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Abstract

To develop a complete description of sensory encoding, it is necessary to account for trial-

to-trial variability in cortical neurons. Using a linear model with terms corresponding to the

visual stimulus, mouse running speed, and experimentally measured neuronal correlations,

we modeled short term dynamics of L2/3 murine visual cortical neurons to evaluate the rela-

tive importance of each factor to neuronal variability within single trials. We find single trial

predictions improve most when conditioning on the experimentally measured local correla-

tions in comparison to predictions based on the stimulus or running speed. Specifically,

accurate predictions are driven by positively co-varying and synchronously active functional

groups of neurons. Including functional groups in the model enhances decoding accuracy of

sensory information compared to a model that assumes neuronal independence. Functional

groups, in encoding and decoding frameworks, provide an operational definition of Hebbian

assemblies in which local correlations largely explain neuronal responses on individual

trials.

Author summary

V1 neurons exhibit substantial response variability while being massively interconnected,

complicating the development of a comprehensive theory of visual encoding. Some work

has pointed to a global description, in which stimuli and spontaneous behaviors are the

main drivers of neuronal responses. However, other work concerning the retina and else-

where suggest that local correlations between neighboring neurons shape a target neu-

ron’s single trial responses to a much greater extent than global variables. In this work, we

compare and evaluate local and global descriptions of variable single trial responses in

mouse V1. We compute pairwise correlations of neuronal activity after accounting for

global variables, and define the “functional group” of a neuron to be those neurons exhib-

iting correlated activity over short time scales. We find that the knowledge of the activity

of a target neuron’s functional group enables much more accurate predictions of single

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007591 January 30, 2020 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kotekal S, MacLean JN (2020) Recurrent

interactions can explain the variance in single trial

responses. PLoS Comput Biol 16(1): e1007591.

https://doi.org/10.1371/journal.pcbi.1007591

Editor: Leyla Isik, MIT, UNITED STATES

Received: June 3, 2019

Accepted: December 9, 2019

Published: January 30, 2020

Copyright: © 2020 Kotekal, MacLean. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data underlying

the results presented in this study were previously

published in Dechery, J. B., & MacLean, J. N.

(2018). “Functional triplet motifs underlie accurate

predictions of single-trial responses in populations

of tuned and untuned V1 neurons.” PLOS

Computational Biology, 14(5), 1–23. https://doi.

org/10.1371/journal.pcbi.1006153. Additional files

pertaining to model output are available from

figshare at: https://figshare.com/articles/models_

and_partial_correlations_zip/11413932.

Funding: This work was supported by National

Institutes of Health (NIH) grant R01EY022338

(JNM). The funders had no role in study design,

http://orcid.org/0000-0002-8021-8063
https://doi.org/10.1371/journal.pcbi.1007591
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007591&domain=pdf&date_stamp=2020-02-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007591&domain=pdf&date_stamp=2020-02-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007591&domain=pdf&date_stamp=2020-02-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007591&domain=pdf&date_stamp=2020-02-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007591&domain=pdf&date_stamp=2020-02-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007591&domain=pdf&date_stamp=2020-02-11
https://doi.org/10.1371/journal.pcbi.1007591
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1371/journal.pcbi.1006153
https://doi.org/10.1371/journal.pcbi.1006153
https://figshare.com/articles/models_and_partial_correlations_zip/11413932
https://figshare.com/articles/models_and_partial_correlations_zip/11413932


trial responses as compared to knowledge of the stimulus condition or mouse locomotion.

Moreover, we show that the informative correlations are strong, positive, and are exhib-

ited on short time scales. Finally, we find that local correlations enable accurate decoding

of the visual stimulus. These results point to a local description of the visual system over

short time scales.

Introduction

The earliest single unit recordings in awake primary visual cortex demonstrated that many of

the recorded action potentials could not be readily attributed to visual stimulus [1]. Across

visual cortex, single neuron responses to repeated presentations of a given stimulus exhibit

high variability from presentation to presentation [2–8]. Response variability is largely

restricted to neocortex [9] and is shared across the neocortical neuronal population [10,11].

However, neurons from a physiological perspective are capable of being highly reliable [12,13]

suggesting that variance arises primarily from synaptic inputs [14,15] and from extraretinal

factors that are not visual stimulus such as arousal and locomotion [5,16].

Neuronal variability can be taken to be purely noise [17], insofar as it is detrimental to the

stability of sensory representation. Alternatively, single trial variability may reflect ongoing

cortical dynamics associated with sensory processing and representation [18,19]. Shared vari-

ability may similarly reflect ongoing dynamics [20] as pairwise correlations in a population of

neurons can affect sensory representation [21–23]. Neurons are highly interconnected and

thus complex network interactions likely shape the activity of neurons [4,24]. In visual cortex,

visually tuned neurons with similar stimulus selectivity are more likely to be synaptically inter-

connected [25] and these connections manifest as specific motifs [24] which coordinate synap-

tic integration [26]. Moreover, populations of neurons have been shown to exhibit higher-

order state correlations [23,27], and topological network features have been shown to shape

spike propagation and information transfer [26,28,29]. However, the relative role of local syn-

aptic connectivity, as compared to stimulus-related input or more global variables such as

locomotion, in the generation of a sensory representation, particularly in real time, remains

unclear. A comprehensive theory of primary visual cortex must encompass local correlations

instead of treating neurons as independent units.

The cell assembly hypothesis, laid out by Donald Hebb, proposes that neurons are orga-

nized into mutually excitable groups called “assemblies” which are strongly coactive [19,30].

Under this hypothesis, sensory representations and cortical state dynamics manifest as

sequences of assembly activations and internal state dynamics need not be deterministically

tied to stimulus from trial-to-trial [9,18,19,30]. Importantly, the assembly hypothesis suggests

that single trial dynamics are strongly influenced by the group of coactive neurons rather than

entirely by the external stimulus.

In this work, we investigate whether the variance in V1 neuronal activity over the time

course of single trials is best explained by visual stimuli, locomotion, or by coactive groups of

V1 neurons. We define coactive groups of neurons, which we term as “functional groups”, by

local pairwise correlations of activity within short time intervals after accounting for stimulus

and running effects. We used a linear model (LM) on calcium imaging data of visually-evoked

activity recorded from V1 in freely running mice. In the model, we relate the target neuron’s

activity during single trials to the functional group’s activity, stimulus condition, and mouse

running speed. Functional group coactivity is understood to be informative of a target neu-

ron’s activity if inclusion of coupling in the LM improves predictions of the target’s neuron
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activity, which is suggestive of the importance of internal circuit dynamics in shaping single

trials [19,31]. With the functional group as an operational definition of an assembly, we pro-

vide concrete descriptions of the timescales, numerical scale, correlation structure, and

computational capabilities of assemblies.

Results

Trial-to-trial, the activity of individual neurons in visual cortex is highly variable despite osten-

sibly identical conditions [7]. To evaluate local and global effects on single trial variability, we

built an encoding model using a linear model (LM), comprised of three terms: neuron cou-

pling, stimulus and running speed. To determine each term’s contribution, we constructed

multiple restricted LMs. Each excluded a term of interest and we compared test set predictions

to those of the unrestricted LM (i.e. the model containing all three terms). Relative change in a

restricted model’s test set performance indicated the excluded term’s importance in modelling

single trial activity. For example, a large increase in a restricted model’s test set error indicated

that the excluded variable was informative to single trial activity. A marginal change indicated

that the excluded variable was uninformative. These LMs are inspired by the large amount of

existing work employing generalized linear models (GLMs).

