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Autism spectrum disorders (ASDs) are characterized by deficits in three core behavioral 
domains: reciprocal social interactions, communication, and restricted interests and/
or repetitive behaviors. Several hundreds of risk genes for autism have been identified, 
however, it remains a challenge to associate these genes with specific core behavioral 
deficits. In multiplex autism families, affected sibs often show significant differences in 
severity of individual core phenotypes. We hypothesize that a higher mutation burden 
contributes to a larger difference in the severity of specific core phenotypes between 
affected sibs. We tested this hypothesis on social behavioral deficits in autism. We 
sequenced synaptome genes (n = 1,886) in affected male sib-pairs (n = 274) in families 
from the Autism Genetics Research Exchange (AGRE) and identified rare (MAF ≤ 1%) 
and predicted functional variants. We selected affected sib-pairs with a large (≥10; n = 
92 pairs) or a small (≤4; n = 108 pairs) difference in total cumulative Autism Diagnostic 
Interview-Revised (ADI-R) social scores (SOCT_CS). We compared burdens of unshared 
variants present only in sibs with severe social deficits and found a higher burden in 
SOCT_CS≥10 compared to SOCT_CS ≤ 4 (SOCT_CS≥10: 705.1 ± 16.2; SOCT_CS ≤ 
4, 668.3 ± 9.0; p = 0.025). Unshared SOCT_CS≥10 genes only in sibs with severe social 
deficits are significantly enriched in the SFARI gene set. Network analyses of these genes 
using InWeb_IM, molecular signatures database (MSigDB), and GeNetMeta identified 
enrichment for phosphoinositide 3-kinase (PI3K)-AKT-mammalian target of rapamycin 
(mTOR) (Enrichment Score [eScore] p value = 3.36E−07; n = 8 genes) and Nerve growth 
factor (NGF) (eScore p value = 8.94E−07; n = 9 genes) networks. These studies support 
a key role for these signaling networks in social behavioral deficits and present a novel 
approach to associate risk genes and signaling networks with core behavioral domains 
in autism.

Keywords: affected sibs, autism social behavior, network analysis, InWeb_IM, GeNetMeta, synaptome, PI3K-AKT-
mTOR, NGF signaling
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INTRODUcTION
Autism spectrum disorders (ASDs) are a group of heterogeneous 
neurodevelopmental disorders characterized by deficits in 
reciprocal social interactions, communication, and restricted 
interests and/or repetitive behaviors. ASDs are caused by a 
combination of environmental risk factors and genetic mutations 
(Devlin and Scherer, 2012; Huguet et al., 2013). Twin-, family-, 
and population-based studies indicate that genetic factors 
contribute to more than half of the risk of developing ASDs (Klei 
et al., 2012; Gaugler et al., 2014; Sandin et al., 2014). A recent 
meta-analysis on 6,413 twins including affected twins showed 
that heritability in families with an autistic patient is 64–91% 
(Tick et al., 2016). Common variants of small effect and rare 
variants of large effect could have a substantial impact on risk 
of developing autism and/or on severity of specific behavioral 
domains in autism (Huguet et al., 2013).

Genome-wide sequencing of large cohorts of autism patients 
and their families has generated considerable numbers of 
sequence variants in recent years (Michaelson et al., 2012; Lim 
et al., 2013; Yu et al., 2013). Case-control and family-based 
studies implicate risk alleles by identifying an association of 
common variants of small effect, a higher mutation load of rare 
variants of large effect, and/or presence of de novo variants in 
affected probands (De Rubeis and Buxbaum, 2015). Several 
hundreds of autism risk genes have been implicated using these 
approaches (Huguet et al., 2013). However, the majority of these 
studies treat autism as a “single disease” in a “case-control” study 
design rather than a spectrum of disorders with deficits in core 
behavioral domains. Diagnosis of ASDs are based on standard, 
semi-quantitative behavioral tests including Autism Diagnostic 
Interview-Revised (ADI-R) (Lord et al., 1994) to assess deficits 
in three core behavioral domains: reciprocal social interaction, 
communication, and restricted interests and/or repetitive 
behaviors. Although defects in all three domains are required to 
make a diagnosis, patients with ASDs often present with significant 
differences in the severity of specific behavioral domains. 
Furthermore, deficits in these behavioral domains are shared by 
other neuropsychiatric disorders. For example, abnormal social 
behaviors are a key feature of schizophrenia; increased repetitive 
behaviors or movements are a core phenotype in obsessive-
compulsive disorder, and defects in speech and communication 
are seen in neurodevelopmental syndromes with different 
underlying genetic causes. Understanding shared mechanisms 
responsible for specific domains of psychiatric phenotypes in 
these disorders is crucial to development of medications and 
interventions for individualized care for patients with these 
disorders and identification of family members at increased risk 
for genetically influenced behavioral or psychiatric phenotypes. 
Due to extensive genetic heterogeneity and phenotypic variability 

(Jeste and Geschwind, 2014; De Rubeis and Buxbaum, 2015), it 
remains a major challenge to associate genetic risk genes and 
networks with specific behavioral domains in autism.

