOX15, and HPGD); notably, HPGD was identified

as a differentially expressed in glmmSeq – timepoint, NOVAX

T1vT4, VAX T1vT3, and VAX T2vT3. These lipid molecules are

profound regulators of both acute and chronic inflammation

and are critical in promoting cellular clearance and tissue

remodeling in response to respiratory disease (33–36).

Recent evidence suggests that, in addition to their ability to

resolve inflammatory responses and tissue damage, SPMs

are effective modulators of the adaptive immune response,

capable of regulating Th1/Th17 differentiation and promoting

regulatory T-cell differentiation via a non-cytopathic regulatory

mechanism (37). Crucially, SPMs are shown to not have an

effect on Th2-driven immunity, but enhance antigen presenting

cell, specifically dendritic cell, development and functionality

(37–39); this aligns with our findings indicating a gradual

increase in gene expression related to SPM production and

immunoregulatory T-cells. This is additionally supported

by the enrichment of CD28 co-stimulation and signaling,

and the enhancement of CTLA4 and CD80 with associated

cytokine production (IL5RA, IL17REL) over time (40–44).

Furthermore, several of these specific genes, namely ALOX15,

LOC100297044 (CCL14), HPGD, and IL5RA, have been

identified as DEGs increased in expression at facility arrival in

cattle that remain clinical healthy within high-risk populations,

compared to cattle that develop BRD (45–49). Collectively, this

may represent immunological development and mechanisms

of immunocompetence which can serve a protective role

against BRD-induced inflammation when calves are placed in

post-weaned feeding systems.

Vaccination induces a controlled
inflammatory response linked with
Th17/natural killer cell activity

Evaluation of host expression influenced by vaccination,

excluding genes and mechanisms affected solely by time,
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FIGURE 10

Clustering of enriched KEGG pathways by term identity from KOBAS-i analysis of DEGs identified from glmmSeq evaluation of the interaction

between vaccination and time. Each node represents an enriched term, with color corresponding to the unique cluster based on term identity.

Each edge (line between nodes) represents a significant correlation between pathway terms. Bar graphs represent the pathway terms found

within each pathway (by color) and the level of enrichment (Enrich ratio). KEGG pathways identified through the interaction of vaccination and

time clustered into eight unique clusters. Gray nodes and bar graphed terms represent enriched pathways which did not associate within the

clustering model.

FIGURE 11

Gene pairplots and modeled expression trends of key DEGs found in timepoint analyses. Pairplots (left side) demonstrate the log10 normalized

gene expression of each sample across all timepoints, overlapped with a violin plot (depicting numerical distributions by density).

Box-and-whisker plots represent median expression values (black line), the first (lower) and third quartiles (boxplot limits), 1.5 times the

interquartile ranges (whiskers), and outlier expression levels for each timepoint (points outside whiskers). Modeled expression trends (right side)

depict the overall di�erences between groups over each timepoint. Points represent the mean log10 normalized expression value for each

group within a timepoint, and bars represent the standard error of log10 normalized expression for each group; orange represents the

vaccinated group and black represents the non-vaccinated group. These plots depict the relative expression and glmmSeq level of significance

for (A) AOC3, (B) DCT, (C), LOC100852061 (KIR2DS2), (D) LOC101905165 (NKG2D), (E) LOC112441504 (ULBP3), and (F) LOXL4.

demonstrated an increase in mechanisms associated with

antigen presentation, metal ion binding, molecular chaperone

activity, and lymphoid cell activity, and a decrease in

mechanisms associated with complement and apoptotic debris

clearance. First, through PCA of global expression trends,

we discovered genes driving variation in PCs with significant

correlation with vaccination. Specifically, we identified the

genes CLOCK, HDAC3, KIR3DL1, RACK1, and SNX17 to be

key drivers of differences associated with vaccination, which

are involved in regulating the activity and differentiation of
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T-cells and natural killer cells. CLOCK, in conjunction with