Notably, we used prediction performance rather than the LM coefficients to determine the

importance of model terms. The full set of variables that truly explain V1 single trial activity is

not a priori known, nor experimentally observable. Coefficient estimates would be different if

the omitted variables were included in the model, and may lead to erroneous conclusions; this

is omitted variable bias [32]. Consequently, we used the unrestricted LM’s mean squared error

(MSE) on the test set data as a benchmark against which we compared each restricted model,

and thus evaluated the importance each variable.

Mouse visual cortical data

The imaging data used throughout this manuscript was described in a previous study [4].

Briefly, the activity of L2/3 excitatory neurons expressing GCaMP6s in mouse visual cortex

(73–347 neurons; n = 8 animals; 21 distinct fields of view; Fig 1A) were imaged using two pho-

ton laser scanning microscopy (25–33 Hz; [4,33]). Mice were awake and allowed to freely run

on a linear treadmill while viewing drifting square-wave gratings presented in 12 directions in

pseudo-random order interleaved with mean-luminance matched grey screen; each trial was a

5-minute block of stimulus presentation in this format.

Experimentally measuring coupling coefficients for use in a linear model

Visual stimuli [4] were repeatedly presented in identical 5-minute blocks. Partial correlations,

i.e. functional weights, were computed for each pair of neurons (Fig 1B), where each functional

weight captured the reliability of coactivity after accounting for shared changes in activity due

to stimulus and running speed. This measure is analogous to “noise correlations” [10], but also

allowed us to account for the running-induced changes in circuit activity [16]. To summarize

the temporal component of coactivity, we computed the mean traces of each neuron and con-

structed a cross-correlogram, the maximum value of which denoted the functional lag between

the neurons. Functional connections were often not symmetric, and the direction of the lag

gives a direction of the connection. The associated functional lags most frequently were 0

frames (Fig 1Biii) and frequency decreased rapidly with lag amplitude; most coupling was bidi-

rectional (lag 0) (mean = 50.1%, sem = 2.8%, mean over n = 21 datasets). For each neuron, the

set of other neurons with functional connections directed towards the given neuron was called

its functional group. The average number of incoming functional connections for a target
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Fig 1. Characterizing local neuron correlations. (A) Left, anecdotal example fluorescence traces of neuronal responses to oriented

drifting gratings. Right, polar plot of the average response of anecdotal neuron averaged across time bins and stimulus presentations.

Colors in both panels correspond to different grating drift directions. (Bi) Diagram of partial correlation measure used for coupling

in linear models (LMs); the partial correlation between neurons i and j is the correlation in the activities after accounting for

stimulus and running induced coactivity. In the diagram, the partial correlation is denoted and outlined as the region of intersection

between the regions of neurons i and j, but not including the regions of stimulus and running. (Bii) Functional weight (i.e. partial

correlation magnitude) distribution across population. (Biii) Functional lag distribution with respect to lag length across population.

(Biv) Functional weight distribution segregated by lag 0 and lag 1.

https://doi.org/10.1371/journal.pcbi.1007591.g001
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neuron (i.e. functional group size) was 43.18 ± 3.76 (mean ± s.e.m.). We employed these exper-

imentally measured functional connections as coupling coefficients in a LM rather than fitted

coefficients to mitigate omitted variable bias [32]. Moreover, using the measured functional

connections, rather than learned couplings, negated the potential of these terms compensating

for imperfect models of stimulus and running. In other words, this approach lessened the like-

lihood of imparting more importance to the couplings than warranted in our evaluations.

Performance of the unrestricted LM. To assess the accuracy of a simple LM (consisting

of coupling coefficients, a stimulus term, and a running term), we evaluated our ability to pre-

dict single trial neuron fluorescence. To model the stimulus, we first determined neuronal

response properties by computing the average stimulus-dependent response (averaged across

all stimulus presentation time bins and all blocks). Neurons significantly tuned to orientation

or direction were labeled as tuned with the procedure described in [4]; all others were labeled

untuned. For tuned and untuned neurons, the stimulus term in our LM was the experimentally

observed average stimulus-dependent response and overall average response respectively. The

running term for both types of neurons was given by the mouse’s running speed as measured

by a rotary encoder attached to the axle of the mouse treadmill. Since most functional weights

(70.62% ± 2.76%) (mean ± s.e.m where mean is over datasets) had associated lags with values 0

or 1 (in units of roughly 30 ms time bins), we only included these coupling lags in our model.

We note that each lag 0 connection was counted twice to indicate bidirectionality. Pooling

across neurons, the unrestricted LM exhibited accurate predictions of single trial neuronal

fluorescence (fluorescence traces normalized for each neuron) as indicated by a small test set

mean squared error (MSE) (median = 0.0402, IQR = 0.0616, [25th percentile = 0.0233, 75th per-

centile = 0.0849] Fig 2A). The test set MSE was stable over the entirety of stimulus presentation

since the first second after stimulus onset exhibited similar test MSE relative to the entire trial

(median = -0.80%, IQR = 17.54%).

While most functional weights had associated lags with values 0 or 1, it remained possible

that correlations on longer timescales, though small in proportion, impacted modeled neuro-

nal dynamics. We constructed an all lag control model that included all lags up until the

maximum lag (17 frames or ~510 ms) as well as stimulus and running terms as done in the

unrestricted LM. After fitting the all lag control model on the training set, we computed the

percent change in test set MSE of the all lag control model relative to the unrestricted LM

(which contained only lags 0 and 1). The median percent change in test set MSE was -0.60%

and the IQR was 2.45%, indicating that the inclusion of longer lags did not significantly

improve predictions of single trial dynamics confirming our decision to restrict to lags 0

and 1.

While a linear model gives an accurate description of single trial activity, it was possible

that a generalized linear model (GLM) with nonlinear link function may have been more suit-

able. In this case individual neuronal activity is described by a nonlinear function of coupling,

stimulus, and running speed. We tested two standard nonlinear GLM link functions suitable

for fluorescence data. First, we tested the reciprocal link function in which 1

Y ¼ Xb, where Y
denotes the vector of responses, X denotes the matrix of model terms (i.e. coupling, stimulus,

and running speed), and β denotes the vector of model coefficients. The model was fit on the

training data via MATLAB’s glmfit.m function, and the percent change on test set MSE relative

to the unrestricted GLM was computed, giving a median MSE of 1.97 x 105% and an IQR of

5.74 x 105%. We also tested the link function in which Y3 = Xβ. Fitting the model and comput-

ing percent change test set MSE, we obtained a median MSE of 59.01% and an IQR of 75.58%.

These results indicate that these two typical nonlinear functions did not yield improved pre-

dictions over the linear model.

Recurrent interactions can explain the variance in single trial responses
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The accurate predictions of the unrestricted LM allowed us to next evaluate which individ-

ual terms best contribute to capturing single trial neuronal dynamics. To isolate the relative

contribution of each term to the prediction accuracy of single trial fluorescence, we excluded

the stimulus or running term (stim-restricted LM and run-restricted LM respectively) and

Fig 2. Modelling single trial responses with the unrestricted LM. (A) Distribution of the percent change in test set mean-squared

error (MSE) for the unrestricted LM across all neurons. The unrestricted LM contains all three model terms, which are the coupling

coefficients, stimulus term (average stimulus-dependent response), and running term (running speed given by rotary encoder).