It has long been noted that in multiplex families, affected sibs 
with autism often show a significant difference in the severity 
of one or more behavioral domains (Spiker et al., 2002). We 
hypothesize that genetic burdens of cumulative risk genes and 
signaling networks contribute to the differences in severity of 
specific domains in the affected sibs. A recent WGS study of a 
cohort of quartet autism families showed that in a large fraction 
(50–69%) of multiplex families, two affected sibs do not share 
the same rare penetrant risk alleles (Yuen et al., 2015). These 
affected sibs with discordant mutations tended to demonstrate 
more phenotypic variability as compared to those who shared 
the same risk variants. These results support a strong genetic 
determinant responsible for differences in severity of specific 
autism phenotypes between affected sibs.

Genetic studies of affected sib-pairs have been used previously 
to map genes for rare Mendelian disorders based on the principle 
of identical-by-descent (IBD) (Zhang and Risch, 1996; Liang 
et al., 2001; Perdry et al., 2012). It has been shown that an affected 
sib-pair design based on sharing pathogenic variants allows 
a tremendous gain of analysis power over a traditional case-
control study design to implicate pathogenesis of rare variants 
(Xing et al., 2006; Sul et al., 2017). Discordant sib-pair designs 
have also been used in genetic linkage and association studies to 
increase power of analysis (Boehnke and Langefeld, 1998; Poznik 
et al., 2006). We explore a novel family-based strategy utilizing 
affected, phenotypic discordant sib-pairs to identify rare genetic 
variants of large effect contributing to specific domains in autism 
(Hu and Steinberg, 2009; Hu et al., 2011; Sacco et al., 2012; 
Veatch et al., 2014). We hypothesize that (Huguet et al., 2013) 
affected sibs with severe deficits in specific domains carry a larger 
burden of risk variants as compared to sibs with mild deficits 
in the same domain, (Devlin and Scherer, 2012) differences in 
severity of deficits in specific domains by ADI-R scores between 
affected sibs correlate with burden of cumulative risk variants, 
and (Gaugler et al., 2014) sets of autism risk genes associated 
with specific autism domain(s) in one family may be shared by a 
fraction of affected families in a study cohort.

In the current study, we sequenced the exons of synaptome 
genes (n = 1,886) in 274 pairs of affected male siblings from Autism 
Genetics Research Exchange (AGRE). We identified an excess 
burden of rare deleterious variants in cohorts of sibs showing a 
large versus small differences in severity of social deficits defined 
by total cumulative ADI-R social interaction score (SOCT_CS). We 
performed network-based analyses on these gene sets carrying the 
excess mutations and identified several neural signaling networks 
associated with social behavioral deficits in autism.

MeThODS

Patients
We surveyed autism pedigrees in the AGRE repository and 
identified 274 pairs of male affected sibs in multiplex families 
(www.autismspeaks.org/agre). We selected male affected sibs 

Abbreviations: AGRE, autism genetics research exchange; ADI-R, autism 
diagnostic interview-revised; eScore, enrichment score; SOCT_CS, total 
cumulative score for social interaction; PPI, protein interaction network; NGF, 
nerve growth factor; PI3K, phosphoinositide 3-kinase; AKT (PKB), AKT serine/
threonine kinase (protein kinase B); TSC, tuberous sclerosis complex; mTOR, 
mammalian target of rapamycin; PTEN, phosphatase and tensin homolog; CN, 
communal nesting; MSigDB, molecular signatures database.
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who have full behavioral evaluations including ADI-Rs and show 
significant differences in the severity of autism phenotypes, i.e., one 
sib presents as severe while the other sib presents mild phenotype 
as defined by the cumulative ADI-R scores. Three-generation 
pedigrees, DNA samples, developmental histories, and behavioral 
test scores including ADI-R and ADOS are obtained for all enrolled 
patients and most relatives in these families. An institutional review 
board at the Johns Hopkins University has approved this study.

