
RESEARCH ARTICLE

Impact of thermogenesis induced by chronic

β3-adrenergic receptor agonist treatment on

inflammatory and infectious response during

bacteremia in mice

Patrick MunroID
1, Samah Rekima2, Agnès Loubat2, Christophe Duranton3, Didier

F. PisaniID
3☯*, Laurent Boyer1☯*
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Abstract

White adipocytes store energy differently than brown and brite adipocytes which dissipate

energy under the form of heat. Studies have shown that adipocytes are able to respond to

bacteria thanks to the presence of Toll-like receptors at their surface. Despite this, little is

known about the involvement of each class of adipocytes in the infectious response. We

treated mice for one week with a β3-adrenergic receptor agonist to induce activation of

brown adipose tissue and brite adipocytes within white adipose tissue. Mice were then

injected intraperitoneally with E. coli to generate acute infection. The metabolic, infectious

and inflammatory parameters of the mice were analysed during 48 hours after infection. Our

results shown that in response to bacteria, thermogenic activity promoted a discrete and

local anti-inflammatory environment in white adipose tissue characterized by the increase of

the IL-1RA secretion. More generally, activation of brown and brite adipocytes did not mod-

ify the host response to infection including no additive effect with fever and an equivalent

bacteria clearance and inflammatory response. In conclusion, these results suggest an IL-

1RA-mediated immunomodulatory activity of thermogenic adipocytes in response to acute

bacterial infection and open a way to characterize their effect along more chronic infection

as septicaemia.

1. Introduction

White adipocytes, main constituents of white adipose tissue (WAT) are specialized in the stor-

age and release of energy (carbohydrates, lipids), while brown adipocytes dissipate this energy

in the form of heat (thermogenesis) [1]. Brown adipocytes constitute the brown adipose tissue

(BAT) but can also be found within the WAT. They are then called beige or brite adipocytes

(for "brown in white”) and have an increased thermogenesis capacity in response to prolonged

exposure to cold, for instance [2]. In addition to their seminal functions, an essential role in
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the innate immunity has recently emerged since the characterization of several functional

Toll-like receptors (TLRs) in the membrane of white and brown adipocytes [3–5]. TLRs are

transmembrane receptors that play a critical role in the recognition and defense against all

types of infectious pathogens, acting in innate, non-specific immunity [6]. TLRs, referred as

pattern recognition receptors (PRR), are evolutionarily conserved receptors able to detect a

repertoire of pathogen-associated molecular patterns (PAMPS) including constituent of the

microbial cell walls such as the lipolysaccharides (LPS) of gram negative bacteria [6,7].

It is well-known that adipocytes respond to LPS stimulation, especially along obesity. Dur-

ing obesity, gut microbiota alteration (dysbiosis) and intestinal barrier disruption lead to an

increased permeability to the microbiota degradation products, especially LPS. Obese patient’s

plasma displays an increased level of endotoxins (endotoxaemia) carried to organs and tissues,

inducing a local activation of TLR-4 displayed by adipocytes and adipose tissue resident mac-

rophages [8]. In response, adipocytes and macrophages secrete inflammatory cytokines

(TNFα and IL-1β) and chemokines (MCP-1 and CXCL10) which promote local inflammation

and alter tissue homeostasis [9]. Interestingly, it has been shown that brown and white adipo-

cytes in vitro respond to LPS stimulation by modulating differently macrophage inflammatory

responses. Conversely to white adipocytes, brown adipocytes reduced macrophage IL-6 secre-

tion and mRNA expression of several inflammatory markers in response to LPS [10]. In this

way, we recently demonstrated that after recruitment and activation of brown and brite adipo-

cytes, mice displayed a higher anti-inflammatory response when they are exposed to lipopoly-

saccharides derived from E. coli bacteria [11]. Especially, these mice secreted high level of

interleukin-1 receptor antagonist (IL-1RA) known to counteract interleukin 1β (IL-1β) inflam-

matory action [11].