Across stimulus/grey conditions, the unrestricted LM models the single trial responses of many neurons accurately with a right

skewed distribution. (B) Top, overlay of modeled (blue) and experimentally measured (red) fluorescence changes in an anecdotal

neuron. Bottom, time-varying model terms that led to the prediction. The panels referring to model terms show the time-varying

value of that model term; these are then linearly combined to give the model output, which is compared to data in the top panel. (C)

Diagram for construction of restricted models. The relative changes in test set MSE of the restricted LMs compared to the

unrestricted LM indicate the importance of the excluded term in generating accurate predictions of single trial responses. For

example, if the stimulus-restricted LM exhibits a minimal test set MSE increase relative to the test set MSE of the unrestricted LM,

then the stimulus is understood to be uninformative to predicting single trial responses.

https://doi.org/10.1371/journal.pcbi.1007591.g002
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compared these models against the prediction accuracy of the unrestricted LM (Fig 2C). Each

of the three LMs were individually fit on the same training data and compared on the same

test data (roughly a 70/30 data split). Additionally, we fit LMs in which all neuronal couplings

were excluded (i.e. coupling-restricted LM) to determine the extent to which the functional

group contributed to accurate prediction of single trial responses.

Performance of the stimulus-restricted LM. We modeled the stimulus in two ways to

examine the extent to which averaged summaries of stimulus-dependent responses can con-

tribute to accurate predictions.

First, as in the unrestricted LM above, we chose to model the visual stimuli as trial averaged

responses given that the transform(s) of visual information as it transits from retina to LGN to

layer 4 to layer 2/3 is not fully known. In particular, we averaged the empirically measured

stimulus-dependent fluorescence across all time bins per stimulus condition across all trials

(each trial being a single 5-minute block) (Fig 3A), as described above. We then fit a LM con-

taining all terms (i.e. unrestricted LM) and a LM with all terms except the stimulus term (stim-

ulus-restricted LM). When comparing between our two models of the stimulus, we restricted

our analysis of the results to only the drifting grating (i.e. non-grey stimulus) imaging frames.

Pooling across neurons, the stimulus-restricted LM exhibited marginal test set MSE

increase (all frames: median = +0.20%, IQR = 1.43%, stimulus frames: median = +0.22%,

IQR = 1.79%, Fig 3B). The stim-restricted LM’s marginal MSE increase suggests that knowl-

edge of the average response does not improve single trial predictions when conditioning on

the functional group’s activity and the running speed. It must be noted, however, that neurons

in the 95th percentile of stimulus-restricted LM test set MSE increase exhibit a large increase

(median = +29.70%, IQR = 29.11% across stimulus frames, Fig 3B), indicating that average

response captured a large component of the single trial dynamics for a small subset of

neurons.

Our second model of the stimulus attempted to account for the temporal dynamics of a

stimulus-dependent response. In this model, tuned and untuned neurons were treated the

same. For each neuron, we averaged its fluorescence trace in response to a given stimulus

across all presentations and across all trials to obtain the “block averaged trace” for a given

stimulus (Fig 3A). The block averaged trace was thus obtained after averaging over 9–15 traces

depending on the dataset; as noted above, we tested this model only on stimulus frames (i.e.

non-grey frames). In order to avoid averaging over different numbers of presentations, we

took a 50/50 split of the data for training and testing the models. Notably, by considering fewer

trials, we necessarily were less able to completely isolate and account for the other two vari-

ables, coupling and running speed using partial correlation. As before, we fit an unrestricted

LM and the stimulus-restricted LM, and we restricted analysis to the drifting grating (i.e. non-

grey stimulus) frames.

Across the population, this variant of the stimulus-restricted LM again exhibited marginal

increase in test set MSE (median = +6.64%, IQR = 5.02% across stimulus frames, Fig 3B). For

the majority of neurons, averaged summaries of stimulus-dependent responses are ill-

equipped to explain single trial activity even when accounting for the average temporal com-

ponent of dynamics. Again, neurons in the 95th percentile of stimulus-restricted test MSE

increase exhibited large MSE increase (median = +50.59%, IQR = 36.87% across stimulus

frames, Fig 3B). The remainder of our analysis in this paper used the average response model

for the stimulus term unless otherwise specified.

Performance of the run-restricted LM. We evaluated the contribution of the running

term (running speed measured by rotary encoder) to accurate predictions of single neuron

fluorescence transients. The run-restricted LM exhibited marginal changes in test set MSE

compared to the unrestricted LM (median = -0.01%, IQR = 0.20%, Fig 3C), indicating that

Recurrent interactions can explain the variance in single trial responses
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Fig 3. Performance of stimulus-restricted and run-restricted LMs in predicting single trials. (A) Top, stimulus-dependent

average response profile for an anecdotal example neuron. The average response is a grand mean, i.e. the average response of a

neuron to a given stimulus is the neuron’s response to the stimulus averaged across all time bins of all presentations of the given

stimulus. In effect, the average response is the average fluorescence change the neuron exhibits in response to a given stimulus.

Bottom, an example of a block averaged trace for the same neuron (neuron 2, dataset 3). The block averaged trace of a neuron for a

given stimulus is the trace obtained when averaging traces across all blocks (i.e. trials) and all presentations of a given stimulus within

Recurrent interactions can explain the variance in single trial responses
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inclusion of running speed failed to improve prediction accuracy when conditioning on

functional group activity and the average response. When restricting to frames where the

animal runs, the run-restricted LM still exhibited marginal changes in test set MSE relative

to the unrestricted LM (median = -0.024%, IQR = 0.3575%). In numerous cases, we obtained

a negative coefficient for the running term as we did not constrain model coefficients to be

nonnegative. While we do not focus on the coefficients in the majority of the paper, it was

necessary to address these particular values because it is well known that running speed

strongly modulates spike rates [16], and our data similarly showed enhanced population

activity during periods of running [4]. Given that (1) we are inevitably subsampling visual

cortical circuits and thus cannot include all relevant variables in the LM, and (2) we had

found that run speed coefficients are mostly small in magnitude (median = -0.0001,

IQR = 0.0062), it was possible that sign errors were due to omitted variable bias [32]. Conse-

quently, we refit the unrestricted LM and the run restricted LM with the additional con-

straint that coefficients of all model terms (i.e. coupling, stimulus, and running terms) be

nonnegative. Again the change in test set mean squared error (MSE) relative to the unre-

stricted LM was small (median = -0.0598%, IQR = 0.6575, Fig 3C). Although we observed

global increases in neuronal activity across all imaged neurons during running, the inclusion

of a running term did not substantially contribute to accurate prediction of neuronal fluo-

rescence in held out data.

To account for the possibility that running speed does not linearly drive population activity,

we constructed a second running model. We used the time-varying average population

response as the running term since running is known to globally modulate the population. Fit-

ting and testing the corresponding unrestricted and run-restricted LMs, we found that the

average population response running model captured more of the dynamics than the nonneg-

ative rotary encoder model, but was still relatively uninformative as changes in test set MSE

were small (median = 0.45%, IQR = 2.32%, Fig 3C). In the remainder of our analysis, we used

the rotary encoder running model when not otherwise specified.