BMAL1, is a circadian timekeeping protein which interacts

with transcriptional regulators, which in turn upregulate genes

such as HDAC3; this transcriptional network is responsible

for the development and differentiation of Th17 cells (50–

53). KIR3DL1, an immunoglobulin-like receptor expressed by

natural killer cells and T-cells (54), is shown to be involved in

inhibiting interferon-?? secretion andmay block the progression

of chronic inflammation, seen in research involving ankylosing

spondylitis and reactive arthritis (55, 56). RACK1, which acts as

both an intracellular protein receptor for protein kinase C and as

a core ribosomal protein of the 40S subunit, is a key component

of T-cell activation and proliferation (57, 58) and loss of

RACK1 has been shown to increase T-cell apoptosis (59). SNX17

localizes with T-cell receptors and is responsible for preventing

T-cell degradation into lysosomes and transporting T-cell

receptors to the cell surface, aiding in cellular immune function

(60). These findings provide initial evidence that vaccination

in young calves influences mechanisms related to the enhanced

differentiation and survival of T-cells, natural killer cell activity,

and accompanying interleukin-17 response; this coincides with

previous research demonstrating vaccination or exposure to

viral components mediates a T-helper cell and natural killer

cell response (61, 62), which may contribute to protective cell

mediated and controlled inflammatory responses (63).

To further explore the influence of vaccination on these

calves, we identified DEGs between vaccination groups at each

time point, and those found from the interaction between

vaccination and time. At T2 (7 days post vaccination), DEGs

identified in calves which received a MLV vaccination enriched

for two major immune-related mechanisms-the downregulation

of complement and coagulation cascades (primarily driven

by C3), and the upregulation of T-cell-mediated immunity.

Complement, a well-organized and highly regulated system

of the immune system, is a critical component of host

immunity for killing or neutralizing pathogens and maintaining

immunological homeostasis (64, 65). While the complement

system features three distinct response pathways (classical,

alternative, and mannose-binding lectin), all three lead to

subsequent C3 activation (66). Interestingly, the vaccinated

group demonstrated a downregulation of C3 transcription.

While complement C3 is critical for inducing a humoral and

cell-mediated response to vaccination and viral infection (67–

70), little published information exists relating to the timing

and activity levels of induced complement cascades in cattle.

Thus, it can be hypothesized that we failed to capture the initial

immune responses associated with vaccination within the first

few days and are identifying a late feedback mechanism involved

in controlling prolonged complement activity. Additionally,

research has demonstrated that the complement system appears

to be more important for successful immunization in response

to polysaccharide-containing vaccines compared to conjugated

vaccines (71). Furthermore, we identified DEGs and enriched

mechanisms related to CD4+ T-cell activity, primarily driven

by DAPK2, POU2F1, SMAD3, and LOC785873 (TRIM26).

DAPK2 promotes cellular recruitment to sites of inflammation

(72) and is highly expressed in activated T-cells, serving

a cellular regulatory role during germinal center formation

(73). POU2F1 is a required transcription factor for T-cell

response to infection and the development of CD4+ memory

T-cells (74–76). SMAD3 transduces TGF-BR signaling and

controls the development of regulatory T-cells and Th17

cells via signaling networks involving T-cell receptors, TGF-

B, and interleukin-6 (77, 78). While not directly involved

with T-cell activity, TRIM26 is involved with modulating

host antiviral defense and inducing an inflammatory immune

response (79–81).

Evaluation of T3 (prior to booster administration;

77 days after initial vaccination) identified DEGs and

enriched immunological mechanisms involved in neutrophil

degranulation, antigen processing and interleukin-7 response,

T-cell activation, transcriptional activity, and heat shock

protein activity and binding. At this time point in vaccinated

calves compared to non-vaccinated calves, we again observed

an increase in the expression of SMAD3 and LOC785873

(TRIM26), two genes involved in T-cell development and

inflammatory defense mechanisms, respectively, and a decrease

in THBD and C3, involved in coagulation (82, 83) and

complement activity, respectively. Surprisingly, these genes

and associated mechanisms remained significantly enriched at

both seven and 77 days post-vaccinated, indicating a possible

immune-mediated mechanism or complex induced by MLV

vaccination which persists longer than anticipated (>30 days).