In addition to the inflammatory response, LPS alter adipocyte function via TLR-4 activa-

tion or through cytokines secreted by macrophages. As an example, LPS induce white adipo-

cyte lipolysis to inhibit adipogenesis [12,13]. A main response of organism to counteract

infection is fever. Adipose tissues appear to be involved in this mechanism since WAT secretes

leptin, an adipokine essential to pyrexia in rodent by limiting heat loss at the tail level, and

BAT make thermogenesis suspected for a long time to participate to pyrexia [14]. Nevertheless,

recent evidences have demonstrated that acute (in vitro) and chronic (in vivo) exposure to LPS

could inhibit brown adipocytes function [5,15].

WAT is linked to metabolic inflammation but also to local and systemic defence mecha-

nisms against pathogens infection. Indeed, adipocytes are able to respond to bacteria proxim-

ity with secretion of antimicrobial peptides as cathelicidin, lipocalin and defensin. First

described for dermal adipocytes in response to Staphylococcus aureus infection [16], this char-

acteristic has been extended to adipocytes from intra-abdominal and subcutaneous WAT [17].

Moreover, WAT is able to respond to bacterial infection as previously shown in case of sepsis,

a severe infectious situation where adipocytes secrete adipokines known to modulate inflam-

mation [18]. In this situation of sepsis, it was demonstrated that brite adipocytes recruitment

was stimulated [19], but might be related to an increased norepinephrine level known to

induce the browning of WAT [20].

The antimicrobial response of brown adipocytes has not been yet described despite their

ability to respond to endotoxins. Indeed, cold exposure in human, known to induce brown

and brite adipocytes activity and recruitment, increases the secretion of inflammatory cyto-

kines in response to LPS and of IL-1RA independently to LPS [21]. These results were in line

with our previous observations where we demonstrate the same data in a mice model of

recruitment and activation of brown and brite adipocytes followed by an exposition to LPS

[11]. Despite it is well established that adipocytes are able to detect and respond to bacteria via

PLOS ONE Modulation of infectious response by brown and brite adipocytes activation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256768 August 26, 2021 2 / 17

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files.

Funding: DFP received a fellowshig from "Société
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TLR-2 and TLR-4, the involvement of the different adipocytes populations in this response is

still unknown.

Here, we investigated the in vivo impact of recruitment/activation of brown/brite adipo-

cytes by β-adrenergic receptors agonists on inflammatory response against E. coli infection in

mice. We demonstrated that thermogenesis activity did not modify the host response to infec-

tion, without additive effect on fever and with an equivalent inflammatory response.

2. Materials and methods

2.1. Reagents

Media and buffer solutions were purchased from Lonza (Ozyme, St-Quentin en Yvelines,

France). Other reagents were from Sigma-Aldrich (Saint-Quentin Fallavier, France).

2.2. Animals

The experiments were conducted in accordance with the French and European regulations

(2010/63/EU directive) for the care and use of research animals and were approved by the

french national experimentation committee (Ministère de l’Enseignement Supérieur, de la

Recherche et de l’inovation, N˚: APAFIS#18322–2018121809427035_v2). 8-week-old Balb/c

male mice from Janvier Laboratory (France) were maintained at housing temperature (22˚C)

and 12:12-hour light-dark cycles, with ad libitum access to food and water. General health and

behavior of mice were monitored daily. None of the mice died or were euthanized before the

end of the experiments. All the mice used in the experiments have been included in the final

analysis.

Mice were daily treated with β3-adrenergic receptor agonist CL316,243 (1 mg/kg in saline

solution, intraperitoneal injection) (Sigma-Aldrich) or with vehicle only. For infection, treat-

ment with CL316,243 was stopped after 7 day, then mice were injected with E. coli (UTI89

strain, 1.71x107 CFU/mouse in phosphate-buffered saline solution (PBS), caudal intra-venous

injection) and monitored for 48 hours before sacrifice [22]. At 0, 4, 24 and 48 hours after bac-

terial infection rectal temperature was recorded with a digital thermometer. For the determi-

nation of bacteremia, blood was collected from the tail vein at the indicated times post-

infection, serially diluted in sterile PBS and plated on LB plates. The plates were incubated for

16 h at 37˚C before counting colonies.