Performance of the coupling-restricted LM. The above results suggested that inclusion

of the stimulus condition and running speed were largely uninformative to generating accu-

rate predictions of single trial neuronal dynamics in the full LM. However, it was unclear

whether these terms enable accurate predictions when not conditioning on functional group

activity. We fit a LM with all terms (with the average response stimulus model and rotary

encoder running model) except coupling on the training set. The coupling-restricted LM

exhibited a large test set MSE increase relative to the unrestricted LM (median = 28.93%,

IQR = 47.03%, Fig 4A top right; across all frames), demonstrating that the functional group

captured variance unexplainable by the average stimulus response and running speed. This

result held when the block-averaged trace was used as the stimulus term (with the rotary

encoder running model), with the coupling-restricted LM exhibiting a large increase in test

set MSE (median = 22.35%, IQR = 39.80%; across stimulus frames). Collectively these results

indicate that the couplings between neurons contribute substantially to accurate model

predictions.

each block. In effect, the block averaged trace represents the average trace of fluorescence changes in response to a given stimulus.

For the LMs using the block averaged trace model, we restricted our analysis only to the stimulus frames and excluded the grey

frames which are obscured here using grey bars. (B) Left, cumulative distribution functions of the percent change of test set MSE

across stimulus frames for the stimulus-restricted LM using the average response stimulus model and the stimulus-restricted LM

using the block averaged trace stimulus model. Right, zoom in on 95th percentile. (C) Cumulative distribution functions of the

percent change of test set MSE across all frames for the run-restricted LMs using the rotary encoder running model, nonnegative

model coefficients, and average population response running model.

https://doi.org/10.1371/journal.pcbi.1007591.g003
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Fig 4. Coupling-restricted model performance and correlation time scales. (A) Left, example of functional group of an anecdotal

neuron. Diagram shows all neurons with nonzero weight (across all lags) that have directed coupling outgoing to the anecdotal

neuron; these neurons constitute the functional group for the anecdotal neuron. Directionality is indicated by arrows and edge

weight is denoted by thickness of the edge and arrow head size, with increasing and decreasing thickness corresponding to

increasing and decreasing weight respectively. Top right, cumulative distribution functions for the percent change in test set MSE

across all frames for stimulus-restricted, run-restricted, and coupling-restricted LMs using the average response stimulus model and

the rotary encoder running model. (B) Cumulative distribution function of percent change in test set MSE of LM0 and LM1 with

respect to the unrestricted LM. The exclusion of lag 0 results in a large increase in test set MSE, indicating that lag 0 edges are

informative to predicting single trial responses. The exclusion of lag 1 results in a marginal increases of test set MSE, indicating that

lag 1 edges are mostly uninformative. (C) Strong weight distribution segregated by lag 0 and lag 1 (“strong” weight means functional

weight in top quartile of magnitudes). Strong edges are more likely to be lag 0 edges, indicating why lag 0 edges are informative to

accurate predictions. (D) Probability density estimate of Pearson correlation between lag 0 and lag 1 coupling across all neurons.

https://doi.org/10.1371/journal.pcbi.1007591.g004

Recurrent interactions can explain the variance in single trial responses

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007591 January 30, 2020 10 / 25

https://doi.org/10.1371/journal.pcbi.1007591.g004
https://doi.org/10.1371/journal.pcbi.1007591


LM prediction accuracy is sensitive to the specifics of topology and large

weights

While it was clear that the functional group coupling enabled accurate predictions of single

trial activity, the importance of specific topological features of the functional group was

unclear. Is prediction more sensitive to the precise weight values or the underlying presence of

specific connections? To explore these relationships, we employed graph theoretic methods to

manipulate functional group weights and connections. In this framework, a connection is

referred to as an edge.

Previous work has shown that weak functional weights are uninformative of single trial

dynamics [4]. To examine the importance of specific topological features amongst the stron-

gest weighted edges in the functional group, we first identified the edges with weights in the

top quartile of magnitudes (termed the “strong edges” and “strong weights”) and permuted

the weights (along with the corresponding lag) among these edges. This permutation scheme

preserved the topology of the functional groups but shuffled the associated weights (Fig 5A).

The new weights of the functional group were then substituted into the unrestricted LM. We

did not refit the unrestricted LM, but rather computed the change of MSE on the training data

(here, we revert to analyzing all frames). Refitting the LM would have optimized model coeffi-

cients to minimize model error, thus obscuring the effect of shuffled weights. This shuffling

procedure was repeated 1000 times, and resulted in a large median increase of training MSE

(median of median increase = +23.57%, IQR of median increase = 57.99%, Fig 5B top). These

results demonstrate that the predictive abilities of functional groups are highly sensitive to the

precise value and association of each strong functional weight to a specific edge.

Second, we again identified the edges with strong weights (termed “strong edges”). Now,

rather than shuffle only the weights, we shuffled the strongest edges and thereby generated

new topologies (Fig 5A). This allowed us to determine the sensitivity of prediction ability to

the underlying strong edges. To elaborate, this shuffling procedure shuffled all of the strong

edges across all functional groups. After shuffling, each neuron’s functional group was

changed since the composition of a functional group is defined by the specific incoming edges

that each neuron receives. Again the LM was not refit for the same reasons articulated above,

and this procedure was repeated 1000 times. Shuffled edges resulted in a large median increase

of training set MSE (median of median increase = +20.00%, median of IQR = 31.43%, Fig 5B

right).

We additionally investigated the effect of permuting the strong weights and edges when

refitting the LM coefficients after shuffling. We shuffled the strong weights and edges as

described above, refit the LM coefficients on the training data, and then computed the MSE on

the test data. Due to the additional computing time associated with refitting after every permu-

tation, we reduced the number of permutations from 1000 to 100. After permuting the strong

weights, the percent change in test set MSE relative to the original unrestricted LM exhibited a

median change of 1.10% with an IQR of 14.15%, and after permuting the strong edges, the per-

cent change in test set MSE exhibited a median increase of 9.68% and an IQR of 20.26%. These

results are reported as a “grand median” (rather than a “median of medians”) after pooling

across all neurons and all permutations to stay consistent with our restricted-model analyses

which involved refitting LM coefficients. The LMs’ prediction accuracies are broadly robust to

perturbations in the functional group’s strong weights, which is unsurprising as the coeffi-

cients are refit after shuffling. However, perturbations to the underlying topology of the func-

tional group (i.e. shuffling strong edges) result in increased test set MSE, despite the fact that

refitting LM coefficients reduces model error. This result thus provides further validation that

specific strong edges are crucial for model prediction.
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Fig 5. Role of strong weights and strong edges in the functional group. (A) Diagram of permutation methods. Top, example of the

functional groups for neurons n and m. The roman letters denote neurons that are coupled to the target neurons. Greek letters

denote the weight of the edge (i.e. the functional weight). The arrows show the directionality of the coupling, with bidirectional

coupling indicating a lag 0 edge. Red coloring of edges and weights indicate that the edge is “strong” (i.e. has an edge in the top

quartile of magnitudes). Only strong edges and weights are permuted in the two shuffle methods. Bottom left, an example

permutation of the strong weights of the original functional groups. Note that each functional group retains the neurons in its group,

but the strong weights (denoted by the red Greek letters) are freely permuted, even between functional groups. Note that the lag is

Recurrent interactions can explain the variance in single trial responses
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Thus, the specific edges and specific weights in the upper quartile of weight magnitudes

underlie the impressive performance of the coupled model. Large weights thus explain the

importance of specific edges in the functional group for accurate predictions and are a signa-

ture of the important timescales and weights (regardless of sign) of the functional group; con-

sequently, the timescale and weights of Hebbian assemblies can be further characterized by

observing which timescales and weight sign correspond to the edges with large weights in the

functional group. Having established that edges with large weights underlie accurate predic-

tions, we next proceeded to describe various properties (such as timescale and weight and

sign) of the functional group which were relevant to accurate prediction by comparing

restricted models. More precisely, we did not attempt to establish causal effects since we had

already established that large weights enabled accurate predictions. Instead by establishing the

relationship between the specific features of strong weight edges and accurate predictions we

generated a more comprehensive description of the functional group.