Synaptome Analysis
Sequencing
We surveyed all published proteomics studies and publically 
available databases that focus on the synapse and identified genes 
that encode 1,886 synaptic proteins consisting of proteins found 
in the vesicles (N = 107), in the presynaptic membrane (N = 336), 
in the presynaptic active zone (N = 209) and in the post-synaptic 
density, as established in SynaptomeDB (http://metamoodics.org/
SynaptomeDB/) (Pirooznia et al., 2012). We utilized an Agilent Sure-
Select target enrichment kit to capture 6.7 Mb of targeted genomic 
sequence for human Synaptome and completed next-generation 
sequencing for 274 affected sib-pairs and 336 matched normal 
controls using HiSeq2000 at the high-throughput sequencing core 
at the Johns Hopkins University (Pirooznia et al., 2016).

Data Processing
Sequence reads were aligned to the human reference genome (UCSC 
hg19) using BWA aligner (Li and Durbin, 2009) allowing for two 
mismatches in the 30-base seed. Picard (http://picard.sourceforge.
net/) was used to fix any mate pair mismatch and remove reads 
with identical outer mapping coordinates, which represent likely 
PCR artifacts. Target coverage for the Agilent Sure Select capture 
was assessed using Picard’s HSmetrics utility. The Genome Analysis 
Toolkit (Mckenna et al., 2010) was used to generate SNV and small 
indel calls within the targeted regions. We performed variant calling 
using GATK’s HaplotypeCaller followed by a Variant Recalibration 
step. SNV clusters, defined as greater than three SNVs per ten bases, 
and SNVs falling within a called indel region, were masked. Variant 
Call Format (VCF) files were converted to PLINK file format using 
VCF tools and custom scripts. PLINK was subsequently used to 
remove variants with >10% missing calls and variants in Hardy-
Weinberg Disequilibrium (p < 1 × 10−6). Principal component 
analysis (PCA) of the case-control sample was performed using 
Eigenstrat to assess for potential population stratification and 
batch effects across the sequencing platforms using common 
sequenced variants (MAF > 0.05) pruned to be in approximate 
linkage equilibrium. We inspected the top axes of variation in each 
PCA component and removed three outlier individuals, with the 
remaining samples showing appropriate clustering consistent with 
a European-American sample.

Annotation
Identified variants, including single nucleotide variants (SNVs) 
and indels, were annotated with ANNOVAR (Wang et al., 2010) 
using Ensembl release version 63 as the reference assembly. 
ANNOVAR provides information on gene annotation, amino 
acid change annotation, dbSNP ids, 1000 Genomes Project allele 

frequencies, and NHLBI-Exome Sequencing Project (ESP) allele 
frequencies. For annotation of missense variants, we used SIFT 
and Polyphen-2 to identify variants of potentially damaging effect. 
We used default thresholds of SIFT (>0.95) and PolyPhen (>0.85) 
to classify a SNV as damaging. For indels, we included stopgain, 
stoploss, frameshift, and splicing insertions as damaging variants. 
Rare variants, defined as having a population frequency ≤1% 
were selected for gene burden analyses by using the European-
American and ALL frequency estimates of the NHLBI-ESP, 
and both the European-American and ALL estimates from the 
1000 Genomes April 2012 release to exclude variants with allele 
frequency >1% in any of these external datasets.

Pathway Analysis
We employed GeNets platform (Li et al., 2018) for network and 
pathway analyses to evaluate the connectivity of genes in our 
gene-set, based on a network of known susceptibility genes that 
are interconnected by protein–protein interaction (PPI) using 
InWeb. It builds “neighborhoods” of genes in a gene list that are 
more interconnected within the reference network by creating a 
general classifier to predict membership from networks in the 
InWeb PPI network. For any candidate gene, the classifier can 
assign a probability that it belongs to a pathway as defined by 
the candidate’s architectural properties in the overall network. 
GeNets creates networks of PPIs using evidence of physical 
interaction from the InWeb database, which contains more than 
420,000 high-confidence pair-wise interactions involving 12,793 
proteins (Lage et al., 2007; Wagner et al., 2012; Li et al., 2017; Raj 
et al., 2018). It displays these interaction networks as community 
structures (also called modular sub-network structure). A 
module is a set of genes (called nodes) that are more connected 
to one another than they are to other groups of genes based on 
a probability score that is calculated based on network metrics 
using a machine learning algorithm (quack) trained on 853 
curated molecular signatures database (MSigDB) pathways with 
the reference network; and using that same algorithm to “predict” 
other genes in the network that are not on our gene list, but may 
belong to the same pathway that is captured by our gene list. The 
853 MSigDB gene sets are curated from 1,329 C2:CP gene sets 
in MSigDB, by calculating pairwise Jaccard index (Intersection 
over Union and the Jaccard similarity coefficient), and obtaining 
pathways with pairwise Jaccard index < = 0.5 (Li et al., 2018).