At the end of experiment, mice were sacrificed by cervical dislocation and blood, interscap-

ular brown adipose tissue (iBAT), epididymal (eWAT) and inguinal subcutaneous (scWAT)

white adipose tissues were immediately sampled and used for different analyses. General

parameters, plasma analysis and expression of adipose tissue molecular markers were evalu-

ated in all the mice (n = 8); secretion of tissue explant and histology analysis were evaluated

using whole fat pad or lobe from half of the mice of each group (n = 4).

2.3. Cytokine and metabolic parameters quantification

For blood analysis, freshly prepared plasmas were diluted twice before analysis. For tissue anal-

ysis, freshly sampled WAT and BAT were washed in PBS, weighed and incubated in free

DMEM (Dulbecco’s modified Eagle medium) for 2 hours at 37˚C. Media were kept for various

analyses of secreted proteins.

Leptin and cytokines were assayed using “Mouse Leptin Kit” (Meso Scale Discovery,

# K152BYC) and “mouse V-PLEX Proinflammatory Panel 1 Kit” (Meso Scale Discovery,

# K15048D) respectively, on a QuickPlex SQ 120 apparatus (Meso Scale Discovery) following

manufacturer’s instructions. IL-1RA levels were assayed using mouse IL-1RA Elisa kit
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(#EMIL1RN) from Thermo Fisher Scientific (Courtaboeuf, France). Glycerol and triglycerides

determinations were performed using dedicated kit (Free Glycerol reagent and Triglyceride

reagent, Sigma Aldrich).

2.4. Histology

Freshly sampled tissues were fixed in 4% paraformaldehyde overnight at RT and then paraffin-

embedded. Embedded tissues were cut in 5 μm sections and dried overnight at 37˚C. All sec-

tions were then deparaffinized in xylene, rehydrated with alcohol, and washed in phosphate-

buffered saline (PBS). For histological analysis, the sections were stained with haematoxylin-

eosin and mounted in vectamount (Vecto laboratories). For immunohistochemical analysis,

antigen retrieval was performed in low pH buffer in a de-cloaking chamber (Dako, S2367).

The sections were then permeabilized in PBS with 0.2% Triton X-100 at room temperature for

10 min and blocked in the same buffer containing 3% BSA for 1 hour. The sections were incu-

bated with rat anti-F4/80 antibody (Biorad, clone Cl:A3-1, dilution 1:100) overnight at 4˚C.

Following a 1-hour incubation with A568-coupled anti-rabbit secondary antibodies, nuclear

staining was performed with DAPI, and the sections were mounted in PermaFluor mounting

Media (Thermofisher).

2.5. Isolation and analysis of RNA

Total RNA was extracted using a TRI-Reagent kit (Euromedex, Souffelweyersheim, France)

according to the manufacturer’s instructions. Tissues were homogenized in TRI-Reagent

using a dispersing instrument (ULTRA TURRAX T25). Reverse transcription-polymerase

chain reaction (RT-PCR) was performed using M-MLV-RT (Promega). SYBR qPCR premix

Ex Taq II from Takara (Ozyme, France) was used for quantitative PCR (qPCR), and assays

were run on a StepOne Plus ABI real-time PCR instrument (PerkinElmer Life and Analytical

Sciences, Boston). The expression of selected genes was normalized to that of the 36B4

(RPLP0) housekeeping genes and then quantified using the comparative-ΔCt method. Primer

sequences are displayed in Table 1.

2.6. Statistical analysis

Animal cohort sizes have been determined using G�Power [23]. Data were analyzed using

GraphPad Prism 6 software and statistical differences between experimental groups assessed

by Kruskal-Wallis multiple comparison test. Differences were considered statistically signifi-

cant with p<0.05. Data were displayed as scatter plot of independent values and group mean

values ± SEM.