Magnitudes of recurrent coupling coefficients are sufficient for accurate

predictions

Given the importance of the functional group, we next asked how its temporal structure

related to prediction. To do so we constructed two models, LM0 and LM1, which respectively

contained only a lag 0 or a lag 1 coupling term, and compared prediction performance to an

unrestricted LM. We additionally examined the large weight distributions for lag 0 and lag 1

coupling.

We found that the LM0 exhibited a marginally increased test set MSE while LM1 exhibited a

large test set MSE increase as compared to the unrestricted model that contained both cou-

pling terms (LM0 median = +0.63%, IQR = 2.16%, LM1 median = +9.84%, IQR = 21.10%, Fig

4B). This result demonstrates that lag 0 coupling is necessary to generate accurate single trial

predictions and suggests that prediction-relevant coactivity between neuronal pairs occurs

within a window less than or equal to ~30 ms. Hence, the predictive ability of functional group

coactivity is driven by the functional group’s bidirectional edges.

The sufficiency of lag 0 weights and insufficiency of lag 1 weights to predict single trials is

informed by the prevalence of strong weights associated with lag 0 edges (“strong” defined as

belonging to the top quartile) (Fig 4C). Furthermore, we observe that strong coupling exhibits

more lag 0 weights than lag 1, which is consistent with our previous results regarding large

weights. While it is the case that lag 0 and lag 1 functional input are linearly correlated (median

r = 0.56, IQR = 0.40, Fig 4D), collinearity cannot totally explain the sufficiency of lag 0. If

activity from lag 0 and lag 1 coupling are collinear, then LM1 should have performed compara-

bly to LM0, as the lag 1 coupling LM coefficient would be modified linearly to account for the

absence of lag 0 coupling; yet, LM1 performed worse than LM0.

permuted along the weight, and so the directionality of the coupling follows the weight when it is permuted. For example, note that

the weights β, δ, and ξ are all permuted, and the bidirectional coupling associated with δ follows the permuted weight δ. Bottom

right, an example permutation of strong edges of the functional groups. When permuting edges, the neuron memberships of the

functional groups change as strong edges are permuted in and out of each functional group. For example, neurons b and c are

permuted into the functional group of m from the functional group of n. Similarly, neurons x and w are permuted into the

functional group of n from the functional group of n. By permuting edges, new functional group topologies (in the sense of neuron

membership) are instantiated. (B) Top, distribution of the median percent change of training set MSE across all 1000 permutations

of strong weights. Bottom, distribution of the median percent change of training set MSE across all 1000 permutations of strong

edges. These distributions indicate that accurate predictions from the model are sensitive to perturbations of both strong weights and

edges of functional groups.

https://doi.org/10.1371/journal.pcbi.1007591.g005
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Positively correlated coactivity sufficiently predicts single trial dynamics

We next asked to what extent prediction was attributable to positive or negative coupling coef-

ficients. Negative correlations have been shown theoretically to increase coding capacity [34]

and consequently were of particular interest here. Two models, LM+ and LM-, were con-

structed where only the positive weight term or negative weight term was included respec-

tively; additionally, an unrestricted LM was fit. Stimulus and running speed terms were

included in all models; however, we did not restrict the set of lags under consideration. LM+

exhibited a marginal increase in test set MSE (median = +0.24%, IQR = 1.43%, Fig 6A)

whereas LM- exhibited a large increase in test set MSE (median = +25.38%, IQR = 36.37%, Fig

6A). These results indicate that positive weights are sufficient for accurate prediction while

negatively correlated neurons contributed minimally. This result further implies that the posi-

tive and negative coupling model terms are not collinear as LM+ and LM- did not exhibit com-

parable performance. The performance difference of LM+ and LM- is notably marked by the

prevalence of strong positive as compared to negative weights. Across datasets, the top quar-

tiles of weight magnitudes are comprised of many positive weights and few negative weights

(Fig 6B).

Fig 6. Correlation structure and size of functional groups. (A) Cumulative distribution function of percent change in test set MSE

of LM+ and LM- with respect to the unrestricted LM. The exclusion of edges with positive weights results in a large increase of test

set MSE while the exclusion of edges with negative weights results in only minimal increases. These results suggest that edges with

positive weights are informative while edges with negative weights are uninformative in generating accurate predictions of single

trial responses. (B) Distribution of strong weight magnitudes segregated by positive and negative weights. Strong weights are more

likely to be positive rather than negative, thus indicating why positive weighted edges are informative to accurate predictions. (C)

Mean sizes of the total functional group and the strong, positive, recurrent subsets against the population size (i.e. the number of

imaged neurons).

https://doi.org/10.1371/journal.pcbi.1007591.g006
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The size of the informative functional group saturates

Previously we had found that the accuracy of an encoding model increased with the number of

neurons imaged in a dataset [4]. We set out to establish whether this positive relationship was

due to more of each neuron’s respective functional group being sampled, or whether we had

imaged a greater number of complete functional groups. As expected the total number of

incoming edges increased with the number of neurons imaged per dataset (Fig 6C; slope =

0.21). However, this was not the case when isolating the positive bidirectional edges in the

upper quartile of weights. Rather the number of edges in this subset remained relatively stable

regardless of the number of neurons imaged (slope was 0.028; Fig 6C). These results suggest

that the increase in model accuracy with increasing numbers of neurons sampled is the conse-

quence of capturing a greater number of complete functional groups. Correspondingly, more

neurons are accurately modeled instead of obtaining a better delineation of neurons’ func-

tional groups. This result suggests a numerical size for a functional group.

Functional weights enhance single trial decoding

While the functional group enables accurate single trial encoding predictions, it remained

unclear if functional groups are computationally relevant to decoding. More concretely, we

asked if using the unrestricted LM, in which the structure of the functional group is known, to

decode the stimulus would result in better performance than decoding when neurons are

assumed to be uncoupled since the decoding performance is suggestive of the computational

relevance of the functional group [35].

We constructed coupled and uncoupled decoders under the Bayesian decoding framework.

In particular, a uniform prior over all stimulus conditions was adopted and the stimulus was

decoded via the maximum a posteriori estimate. All frames (i.e. both training and test frames)

were decoded, and both decoders performed better than chance (Fig 7A), where chance per-

formance is given by 1

13
� 7:69% (12 stimulus conditions and 1 grey condition). The coupled

LM decoder decoded more accurately than the uncoupled decoder (coupled LM mean accu-

racy = 64.77%, sem = 2.30%, uncoupled mean accuracy = 40.90%, sem = 2.74%, accuracy

pooled over all frames, mean over datasets), indicating that knowledge of coupling aids in the

extraction of sensory information from the population response. On both confusion matrices

(Fig 7A), the “bright bands” indicated that the decoder in some cases incorrectly decoded sti-

muli that were 180 degrees apart from the true stimulus (the drifting gratings are graded in

increments of 30 degrees). Of course, the imaged population of neurons includes both orienta-

tion-tuned (tuned to two directions of drifting gratings that are 180 degrees apart) and direc-

tion-tuned neurons (tuned to primarily one direction of drifting gratings). The “bright band”

phenomenon may be explained by the increased activity of orientation-tuned neurons pushing

the decoder to select the incorrect stimulus. Nonetheless, the coupled LM decoder ultimately

decodes more accurately than the uncoupled decoder.