The sub-network analysis ranks genes and predicts candidates 
based on InWeb PPI patterns found in known pathways, 
highlights genes that are more connected to one another than 
they are to other genes in other modules, and segments them 
based on their similarity to known pathway gene sets. GeNets 
also employs a within-degree node-label permutation strategy 
to build random networks similar to the original network 
and generate empirical distributions to assess the statistical 
significance of PPI networks. In addition to InWeb PPI network 
analysis, GeNets performs gene set enrichment analysis on 
genes within the network. We performed this function on 
Molecular Signatures Database (MSigDB) curated Gene Sets 
(C2, containing pathway databases such KEGG, BioCarta, and 
Reactome) to test for enrichment of these pathways within the 
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network. The gene set enrichment analysis p value is generated 
based on a hypergeometric test. We used Bonferroni-corrected 
P < 0.05 to correct for multiple testing.

ReSUlTS

Patients
We identified 274 affected male sib-pairs from multiplex families 
recruited to Autism Genetic Resource Exchange (AGRE). The 
mean age difference was 2.5 years between the cohorts of younger 
and older sibs. General developmental milestones including 
ages of first word and first walk and cumulative ADI-R scores 
in the three core domains, e.g., reciprocal social interactions, 
communication, and repetitive behaviors, were comparable 
between the cohorts of younger and older sibs (Supplementary 
Table 1).

Variant Burdens of Sib-Pairs With Severe 
Versus Mild Deficits in Social Behaviors
Affected sibs (n = 274) were divided into two cohorts with either 
severe or mild phenotypes defined by total cumulative ADI-R 
score in three behavioral domains. No significant difference 
was found for age of diagnosis and general motor development 
including age of first walk between these two cohorts (Table 1). 
As expected, the total cumulative ADI-R social scores (SOCT_
CS) showed a significant difference between these two cohorts 
(n  = 274; SOCT_CS, severe, 24.77 ± 0.27; mild, 17.18  ± 0.43, 
mean ± SEM; t-test; p = 1.68E−42) (Table 1). A direct comparison 
of burdens for total cumulative rare (MAF ≤ 0.01), predicted 
deleterious variants identified no significant difference between 
these two cohorts (p = 0.96).

Variant Burdens of Sib-Pairs With large 
Versus Small Differences in Deficits of 
Social Behaviors
We next identified subsets of affected sib-pairs with either a large 
(SOCT_CS≥10, n = 92 pairs; severe, 25.32 ± 0.28; mild, 13.67 ± 
0.45; mean ± SEM; t-test; p = 7.18E−52) or a small difference 
(SOCT_CS ≤ 4; n = 108 pairs; severe, 24.60 ± 0.44; mild, 22.54 ± 
0.47; mean ± SEM; t-test; p = 1.82E−03) in total cumulative 
ADI-R social interaction scores between individual sib-pairs 
(Table 2 and Supplementary Table 2). We hypothesized that a 
larger burden of unshared variants would be seen in the severe 
only sibs in the SOCT_CS≥10 cohort as compared to that in the 
SOCT_CS  ≤ 4 cohort (Figure 1A). We thus extracted variants 

from each affected sib-pair to identify those unshared variants 
present only in the sibs with severe social deficits. We compared 
cumulative allele frequencies and quantile distribution of 
these sets of unshared variants between the cohorts of SOCT_
CS≥10 and SOCT_CS ≤ 4 (Figures 1B, C). We observed a 
higher mutation burden of unshared variants in SOCT_CS≥10 
compared to that in SOCT_CS ≤ 4 (SOCT_CS≥10: 705.1 ± 16.2; 
SOCT_CS ≤ 4, 668.3 ± 9.0; p = 0.025), which is consistent with 
the prior hypothesis. Furthermore, this set of unshared severe 
only variants in SOCT_CS≥10 are significantly enriched in the 
SFARI gene set (http://gene.sfari.org) (hypergeometric p value: 
2.7E−14) (Figure 2 and Supplementary Table 3).

Network Analysis to Associate Risk Gene 
Networks With Social Deficits in Autism
Since these unshared, severe only variants were found by 
comparing affected sibs in the SOCT_CS≥10 cohort, we speculate 
that genes harboring these variants are enriched in signaling 
networks that are crucial to social deficits in autism. To identify 
signaling genes in networks connected to these variants, we 
performed a network analyses on the gene-set found in sibs with 
higher scores in the SOCT_CS≥10 cohort using three platforms 
(Huguet et al., 2013) InWeb_IM, an integrated human PPI 
network, (Devlin and Scherer, 2012) MSigDB(2), an annotated 
gene set for Gene Set Enrichment Analysis (GSEA), and (Gaugler 
et al., 2014) GeNetMeta, a unified web-based platform for network 
analyses of genetic data. The InWeb and GeNets algorithm 
scoring system (Lage et al., 2007) calculates a connectivity p 
value that indicates whether the network was significantly more 
connected than expected, for a gene set of this size and the global 
connectivity of its genes, to construct a modular sub-network 
structure of the underlying genes. The GeNets algorithm builds a 
general classifier to predict pathway membership from networks 
in the InWeb PPI network. For any candidate gene, the classifier 
can assign a probability that it belongs to a pathway as defined 