One unexpected finding at this timepoint was the rapid increase

in heat shock protein gene expression in vaccinated calves.

There is a great deal of research demonstrating the role of heat

shock proteins in vaccination and host immunity/inflammation.

Hsp70 enhances immunogenic antigen presentation cell

functionality and T-cell proliferation (84). Both Hsp70 and

Hsp90 proteins are shown to activate dendritic cells and direct

naïve helper T-cell priming through designated interactions

with antigen presenting cell surface receptors (85, 86) and

stimulating inflammatory cytokine production via CD14-

mediated chaperoning (87–89). HSPD1 initiates interferon-beta

production through interactions with interferon regulatory

factor 3 (IRF3) (90) and is associated with both leukocyte and

lymphocyte tissue infiltration (91). Furthermore, both Hsp70

and Hsp90 promote Th17 gene expression and proliferation

and are involved in interleukin-17-mediated inflammation

(92–94). This collectively indicates a stimulation of heat shock

protein-mediated inflammation and helper T-cell, possibly

Th17, promotion via modified live viral vaccination. However,

this mechanism was only upregulated at T3. How long and

where in time this mechanism becomes upregulated through

viral vaccination could not be fully elucidated by this study and

additional research is needed.
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Our final differential expression evaluation was to determine

genes influenced by the interaction of both time and vaccination.

Largely, the DEGs identified through this analysis were

determined to be involved with immunoregulatory functions

via natural killer cells. These mechanisms were enriched by

three key genes: LOC101905165 (NKGD2), LOC100852061

(KIR2DS2), and LOC112441504 (ULBP3). NKG2D serves as a

costimulatory transmembrane receptor on natural killer cells,

enhancing T-cell receptor activity and subsequent cytotoxic and

gamma-delta T-cell function (95–97). KIR2DS2 is an activating

receptor of natural killer cells, which binds to MHC class 1

and enhances natural killer cell-mediated cytotoxicity (98, 99).

ULBP3 is a cellular ligand of natural killer cells which binds to

NKG2D, serving an immunostimulatory role (100–102). This

indicates that the influence of both time and vaccination acts in

influencing natural killer cell and cytotoxic responses in calves.

Bassi et al. (103) demonstrated that cattle naturally infected

with and displaying clinical signs of bovine papillomavirus

possessed an increase in circulating natural killer cells and

CD4+/CD8+ ratios, with a related elevation in interleukin-17

levels, when compared to cattle without clinical papillomatosis.

Hamilton et al. (104) found that BCG vaccination in neonatal

calves induces effector natural killer cells after interactions

with dendritic cells, and stimulates their production of type-2

interferon production and interleukin-12.

Another key detail in this study is the lack of differential

expression related to type-1 interferon production and response.

Research has demonstrated that administration of recombinant

and mRNA vaccines against viral pathogens can induce type-1

interferon production, enhancing T-cell response via heighted

antigen presentation, and further promoting humoral immunity

and vaccine-induced antibody production (105–108). Previous

research in cattle has demonstrated that type-1 interferon

production is strongly induced by viral challenge and is seen

as an antiviral defense mechanism (109–112). While type-

1 interferon production in human vaccination trials is well

documented, it is relatively unknown if ungulates possess a

similar immune response. We may have failed to recognize such

a response due to the time between sampling points. Further

studies assessing additional time points post-vaccination and

booster, and focused assessment of peripheral immune cell

types and responses, are warranted to better identify and

understand the complex interaction of mechanisms related to

successful immunization.

This study is, to our knowledge, the first of its kind to

describe differential gene expression pathways in calves over

the first 7 months of life, and in relation to a commonly used

vaccination scheme, in a longitudinal fashion. Our findings

indicate that vaccination induces a controlled inflammatory

response associated with natural killer cell and, likely, Th17

cell promotion. This is most likely a normal process of antigen

presentation and immunological memory within calves, but

still constitutes an inflammatory-inducing process. It may be

hypothesized that these induced mechanisms are not effective

when calves are placed in high-risk settings, where stress and

inflammation are occurring, compared to the low-risk system in

which these calves were studied.
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