We further computed the mutual information between the true stimulus and the predicted

stimulus [36], determining the coupled LM decoder extracts roughly 64% more sensory infor-

mation (mean = +63.94%, sem = 14.69%, mean over datasets, Fig 7B). These results indicate,

supposing downstream elements have the theoretical capability to read out the visual stimulus,

that the functional group dramatically enhances the capability of decoding of the stimulus.

Discussion

Knowledge of the coactivity of a V1 neuron’s functional group enables accurate predictions of

short term dynamics within single trials. Global descriptions such as averaged stimulus-
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dependent responses and running fail to meaningfully capture single trial activity in the vast

majority of L2/3 neurons in visual cortex. With the functional group operationalizing the

notion of a Hebbian assembly, our results give concrete descriptions of the timescales, numeri-

cal scale, correlation structure, and computational capabilities of assemblies.

Modelling fluorescence with LMs

The assembly hypothesis posits that internal state dynamics of the underlying circuit shape sin-

gle trial dynamics; consequently, assembly coactivity is proposed to capture single trials to a

greater extent than global variables. To test this proposition, we used various LMs as encoding

models [35,37–39]. We used partial correlations to capture shared variability and act as cou-

pling coefficients in the LM rather than relying on fitted coefficients [35,38,39]. Using empiri-

cally measured correlations for coupling coefficients is an attractive modeling choice; fitted

Fig 7. Decoding the visual stimulus with functional groups. (A) Left, confusion matrix (percent of corresponding stimulus frames

correctly decoded) of LM Coupled Decoder. Right, confusion matrix of Uncoupled Decoder. The LM Coupled Decoder decodes at a

higher accuracy than the Uncoupled Decoder across all stimulus conditions. (B) Comparison of mutual information (MI) between

LM Coupled Decoder and Uncoupled Decoder (red line is unity).

https://doi.org/10.1371/journal.pcbi.1007591.g007
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coupling coefficients necessarily depend on the model and variable specification, and are thus

at risk of omitted variable bias [32]. Our approach also minimized the potential for learned

couplings correcting for any limitations of our stimulus or running models. Since we use the

functional group as an operational notion of an assembly, coupling must not change with spec-

ifications of the linear model.

Functional group structure and prediction

We found that the unrestricted LM accurately modeled the dynamics of single trial activity,

thus justifying the decision to adopt a linear model, use partial correlations, and restrict to lags

0 and 1. The target neuron’s variability captured by the model is a deterministic function of

the variabilities of the functional group, averaged stimulus-dependent response, and running

speed and did not require an explicit stochastic term. Our model results showed functional

group coactivity was the main predictor of single trial activity of V1 neurons, in support of the

assembly perspective [31] as well as previous work showing that pairwise correlations can

explain activity patterns [23,40].

Investigating the robustness of prediction to modulations of the functional group, we found

that modulating the topology of large weights severely degrades the model’s ability to predict

single trial responses. Hence, the precise instantiation of the strong weights and edges in the

functional group is essential for prediction. While global population coupling and fluctuations

have been shown to be informative to predicting activity [9,11,41–43], somewhat consistent

with our block averaged stimulus and population average response locomotion models, our

results point to the inclusion of a local description when predicting neuronal dynamics within

single trial responses. Our results largely suggest that strong functional group coupling (a local

description) disproportionately captures dynamics, in congruence with the assembly hypothe-

sis and other previous work [27].

With the functional group established as the primary predictor of single trials, we investi-

gated its features. Functional group edges with functional lag 0 are sufficient for accurate pre-

dictions, suggesting that assembly coactivity largely occurs on timescales of ~30ms, as found in

other regions [31]. Furthermore, while it is known that correlations between neurons are pre-

dominantly positive and stronger between similarly tuned neurons [7,21,44], we additionally

found that precisely the large, positive weights most enabled accurate predictions. Moreover,

we determined that imaging a larger population captured more functional groups rather than

capturing finer details of existing ones. Hence, we obtained an estimate of the numerical size

of a functional group, giving an indication of the dimensionality of informative local interac-

tions in a 2D plane.

Using a Bayesian decoding framework, we found that knowledge of the functional group

improves decoding over treating neurons as independent units, corroborating previous work

[45,46] and suggesting that shared variability is computationally relevant. While the Bayesian

decoder does not reveal whether downstream circuits actually have access to or use the func-

tional group structure, these results nonetheless demonstrate the theoretical relevance of func-

tional groups [36].

The use of the functional group as an operational definition of an assembly enables con-

crete descriptions of the timescale, correlation structure, and computational capability of a

coactive population. The phenomenon that precise details of the functional group are critical

to accurate predictions of dynamics over short time scales indicates that sensory representa-

tion and computation are comprised of local coupling in addition to global population-wide

variables.
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Methods

Ethics statement

The data underlying the results presented in this study were previously published in Dechery,

J. B., & MacLean, J. N. (2018). “Functional triplet motifs underlie accurate predictions of sin-

gle-trial responses in populations of tuned and untuned V1 neurons.” PLOS Computational

Biology, 14(5), 1–23. https://doi.org/10.1371/journal.pcbi.1006153. As indicated in that work,

the data collection procedures were in accordance and approved by the Institutional Animal

Care and Use Committee at the University of Chicago.

Data

A subset of imaging data (n = 21 datasets) of mouse visual cortical neurons was taken from [4].

As described in [4], data was collected from n = 4 male and 4 female C57BL/6J mice expressing

transgene Tg(Thy1-GCaMP6s)GP4.12Dkim (Jackson Laboratory). Activity of L2/3 excitatory

neurons in mouse visual cortex (73–347 neurons; 25–33 Hz; 21 distinct fields of view) were

imaged using high speed two photon laser scanning microscopy [4,33]. Mice were awake,

head-fixed, and allowed to freely run on a linear treadmill while viewing drifting square-wave

gratings presented in 12 directions in pseudo-random order interleaved with mean-luminance

matched grey screen.

Functional weights

Partial correlations were used as coupling coefficients in our LMs; we called these functional
weights. The functional weight between a pair of neurons is the partial correlation between the

corresponding fluorescence traces accounting for the stimulus and population-wide co-activity

driven by running. More precisely, for each 5-minute block of oriented drifting grating stimu-

lus presentations (one trial), a trial-specific partial correlation between neuron x and neuron y
was computed while accounting for the mean response of neuron x in all other trials, the mean

response of neuron y in all other trials, and the mean response of the population excluding

neurons x and y in the current trial. Then the trial-specific partial correlations were averaged

across trials to obtain the final partial correlation between neuron x and neuron y; this was

taken to be the functional weight between neurons x and y. The mean activity of neurons x
and y across all other trials was accounted for in order to control for stimulus-dependent

effects resulting in a measure analogous to noise correlations [4]. The mean population activity

excluding neurons x and y in the current trial is accounted for in order to control for popula-

tion co-activity driven by running [4]. We used the MATLAB 2016a function parcor.m to

compute partial correlations. In mathematical notation, the partial correlation (within a partic-

ular trial of stimulus presentations) between neurons x and y after accounting for the stimulus

and coactivity driven by running is given by

rxy ¼ �
ðO
� 1
Þxy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðO
� 1
ÞxxðO