TABle 2 | Affected Sib-Pairs with Large versus Small Difference in Social 
Behavioral Deficits.

large difference 
(SOcT_cS≥10)

Small difference  
(SOcT_cS ≤ 4)

Age (year) SOcT_cS* Age (year) SOcT_cS*

Sib-pairs (n) 92 108
Severe 8.8 25.32 ± 0.28 9.29 24.60 ± 0.44
Mild 8.51 13.67 ± 0.45 9.27 22.54 ± 0.47
t-test p = 6.17E−1 p = 7.18E−52 p = 9.71E−1 p = 1.82E−03

*ADI-R’s Cumulative Total Social Interaction Score (SOCT_CS).

TABle 1 | Affected Male Sib-Pairs with Severity versus Mild Social Behavioral Deficits.

Affected sibs Age (Year) First Walk (Month) Social behavior (SOcT_cS)

Phenotype Number (Mean ± SeM) (Mean ± SeM) (Mean ± SeM)

Severe 126 8.53 ± 0.33 12.74 ± 0.21 25.32 ± 0.28
Mild 126 8.15 ± 0.39 12.35 ± 0.15 13.67 ± 0.45

t-test 0.67 0.12 2.79E−61
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FIGURe 1 | Analysis of Cohorts of Affected Sib-pairs with Large or Small Difference in Severity of Social Behavioral Deficits. (Panel A) Comparison of ADIR’s 
cumulative social behavioral scores (SOCT_CS) between cohorts of affected sib-pairs with either large (SOCT_CS ≥10) or small (SOCT_CS ≤ 4) differences in 
severity of social behavioral deficits (left); schematic diagram of pools of rare and predicted functional variants for comparison between the affected sibs in these two 
cohorts (right). (Panel B) Distribution of rare and predicted functional variants between SOCT_CS≥10 and SOCT_CS ≤ 4 cohorts. (Panel c) Quantile distribution of 
rare and predicted functional variants in these two cohorts.
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by the candidate’s architectural properties in the overall network. 
This concept will be used to identify functional modules in gene 
sets and simplify visualizations. A module is a set of genes (called 
nodes) that are more connected to one another than they are to 
other groups of genes.

A total of 932 synaptome genes with rare (MAF ≤ 0.01) and 
predicted functional variants were identified in ≥1 pairs of 
affected sibs; 276 genes are shared in ≥3 pairs of affected sibs 
and 32 in ≥10 pairs (Figure 2 and Supplementary Table 2). The 
top 250 of 276 genes that were shared in ≥3 families were input 
into these three analysis platforms to identify connected gene 
sets and communities. Using a connective p value of 2.00E−3 
as a cutoff, communities enriched for the largest gene sets from 
each of the three analysis platforms were identified (Table 3). 
GeNetMeta identified 166 connected genes that were classified 
into 10 communities (Figure 3A). Community 2 showed the 
largest enrichment for network genes (Figure 3B). InWeb 
identified 142 connected genes that were classified into nine 
network communities (Supplementary Figure 1). Community 
4 showed the largest enrichment for network genes (Figure 3C). 

MsigDB identified 142 connected genes that were classified 
into eight network communities (Supplementary Figure 2). 
Community 1 showed the largest enrichment for network genes 
(Figure 3D). A total of 20 seed genes were identified in the 
communities that showed the largest enrichment from all three 
platforms (Table 3).

The sub-network analysis ranks genes and predicts 
candidates based on InWeb PPI patterns found in known 
pathways, highlights genes that are more connected to one 
another than they are to other genes in other modules, and 
segments them based on their similarity to known pathway 
gene sets. For significance, the algorithm calculates the density 
of the network as defined by density = (# of edges/# possible 
edges) and compute the density for randomly sampled gene 
sets and its empirical determined p value. It computes p values 
for network overall and also by module to test connectivity 
of these sub-network. Finally, gene set enrichment will be 
conducted using a Bonferroni-adjusted hypergeometric 
test on MSigDB canonical pathways. The three analysis 
platforms identified two top neural signaling networks 
based on significance, size of connected genes, and their 
biological relevance (Table 4). Eight genes were connected 
to the phosphoinositide 3-kinase (PI3K)-AKT-tuberous 
sclerosis complex (TSC)2-mammalian target of rapamycin 
(mTOR) network with the most significant Enrichment Score 
(eScore) P value of 3.36E−07. Variants in these eight genes 
were identified in 68 of 126 patients in the SOCT_CS≥10 
cohort. Nine genes were connected to the Nerve growth factor 
(NGF)-PC12 signaling network with the most significant 
eScore P value of 8.94E−07. Variants in these nine genes were 
identified in 50 of 126 patients in the SOCT_CS≥10 cohort. 
Additional signaling networks of potential importance in 
autism social behavioral deficits include AVB3-integrin (n = 7 
genes), PI3K-ERBB2/4 (n = 4 genes), Sema3A-PKA (n  =  3 
genes), and Reelin (n = 3 genes) (Table 5).