3. Results

3.1. Bacterial acute infection does not modify response of mice to

CL316,243

Mice were treated daily for 1 week with the β3-adrenergic receptor agonist CL316,243 (1 mg/

kg, intraperitoneal), or vehicle only (NaCl), in order to induce brown adipose tissue (BAT)

activation as well as recruitment and activation of brite thermogenic adipocytes within white

adipose tissue (WAT). As expected, at the end of the treatment, mice body weight was

decreased and rectal temperature increased in CL316,243 group compared to NaCl group (Fig

1A) due to the thermogenic activity of brown and brite adipocytes. At the end of this treat-

ment, half of the mice of each group were infected with E. coli and monitored 48 hours as pre-

viously described [22]. While bacteria induced a decrease of body weight in NaCl treated mice,
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no additive effect was found in CL316,243 treated mice (Fig 1B). Differently, CL316,243 treat-

ment decreased epididymal WAT (eWAT) mass while bacteria did not modify it significantly.

Plasma analysis revealed that CL316,243 treated mice displayed higher glycerol level (Fig 1C)

and lower triglycerides level (Fig 1D) compared to NaCl group and independently of bacteria

treatment. These could be related to an increase fatty acid oxidation in link with thermogene-

sis. Interestingly, an additive effect was found for triglycerides plasma level in mice treated

with CL316,243 and infected with bacteria.

While histological analysis of inter-scapular BAT (iBAT) performed 48 hours after the end

of CL316,243 treatment, did not shown major differences between groups (Fig 1E), molecular

analysis showed an increased Ucp1 and Perilipin 5 mRNA expressions after CL316,243 treat-

ment and independently of bacteria injection, which is characteristic of activated BAT (Fig

2A). Differently, Perilipin 1 and adiponectin mRNA expression was not affected by treatments

(Fig 2A). Sub-cutaneous WAT (scWAT), and for a lower extend eWAT, showed numerous

multilocular adipocytes in CL316,243 treated mice, characteristic of brite adipocytes (Fig 1E).

This was confirmed by the overexpression of Ucp1 and Perilipin 5 mRNA in scWAT (Fig 2B).

Perilipin 1 and adiponectin mRNA expression in scWAT did not change with CL316,243

treatment (Fig 2B). Bacteria did not modify the frequency of brite adipocytes as well as iBAT

morphology (Fig 1E) which was corroborated with brown/brite adipocyte markers molecular

analysis (Fig 2).

3.2. Bacterial clearance during bacteremia and pyrexia are independent to

leptin systemic level and BAT activation

Intraperitoneal injection of bacteria in mice induces in the first 4 hours a pyretic response

which was maintained all along the two days of analysis (Fig 3A). Interestingly, even if rectal

temperature was different before infection (Fig 1A), the fever measured 4 hours after bacterial

infection was equivalent between NaCl- and CL316,243-treated mice. As expected, the bacter-

emia was decreased at 24 hours and completely resolved after 48 hours, demonstrating bacteria

clearance by mice (Fig 3B) [22]. Activation of brown and brite adipocytes did not modify this

response to infection (Fig 3B).

Leptin is considered as a key mediator of pyrexia especially in mice by limiting body heat

loss. Interestingly, we measured a decreased leptinemia as well as leptin secretion by scWAT

in mice infected with bacteria as well as in mice treated with CL316,243 (Fig 3C), demon-

strating that pyrexia in response to bacteria and thermogenesis are independent to leptin

action.

Table 1. Primers sequences used for qPCR analysis.