� 1
Þyy

q ð1Þ

where O is the correlation matrix between the trial-specific fluorescence trace of neuron x, the

trial-specific fluorescence trace of neuron y, the mean trace of neuron x averaged across all

other trials, the mean trace of neuron y averaged across other trials, and the mean trace aver-

aged across neurons x and y within the current trial. The indices x and y correspond to the

indices of the trial-specific traces of neurons x and y in O. As noted above, the final partial cor-

relation between neurons x and y is obtained by averaging the trial-specific ρxy across trials.
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In order to capture the temporal structure of neuron coactivity, functional weights were

given directionality in the following manner. The mean fluorescence trace (averaged across tri-

als) for neuron x and neuron y was computed, and the cross-correlogram was computed. Due

to the nature of two-photon imaging, neuronal fluorescence time series are given by a series of

time bins with roughly 30 ms width; consequently, lags are given in units of time bins. The lag

corresponding to the maximum of the cross-correlogram determined the lag of the functional

weight and the sign of the lag determined the direction of the functional weight [4], and this

lag was termed the functional lag. More concretely, if neurons x and y had a functional weight

with a positive functional lag, then the corresponding functional weight has direction corre-

sponding to initial point x and terminal point y. If the lag is negative, then the functional

weight has direction corresponding to initial point y and terminal point x. Lag 0 corresponds

to a bidirectional functional weight. The functional edge refers to this directed functional con-

nection. Cross-correlograms were calculated using the MATLAB 2016a functions xcorr.m.

For each neuron, the set of neurons with outgoing functional edges to the given neuron (i.e.

neurons with functional edges with which the given neuron was the terminal neuron) was

called the functional group of the given neuron.

Linear model

Predicting fluorescence. A linear model (LM) was used as an encoding model to model

calcium imaging data from V1 neurons [35,38,39,47]. The linear model framework allows us

to determine which variables are important in predicting the target neuron’s activity by itera-

tively excluding variables of interest and comparing prediction accuracy.

Stimulus effects were modeled in two ways in order to determine the extent to which aver-

aged summaries of stimulus-dependent responses contribute to accurate predictions of single

trial dynamics. First, we modeled the stimulus by the stimulus-dependent average response

(which we refer to as “average response”), in which response to a given stimulus was averaged

across all time bins of the given stimulus presentation across all trials. Neurons significantly

tuned to orientation or direction were labeled as tuned with the procedure described in [4],

and all remaining neurons were labeled as untuned. The stimulus term in our LM was the aver-

age stimulus-dependent response for tuned neurons. The stimulus term for untuned neurons

was given by the response given by averaging the stimulus-dependent average response across

all stimulus conditions. During grey frames, the stimulus term was set to zero in this model.

With this model, we used a 70/30 split of the data for training and testing in order to fit the

LM coefficients and test performance. We modeled the stimulus a second way by the “block

averaged trace” in order to reflect dynamics associated to neuronal response. In this model,

tuned and untuned neurons were treated exactly the same. The fluorescence traces in each pre-

sentation of a given stimulus were averaged across blocks (i.e. trials) but not time bins, produc-

ing a block-averaged trace which preserved the dynamics. Since the block-averaged trace

preserves dynamics, we only take averages over the training set when fitting the LM to avoid

overfitting (when testing, averages are taken over the testing set). In order to ensure that aver-

ages occurred over similar numbers of stimulus presentations between the training and testing

sets, we used a 50/50 split of the data. In our analyses, the block averaged trace was obtained

after averaging over 9–15 traces depending on the dataset. The stimulus term is represented by

s(t) in our LM equation. Running effects were modeled without neuron-specific modulation,

i.e. we included a term v(t) (denoting the running velocity at time t) that was constant across

all neurons.

The functional group was incorporated into the LM by computing a linear combination

(with weights given by the functional weights) of the lagged (lag given by the functional lag)
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fluorescence traces of all neurons in the functional group (i.e. neurons with outgoing functional

edges to the given neuron). For compact notation, we let r(t)be the vector of population fluores-

cence at a given time, T be the total duration of the event, and N be the total number of neurons

in the population. Then we defined Wk
i 2 R

N to be the vector of functional weights correspond-

ing to incoming edges to neuron i with lag k. In the entire investigation, we restricted attention

to k 2 {0, 1} as the frequency of lagged functional relationships with k> 1 decreased rapidly.

With the coupling, stimulus term, and running term defined, for each neuron i, we con-

structed a LM to model its fluorescence,

r̂ iðtÞ ¼ cþ b0 �W
0

i
⊺rðtÞ þ b1 �W

1

i
⊺rðt � 1Þ þC � sðtÞ þ G � vðtÞ þ εt ð2Þ

Here, c; b0; b1;C;G 2 R are free parameters that are fitted. The εt term is a mean zero

noise term. Since we are not concerned with inferring the underlying coefficients, the true dis-

tribution of the noise is irrelevant and so a distribution does not have to be specified in our

model. The linear offset c is needed as different neurons have different baseline fluorescence.

The gain terms β0, β1 are needed to account for the range of incoming edges to each neuron.

TheC and Γ coefficients are the modulation associated with stimulus and running respec-

tively. The notation W0
i and W1

i refers to the vector of lag 0 and lag 1 incoming functional

weights to neuron i. More specifically, W0
i ;W

1
i 2 R

N
, and

ðW‘

i Þk ¼
rki if there exists a functional edge k! i with lag ‘

0 otherwise

(

ð3Þ

Here, ρki is the functional weight associated to the directed edge k! i. Since the vectors of

functional weights W0
i and W1

i are computed directly from the data, the scalars W0
i ⊺rðtÞ and

W1
i ⊺rðtÞ are features of the data and not free parameters. Hence, for a given neuron, there exist

5 parameters in the unrestricted LM. For each neuron, the model was fit on the training data

by the method of least squares using a MATLAB R2016a function (lscov.m).

LM variants

Stimulus-restricted, run-restricted, and coupling-restricted LMs. To determine the

extent to which the stimulus term, running term, and coupling terms contributed to predic-

tions of single trials, we iteratively excluded terms of interest, refit the model, and compared

predictive performance against the unrestricted model (i.e. containing all model terms

described above). In particular, for the stimulus-restricted LM, we had the model

r̂ iðtÞ ¼ cþ b0 �W
0

i
⊺rðtÞ þ b1 �W

1

i
⊺rðt � 1Þ þ G � vðtÞ þ εt ð4Þ

in which the stimulus term was excluded. The model coefficients all have the same interpreta-

tion as described in the previous section. We then fit this model on the training data, and com-

pared its predictive performance on the test data with the unrestricted model. Similarly, for

the run-restricted LM, we had the model

r̂ iðtÞ ¼ cþ b0 �W
0

i
⊺rðtÞ þ b1 �W

1

i
⊺rðt � 1Þ þC � sðtÞ þ εt ð5Þ

and for the coupling-restricted LM, we had the model

r̂ iðtÞ ¼ cþC � sðtÞ þ G � vðtÞ þ εt ð6Þ

These models were fit on the training data, and were compared against the unrestricted

model in terms of predictive performance on the test data.
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LM0 and LM1. To determine the contributions of lag 0 and lag 1 coupling to predictions

of single trials, we similarly excluded these terms iteratively and compared predictive perfor-

mance to the unrestricted model. In particular, LM0 is given by

r̂ iðtÞ ¼ cþ b0 �W
0

i
⊺rðtÞ þC � sðtÞ þ G � vðtÞ þ εt ð7Þ

This model was then fit on the training data and compared against the unrestricted model.