DIScUSSION
We tested a strategy using affected sib-pairs to identify rare 
genetic variants and signaling networks associated with specific 
behavioral domains of autism (Hu and Steinberg, 2009; Hu et al., 
2011; Sacco et al., 2012; Veatch et al., 2014). This study design 
explores unshared rather than shared variants and differences 
in the severity of core behavioral domains between the affected 
sibs from same-proband families. It is based on the assumptions 
that: 1) the cumulative rare variants of large effect contribute 

FIGURe 2 | Synaptome Genes with Rare and Predicted Functional Variants 
are Enriched in SFARI Gene Set. Schematic distribution of total genes (n = 
22,000), all synaptome genes (n = 2,398), selected synaptome genes with 
rare (MAF ≤ 0.01) and predicted functional variants (n = 932), SFARI autism 
gene set (n = 1,053), and shared genes between the selected synaptome 
and SFARI gene sets (n = 267).

TABle 3 | Network Analyses Identify Network Communities Connected to SOCT_CS≥10 Geneset.

Network 
analysis 
platform

Input 
geneset (n)

connected 
geneset (n)

connected network community Shared Genes 
(n)

Total 
number

largest 
geneset

community 
size (n)

enriched 
genes (n)

connectivity 
cutoff (p)

InWeb 250 142 9 4 26 24 2.00E−03 20
MSigDB 250 137 8 1 27 38 2.00E−03 20
GeNetMeta 250 166 10 2 31 25 2.00E−03 20
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FIGURe 3 | Continued
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FIGURe 3 | Network Analysis Identified Network Communities Connected to the SOCI_CS≥10 Gene Set. Top 250 synaptome genes that carry rare and predicted 
functional variants and are shared for ≥3 affected sib-pairs were input separately into the following three analysis platforms to identify connected gene sets and 
network communities. (Panel A) GetNetMeta analysis identified 10 network communities connected to SOCT_CS≥10 geneset. (Panel B) SOCT_CS≥10 genes are 
enriched in community 2 from GeNetsMeta analysis. (Panel c) SOCT_CS≥10 genes are enriched in community 4 from InWeb analysis. (Panel D) SOCT_CS≥10 
genes are enriched in community 1 from MSigDB analysis.
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quantitatively to the observed differences in severity of behavioral 
domains in autism, and 2) genes carrying these risk variants are 
clustered in genetic signaling networks associated with deficits in 
the respective behavioral domains.

Affected sib-pair analysis carries several advantages over 
traditional designs that study patients from unrelated families. 

First, affected sibs share a similar environment during prenatal 
course, infancy, and early childhood. These periods are critical 
for early brain development and are highly susceptible to the 
pathogenesis of autism. This approach is expected to minimize 
environmental influences confounding behavioral phenotypes 
of autism (Robinson et al., 2014). Genetic factors likely play 

TABle 5 | Distribution of Shared Genes in Neural Networks from Top Connected Communities.

Gene# Patients No. PI3A-AKT-
mTOR

NGF-Pc12 AVB3-
INTeGRIN

PI3K-eRBB2/4 SeMA3A-PKA ReelIN

AKAP9 3
AKT1 3 + + + + +
AKT2 3 + + + +
ARHGEF2 3 + +
BCR 4
CYTH3 19 +
GNA12 3
HSP90AA1 3 + + + +
IRS1 17 + + + +
LRP1 5
MAPK8IP1 10 + + +
MAPK8IP3 3 + +
PFKL 4
PKN1 4
PLXNA1 13 +
PLXNA2 8 +
TSC2 4 + + +
TUBB4B 4
VEGFA 9 + +
YWHAE 4 + +
No. of Genes 8 9 7 4 3 3
No. of Patients 62 50 47 27 24 16
Total Patients 126 126 126 126 126 126 126