Forward Reverse

36b4 (Rplp0) TCCAGGCTTTGGGCATCA CTTTATCAGCTGCACATCACTCAGA

Adiponectin CTTTCCTGCCAGGGGTTC GGAGAGAAAGGAGATGCAGGT

Cd11b (Itgam) TGACCTGGCTTTAGACCCTG ACCTCTGAGCATCCATAGCC

Cd19 (Leu-12) TCCCTGGGTCCTATGGAAAT CTGGTCCTGCCCAAGGTT

Mrc1 TGGATGGATGGGAGCAAAGT GCTGCTGTTATGTCTCTGGC

Perilipin 1 AGCGTGGAGAGTAAGGATGTC CTTCTGGAAGCACTCACAGG

Perilipin 5 CGCTCCATGAGTCAAGCCA CTCAGCTGCCAGGACTGCTA

Tcrβ CTCCACCCAAGGTCTCCTTG GTGGTCAGGGAAGAAGCCC

Ucp1 CACCTTCCCGCTGGACACT CCTGGCCTTCACCTTGGAT

https://doi.org/10.1371/journal.pone.0256768.t001
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Fig 1. Bacterial infection does not modify metabolic parameters and adipose tissue morphology. Mice were analysed after 1 week of

treatment with CL316,243 daily (1 mg/kg/day) or vehicle only (NaCl), and with or without E. coli infection for 48 hours. (A) Mouse body

weights and rectal temperatures at the end of CL316,243 treatment. (B) Mouse body weights and (C) epididymal white adipose tissue

(eWAT) weights at the end of infection. (D) Triglycerides and glycerol plasma levels at the end of experiment. (E) Representative picture

of four haematoxylin-eosin staining of interscapular BAT (iBAT), sub-cutaneous (scWAT) and eWAT sections. The results are displayed

as independent values (dots) and the mean ± SD. n = 16 (A) or 8 (B-D). � p<0.05.

https://doi.org/10.1371/journal.pone.0256768.g001
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Fig 2. Effect of CL316,243 and bacteria on mRNA of adipocyte markers. mRNA expression of brown/brite (Ucp1 and perilipin 5)

and general adipocyte (perilipin 1 and Adiponectin) markers was analysed by qPCR in iBAT and scWAT from mice that were treated

for 1 week with CL316,243 daily (1 mg/kg/day) or vehicle only (NaCl), and then infected or not with E. coli for 48 hours. The results

are displayed as independent values (dots) and the mean ± SD. n = 4. � p<0.05.

https://doi.org/10.1371/journal.pone.0256768.g002
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3.3. Systemic and local inflammatory response to bacteremia

We found that CL316,243 preconditioning did not modify fever and bacteria clearance by

mice. Thus, we analyzed cytokine profiling to determine if brown and brite adipocyte activa-

tions were modulating the immune response to bacterial infection. As expected, bacterial

infection induced a systemic inflammatory response characterized by increased plasmatic lev-

els of TNFα, IL-6, IL-12, IFNγ and KC/GRO (CXCL-1) compared to PBS-treated mice (Fig

4A). We observed that CL316,243 treatment did not modulate basal plasma cytokine levels as

well as in response to bacteria, even if a slight decrease was found (Fig 4A). To note, the high

variability in plasma quantity for each cytokine (Fig 4A) in response to bacteria could be

related to the variability in bacteremia evolution we found between mice (Fig 3B).

Interestingly, in iBAT only IFNγ secretion increased in response to bacteria injection (Fig

4B), other cytokines were either unaffected (TNFα, IL-2) or decreased (IL-6, IL-12, KC/GRO)

(Fig 4B). In scWAT, most cytokine secretions were unaffected except for IL-12 which was

decreased (Fig 4C). In all case, CL316,243 did not modulate local cytokine secretions in

response to infection (Fig 4B and 4C).