Note that W0
i is not affected by refitting as it determined by the functional weights and func-

tional lags, which are empirically measured. The process of fitting only affects the model coeffi-

cients, i.e. c, β0, C, Γ. Similarly, LM1 is given by

r̂ iðtÞ ¼ cþ b1 �W
1

i
⊺rðt � 1Þ þC � sðtÞ þ G � vðtÞ þ εt ð8Þ

and the model is fitted and evaluated with exactly the same procedure as LM0.

LM+ and LM-. To determine the contributions of positive and negative functional weights

to predictions of single trial dynamics, we constructed a LM with explicit corresponding terms

(again, with average response as the stimulus term). In particular, we had the following model

r̂ iðtÞ ¼ cþ bþ � ðW
þ

i Þ
⊺rðtÞ þ b� � ðW

�

i Þ
⊺rðtÞ þC � sðtÞ þ G � vðtÞ þ εt ð9Þ

The terms r(t), s(t), v(t) and εt as well as their corresponding coefficients are defined exactly

as in the original model formulation. The notation Wþ
i and W �

i refers respectively to the posi-

tive and negative functional weights in the functional group of neuron i. More specifically,

Wþ
i ;W

�
i 2 R

N
, and for neurons k and i and sign s (i.e. positive or negative), we had

ðWs
i Þk ¼

rki if there exists a functional edge k! i and rki has sign s

0 otherwise

(

ð10Þ

In order to minimize over-fitting and keep model complexity comparable across different

models, we used all lags in this model and treated them as lag 0.

Permutations of functional group topology

To determine if the topology of the functional group is essential to predictions of single trial

activity, we shuffled the functional group in two ways; we shuffled the “strong weights” and the

“strong edges”.

We shuffled the strong weights to determine the importance of strong weights for predic-

tion. We shuffled the top quartile of weights while preserving the corresponding underlying

edges. Formally, we enumerated the edges with strong weights in our entire population {(i1, j1,

w1), . . ., (iK, jK, wK)}, where a directed edge from neuron iα to neuron jα exists and wα is the

associated weight for 1� α� K. This enumeration contains all tuples (iα, jα, wα) such that |wα|

is in the top quartile of all weight magnitudes. We then applied a uniformly random permuta-

tion σ 2 SK (where SK is the finite symmetric group on K points) to act on the weights, furnish-

ing the enumeration {(i1, j1, wσ(1)), . . ., (iK, jK, wσ(K))}. We then assigned these permuted

weights to the corresponding edges (i.e. the directed edge from neuron iα to neuron jα was

assigned the weight wσ(α)) in the functional group. Furthermore, we shuffled the functional

lags in this way (thus changing the directionality of the underlying edges). This construction

preserves the existence of edges, preserves which edges are in the top quartile of weight magni-

tudes, and preserves structure between functional lags and functional weights. Hence, changes

in prediction accuracy are directly related to the importance of the functional weight to

prediction.
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Similarly, to isolate the importance of the functional edges in prediction, we shuffled the

strong edges of the functional group. We apply a uniformly random permutation σ 2 SK to the

list of terminal neurons. Formally, with the list {(i1, j1, w1), . . ., (iK, jK, wK)} described above,

we apply the permutation to obtain {(i1, jσ(1), w1), . . ., (iK, jσ(K), wK)}. This procedure permutes

the strong edges while preserving the weight with respect to the source neuron. Hence,

changes in prediction accuracy are directly related to the importance of functional edges to

prediction.

Decoding

Constructing the decoder. To determine whether the functional group is computation-

ally relevant, we used the functional group and LM framework to decode the stimulus. We

constructed a Bayesian decoder which estimates the stimulus at time t given the population

response and the running speed at time t. The unrestricted LM (using average response for the

stimulus term) was incorporated into the decoder [37] in order to directly link the functional

structure of the population to decoding; this was termed the coupled decoder. The coupled

decoder was then compared to an uncoupled decoder: a Bayesian decoder which treats all

units as conditionally independent [35,39].

The coupled decoder was constructed as follows. From Bayes’ Theorem, the posterior prob-

ability of stimulus conditional on response is proportional to the product of the prior and the

probability of response conditional on stimulus. Formally,

pðsðtÞjrðtÞÞ / pðrðtÞjsðtÞÞ � pðsðtÞÞ ð11Þ

Here, r(t) is the vector of population activity and s(t) is the stimulus at time t. Estimating p(s
(t)|r(t)) requires specification of p(s(t)) and p(r(t)|s(t)), which we gave as

sðtÞ � UniformðfGrey; 30; 60; . . . ; 360gÞ

rðtÞjsðtÞ � N ðLMðt; sðtÞÞ;SsðtÞÞ
ð12Þ

Here, LM(t, s(t)) is the vector of LM predicted responses at time t conditioned on the stimulus

input s(t). Further, Ss(t) is the covariance of the neurons’ traces during frames with s(t) presen-

tation. The decoded stimulus is then the maximum a posteriori estimate (MAP)

ŝðtÞ ¼ argmaxs pðrðtÞjsÞ ð13Þ

This is standard in Bayesian decoders [36,37]. The uncoupled decoder is constructed simi-

larly. The prior and conditional distributions are specified as

sðtÞ � UniformðfGrey; 30; 60; . . . ; 360gÞ

rðtÞjsðtÞ � N ð�sðtÞ; diagðs2
1
; . . . ; s2

NÞÞ
ð14Þ

Here, �sðtÞ ¼ ð�s1ðtÞ; . . .;�sNðtÞÞ is the vector of stimulus-dependent average response. Further,

diagðs2
1
; . . .; s2

NÞ is the diagonal matrix with s2
i denoting the variance of neuron i’s fluorescence

trace during all frames when the stimulus s(t) was presented. Note that since the conditional

distribution posits a diagonal covariance matrix in a multivariate Gaussian, the neurons are

independent, and we have the factorization

pðrðtÞjsðtÞÞ ¼
YN

i¼1
piðriðtÞjsðtÞÞ ð15Þ

Here, pi is the marginal density of neuron i’s trace. Similarly, the decoded stimulus is the MAP

estimate. Using the 70/30 data split for training and testing from previous analyses, we fit the
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LM on the training set, then decoded all of the frames (both training and testing frames) in

our analysis.

Estimation of information about stimulus. The extent to which sensory information

was extracted from the population response was investigated via an information theoretic

approach. Specifically, we computed the mutual information between the decoded stimulus

and the true stimulus [36], given by

I s tð Þ; ŝ tð Þð Þ ¼
X

sðtÞ;̂sðtÞ
P s tð Þ; ŝ tð Þð Þ log2

PðsðtÞ; ŝðtÞÞ
PðsðtÞÞPðŝðtÞÞ

ð16Þ

Here, s(t) is the true stimulus, ŝ(t) is the decoded stimulus, and the mutual information I(s(t), ŝ
(t)) has units in bits. The joint and marginal distributions were estimated directly from the

decoding results. Given the large size of our data, subsampling the distributions was not a con-

cern. This approach gave a meaningful quantification of information and enabled sensible

comparisons between decoders. Further, it gave a measure for the computational relevance of

the functional group beyond single trial predictive power.
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