# AKAP9, A-Kinase Anchoring Protein 9; AKT1, AKT Serine/Threonine Kinase 1; AKT2, AKT Serine/Threonine Kinase 2; ARHGEF2, Rho/Rac Guanine Nucleotide 
Exchange Factor 2; BCR (Breakpoint Cluster Region); CYTH3, Cytohesin 3; GNA12 (G Protein Subunit Alpha 12); HSP90AA1, Heat Shock Protein 90 Alpha Family 
Class A Member 1; IRS1 (Insulin Receptor Substrate 1); LRP1 (LDL receptor Related Protein 1): MAPK8IP1, Mitogen-Activated Protein; Kinase 8 Interacting Protein 
1; MAPK8IP3, Mitogen-Activated Protein Kinase 8 Interacting Protein 3; PFKL, Phosphofructokinase, Liver Type; PKN1, Protein Kinase N1; PLXNA1, Plexin A1; 
PLXNA2, Plexin A2; TSC2, TSC Complex Subunit 2; TUBB4B, Tubulin Beta 4B; VEGFA, Vascular Endothelial Growth Factor A; YWHAE, Tyrosine 3-Monooxygenase/
Tryptophan 5-Monooxygenase Activation Protein Epsilon. +presence of corresponding genes/proteins in the indicated signaling networks.

TABle 4 | Two Top Signaling Networks Identified from Gene Communities Connected to SOCT_CS≥10 Geneset.

NeURAl SIGNAlING NeTWORK ANAlYSIS PlATFORM eScORe OVeRlAPING GeNeS#

PI3K_AKT_MTOR SIGNAlING
PID_PI3KCI_AKT_PATHWAY InWeb, MSigDB, GeNetsMeta 2.39E-07 AKT1, AKT2, HSP90AA1, YWHAE
ST_PHOSPHOINOSITIDE_3_KINASE_PATHWAY InWeb, MSigDB, GeNetsMeta 3.01E-07 AKT1, AKT2, CYTH3, YWHAE
REACTOME_PI3K_AKT_ACTIVATION InWeb, MSigDB, GeNetsMeta 3.36E-07 AKT1, AKT2, IRS1, TSC2
REACTOME_AKT_PHOSPHORYLATES_TARGETS_CYTOSOL InWeb, MSigDB, GeNetsMeta 7.35E-07 AKT1, AKT2, TSC2
KEGG_MTOR_SIGNALING_PATHWAY InWeb, MSigDB, GeNetsMeta 1.21E-06 AKT1, AKT2, TSC2, VEGFA
PID_MTOR_4PATHWAY InWeb, MSigDB, GeNetsMeta 3.80E-06 AKT1, IRS1, TSC2, YWHAE
REACTOME_PIP3_ACTIVATES_AKT_SIGNALING InWeb, MSigDB, GeNetsMeta 1.20E-05 AKT1, AKT2, TSC2
NGF-Pc12-NeURAl DIFFeReNTIATION
REACTOME_SIGNALLING_BY_NGF InWeb, MSigDB, GeNetsMeta 8.94E-07 AKT1, AKT2, ARHGEF2, IRS1, TSC2, 

YWHAE
KEGG_NEUROTROPHIN_SIGNALING_PATHWAY InWeb, MSigDB 2.02E-05 AKT1, AKT2, IRS1, YWHAE
ST_DIFFERENTIATION_PATHWAY_IN_PC12_CELLS InWeb, MSigDB 2.67E-05 AKT1, MAPK8IP1, MAPK8IP3
REACTOME_NGF_SIGNALLING_VIA_TRKA InWeb, MSigDB 2.80E-05 AKT1, AKT2, IRS1, TSC2

#AKT1, AKT Serine/Threonine Kinase 1; AKT2, AKT Serine/Threonine Kinase 2; HSP90AA1, Heat Shock Protein 90 Alpha Family Class A Member 1;
YWHAE, Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein Epsilon; CYTH3, Cytohesin 3; IRS1, Insulin Receptor Substrate 1;
TSC2, TSC Complex Subunit 2; ARHGEF2, Rho/Rac Guanine Nucleotide Exchange Factor 2; MAPK8IP1, Mitogen-Activated Protein Kinase 8 Interacting Protein 1;
MAPK8IP3, Mitogen-Activated Protein Kinase 8 Interacting Protein 3.
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a bigger role in the observed differences in severity between 
affected sibs, then between unrelated patients. Second, affected 
sibs from same families share ≥50% of their genome and 
presumably, genetic mutations underlying the differences 
in the severity of specific behavioral domains reside in the 
unshared portion of genome. Interestingly, a recent WGS study 
of a cohort of quartet autism families showed that in a large 
fraction (50–69%) of multiplex ASD families, two affected 
sibs do not share the same rare penetrant ASD risk alleles  
(Yuen  et  al., 2015). Affected sibs with discordant mutations 
tended to demonstrate more phenotypic variability as 
compared to those who shared the same risk variants. These 
results support a strong genetic determinant that is responsible 
for the difference in severity of the autism phenotype between 
affected sibs. Third, patients with ASDs manifest a spectrum 
from mild to severe phenotypes in domains defined by 
standard behavioral tests. Standard test scores are usually 
available for patients with a confirmed diagnosis, but not for 
unaffected relatives. Furthermore, affected sibs enrolled in the 
AGRE repository were evaluated by the same psychologists 
using identical sets of behavioral tests, such as the ADI-R, to 
reduce subjective variations in test scoring. Taken together, our 
approach effectively enriches genes that regulate autism social 
behaviors by exploring unshared variants present in severe 
only sibs of a cohort of affected sib-pairs with large differences 
in ADI-R social behavioral scores.