Fig 3. Pyrexia, bacteremia and leptin secretion in response to infection. (A) Rectal temperature and (B) bacteremia of mice treated or not with

CL316,243 (1 mg/kg/day; 1 week) were monitored for 48 hours after infection by E. coli. (C) Mice plasma and scWAT explant leptin levels at the end of

experiment. The results are displayed as independent values (dots) and the mean ± SD. n = 8 (mice and plasma) or 4 (scWAT explants). � p<0.05.

https://doi.org/10.1371/journal.pone.0256768.g003
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Fig 4. Systemic and local inflammatory responses to infection. IFNγ, TNFα, IL-6, IL-12-p70, KC/GRO (CXCL-1) and

IL-2 levels were assessed in the plasma (A) or in the media of iBAT (B) and scWAT (C) explants from mice that were

treated for 1 week with CL316,243 daily (1 mg/kg/day) or vehicle only (NaCl), and infected with E. coli for 48 hours. The

results are displayed as independent values (dots) and the mean ± SD. n = 8 (plasma) or 4 (explants). � p<0.05.

https://doi.org/10.1371/journal.pone.0256768.g004
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We further analyzed the impact of CL316,243 pretreatment on inflammatory resolving. To

this aim we analyzed IL-4 and IL-10 levels in plasma and in secretory media of adipose tissue

explant. Unfortunately, IL-4 was never detected and even if IL-10 level increased in plasma of

infected mice, it was not modulated by CL316,243 treatment (Fig 5). As for pro-inflammatory

cytokines, IL-10 secretion was unaffected by bacteria as well as CL316,243 treatment in iBAT

and scWAT (Fig 5).

Next, we investigated the immune cells infiltration in the scWAT of infected mice. We

found classic figures of inflammation in the scWAT of mice infected by bacteria. The immune

cells infiltration in the scWAT was found to be similar in mice pretreated or not with

Fig 5. Systemic and local anti-inflammatory response to bacteria. IL-4 and IL-10 levels were assessed in plasma (A) and in the media of iBAT (B) and

scWAT (C) explants from mice that were treated for 1 week with CL316,243 daily (1 mg/kg/day) or vehicle only (NaCl), and infected with E. coli for 48

hours. The results are displayed as independent values (dots) and the mean ± SD. n = 8 (plasma) or 4 (explant). � p<0.05.

https://doi.org/10.1371/journal.pone.0256768.g005
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CL316,243, including crown structure and small cell infiltration, potentially related to macro-

phage and monocyte or lymphocyte presence respectively (Fig 6A). This was confirmed by a

F4/80 immunostaining clearly showing macrophage occurrence in adipose tissue (Fig 6B). To

improve detection of immune cell content in whole adipose tissues, we have analyzed mRNA

expression in iBAT and scWAT of general markers for B lymphocytes (Cd19), T lymphocytes

(Tcrβ) and monocytes/macrophages (Cd11b), as well as expression of Mrc-1, a marker of anti-

inflammatory macrophages. The results displayed in Fig 7 showed that only Cd11b increase

with bacterial infection. Cd19, Tcrβ and Mrc-1 mRNA levels were equivalent between groups.

These results corroborated histology results suggesting that only monocytes and inflammatory

macrophages have infiltrated adipose tissue of mice in response to bacterial infection. To note,

immune cells markers were unaffected by CL316,243 treatment (Fig 7).

Fig 6. Histological characterization of scWAT infiltration by immune cells. (A) Representative pictures of four haematoxylin-eosin staining of sub-

cutaneous white adipose (scWAT) tissue of mice treated or not with CL316,243 (1 mg/kg/day; 1 week) and infected 48 hours with E. coli. Typical figures

of immune cell infiltration and crown structure are black circled. (B, C) Low and high magnification of F4/80 immunostaining (in red) in scWAT of the

same mice. Scale bars are indicated.

https://doi.org/10.1371/journal.pone.0256768.g006

PLOS ONE Modulation of infectious response by brown and brite adipocytes activation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256768 August 26, 2021 11 / 17

https://doi.org/10.1371/journal.pone.0256768.g006
https://doi.org/10.1371/journal.pone.0256768


Fig 7. Effect of CL316,243 and bacteria on mRNA of immune cell markers. mRNA expressions of monocyte/macrophage (Cd11b), anti-

inflammatory macrophage (Mrc-1), T (Tcrβ) and B (Cd19) lymphocytes were analysed by qPCR in iBAT and scWAT from mice that were

treated for 1 week with CL316,243 daily (1 mg/kg/day) or vehicle only (NaCl), and then infected or not with E. coli for 48 hours. The results are

displayed as independent values (dots) and the mean ± SD. n = 4. � p<0.05.

https://doi.org/10.1371/journal.pone.0256768.g007
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3.4. Systemic and local IL-1β and IL-1RA level in response to bacteria

Among inflammatory cytokines, IL-1β is a main actor of pyrexia and anti-bacterial response

and is highly secreted by the adipose tissue. Thus, in response to bacterial infection, we found

the IL-1β and IL-1RA (IL-1 receptor antagonist) plasma levels increased concomitantly (Fig

8A). Pre-treatment of mice with CL316,243 did not modify this response (Fig 8A). Analysis of

IL-1β and IL-1RA secretions in iBAT showed that both increased in infected mice and, inter-

estingly, IL-1β secretion decreased in iBAT activated by CL316,243 treatment (Fig 8B). In con-

trast, IL-1RA level was equivalent in iBAT of infected mice treated or not with CL316,243 (Fig

8B). The IL-1β secretion by the scWAT was not significantly increased by bacteria infection

but we measured an increased IL-1RA secretion. The CL316,243 treatment increased IL-1RA

secretion with an additive effect to infection (Fig 8C).

Fig 8. IL-1 pathway response to bacterial infection. IL-1β (A) and IL-1RA (B) protein levels were assessed in plasma (upper panel) and in the media of

iBAT (middle panel) and scWAT (lower panel) explants from mice that were treated for 1 week with CL316,243 daily (1 mg/kg/day) or vehicle only

(NaCl), and with or without E. coli infection for 48 hours. The results are displayed as independent values (dots) and the mean ± SD. n = 8 (plasma) or 4

(explant). � p<0.05.

https://doi.org/10.1371/journal.pone.0256768.g008
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4. Discussion

Adipose tissue is involved in local and systemic response to infection especially due to the

expression of Toll-like receptors by adipocytes [3,4]. Indeed, sepsis as well as endotoxaemia

directly activate inflammatory response in adipose tissue and alter its homeostasis [5,17,18].

Recent studies have shown that adipose tissue interacts with parasites or bacteria and proposed

adipocytes as a potential reservoir [24,25]. In another hand, adipose tissue contains numerous

immune cells such as macrophages, eosinophils or lymphocytes that can participate to the res-

olution of the infection [12]. Recently, it has been demonstrated that mice infected with Yersi-
nia pseudotuberculosis accumulated memory T lymphocytes in adipose tissue, which are able

to protect mice from a secondary infection [26].

While various types of adipose tissue exist [27], studies have focused only on white adipose

tissue and white adipocytes. In this work, we focused on the impact of brite and brown adipo-

cytes, both displaying a thermogenic function, on the local and systemic inflammation in

response to bacterial infection. Indeed, as thermogenic adipocytes have been suspected to be

involved in fever and anti-inflammatory response [1], we hypothesized that activating brite

and brown adipocytes could lead to a better response against bacteria. Instead of the more

physiologically cold exposition which activates numerous pathways in addition to thermogen-

esis, we have treated mice with a β3-adrenergic agonist leading to a more specific activation of

thermogenic pathway. Our results have shown that active thermogenesis did not influence

immune response to bacterial infection, including bacteria clearance and cytokines release.

Interestingly, we did not find any additivity between pyrexia and thermogenesis. Indeed, mice

displaying higher body temperature after CL316,243 treatment did not increase their body

temperature after bacteria injection but maintained it to a similar level that the one measured

for control infected mice. As bacteria did not modify BAT and scWAT phenotype and func-

tion, we can speculate that thermogenesis replaced in part classic pyretic response. In this line,

leptin has been described as a major player in pyrexia in mice [28,29]. In our work, we corrob-

orated a decrease in leptin level and secretion with an increase body temperature in response

to infection, thus excluding a positive role of leptin in biological response. It would be interest-

ing in the future to reproduce our work using Ucp1-knock out mice known to display lowered

thermogenic activity, to clearly delineate the role of thermogenesis in pyretic response to bac-

terial infection.

Numerous studies have demonstrated an alteration of white and brown adipocytes function

due to LPS exposition in vivo and in vitro [4,12,15,17,30]. In contrast to results obtained with

LPS, E. coli-triggered acute infection did not seem to modify white and brown adipose tissue

function, at least for lipolysis, lipogenesis, thermogenesis and morphology. Another difference

exists between LPS and bacteria exposition, while LPS led to increase cytokine secretion in the

adipose tissue [10,11,31], bacteria induced a limited reaction despite a significant increase in

plasma cytokine levels as well as pro- and anti-inflammatory cytokines. These discrepancies

between results found with LPS and E. coli bacteremia ask the question about the amount and

the diffusion of E. coli LPS during bacteremia as well as physiological relevance of the LPS trig-

gered sepsis model. Mice display high capacity to eliminate bacteria after 48 to 72 hours [32], a

characteristic retrieved in our work, and we can speculate that this fast clearance could pre-

clude the bacteria to target peripheric tissue. This could explain the low inflammatory response

found in adipose tissue in term of cytokine release, and the infrequent immune cells infiltra-

tion or crown structures. This is a situation completely different from sepsis where bacterial

infection was chronic and adipose tissue displayed a sustain inflammatory phenotype [17,33].

Thus, our study supports the hypothesis of an innate immune function of the adipose tissue in

chronic rather than in acute infections.
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CL316,243 treatment affected slowly the inflammatory response to bacteria of our mice. In

control condition, chronic β-adrenergic treatment did not modify cytokine secretion, as well

as immune cell content and macrophage phenotype as suggested by molecular analysis. In

infected mice, plasma levels of IL-6, IL-12, TNFα, IFNγ and KC/GRO increased and were

unaffected by pre-treatment with CL316,243. In adipose tissues, only IFNγ secretion increased

after infection and this was blunted by CL316,243 treatment only in BAT. The same profiles

were found for IL-1β. IL-6 and KC/GRO secretions by BAT were not affected in infected con-

trol mice but decreased in CL316,243 infected mice. Thus, activation of BAT thermogenesis

seemed to lead to a lower inflammatory response against bacteria. In addition to these pro-

inflammatory cytokines, IL-12 has a central role in the immune response to bacteria [34] and

results obtained for its secretion are questionable. Indeed, while IL-12 increased significantly

in plasma of our mice as expected, we found a decrease in IL-12 after bacterial infection in adi-

pose tissues independently of CL316,243 treatment.

Anti-inflammatory cytokines secretion by adipose tissue were unaffected by CL316,243 and

during bacteraemia. Nevertheless, we showed that bacterial infection increased IL-1RA levels

in plasma and BAT independently of CL316,243 treatment and, in contrast, scWAT levels of

IL-1RA increased in response to infection and to CL316,243 with an additive effect. IL-1RA,

which is highly produced by adipose tissue [35], antagonizes IL-1β cell response by competing

for binding to the IL-1 receptor [36]. These results demonstrated that WAT containing brite

adipocytes secreted more IL-1RA than WAT and could play an important anti-inflammatory

role to control the inflammatory response during bacteremia.

Altogether these results demonstrated that adipose tissues displayed a discreet inflamma-

tory response to acute bacteria exposition during bacteremia with a bare cytokine release and

immune cells infiltration. As our study corresponds to an end-point analysis after acute bacte-

ria treatment, we cannot exclude that kinetic analysis with earlier points after infection, as well

as multiplicity of infection can modify our conclusions. Nevertheless, it could be interesting to

characterize the role of brite adipocytes in case of local or more sustained infections as sepsis,

as they released high quantity of IL-1RA in response to bacteria exposition, a cytokine known

to counteract IL-1β dependant inflammation.
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