It has been suggested that autism-associated mutations cause 
disturbances in convergent pathways and networks leading 
to a shared phenotype (Geschwind, 2008). Discovering these 
common pathways requires a comprehensive, network-based 
analysis of causal and risk genes (Hormozdiari et al., 2015; 
Parikshak et al., 2015; Oron and Elliott, 2017). PPI network 
analysis identifies groups of proteins that physically interact with 
each other using different databases that curate experimentally 
validated or predicted PPIs (Parikshak et al., 2015). PPI identifies 
hubs or highly interconnected proteins, which could be central 
in the disease-related pathways. The Gene Ontology project 
provides a unifying description of genes and their biological 
roles (Ashburner et al., 2000). Using pathway enrichment tools, 
gene ontology analyses prove to be a highly effective approach 
to identifying gene networks central to physiological states and 
disease pathogenesis (Chowdhury and Sarkar, 2015). Network-
based analysis has proven to be a powerful approach to identifying 
risk genes and disease mechanisms in psychiatric disorders with 
a large genetic contribution.

Two key neural signaling networks, PI3K-AKT-tuberous 
sclerosis complex (TSC)2-mTOR and NGF-signaling, show 
significant enrichment for genes harboring unshared variants 
in SOCT_CS≥10 in connected communities from three analysis 
platforms in this study. PI3K activates protein kinase B (PKB or 
AKT), a serine/threonine-specific protein kinase that regulates 
many aspects of cell physiology including activation of mTOR 
signaling. In the developing brain, activation of AKT/mTOR 
signaling is essential for neuronal development, synaptic 
formation, and plasticity. Increased activity in PI3K-AKT-
TSC2-mTOR signaling has been implicated in the syndromic 
forms of autism including tuberous sclerosis, phosphatase and 

tensin homolog (PTEN)-related disorders, neurofibromatosis 
type I, and fragile X syndrome. Inhibition of this increased 
activity has been shown to improve autism-related symptoms 
in mouse models of PTEN and TSC1. Using multiple network 
analysis platforms, our study further implicates a role of this 
signaling network in the pathogenesis of nonsyndromic autism 
and particularly in its contribution to social deficits.

Recent studies have implicated NGF signaling in autism 
core behavioral deficits. Genetic analyses of heritable 
quantitative traits that correlate with autism identified an 
association of NGF locus with nonverbal communication 
in a large cohort of patients (Lu et al., 2013). One study 
discovered an association of several SNPs in NTRK1 with 
autism behavioral traits as measured by empathy quotient and 
autism spectrum quotient (Chakrabarti et al., 2009). Another 
study on differential alternative splicing in the blood samples 
from 2- to 4-year-old boys with autism showed a significant 
difference for several NGF signaling genes including NGF 
receptor (Stamova et al., 2013). Very interestingly, an animal 
study on communal nesting (CN), a highly stimulating early 
social enrichment for rodents, showed that CN results in 
significant differences in social behaviors later in life and is 
associated with higher NGF and BDNF levels in the brain 
of adult mice (Branchi et al., 2006). Additional signaling 
networks that are also implicated in social behavioral deficits 
in autism include AVB3-INTEGRIN (Schuch et al., 2014; 
Dohn et al., 2017; Gabriele et al., 2019), PI3K-ERBB2/4 
(Pinto et al., 2010), SEMA3A-PKA, and REELIN signaling 
(De Rubeis et al., 2014; Lammert et al., 2017; Stessman et al., 
2017).

Together, our studies support that multiple signaling 
networks are involved in the risk and pathogenesis of social 
behavioral deficits in autism. Analysis of affected sib-pairs 
shall be a valuable approach to systematically identifying 
signaling networks crucial to development of the core 
behaviors in autism spectrum disorders. Comprehensive 
analyses of genetic variants from whole genome sequencing 
data, and ADI-R behavioral scores in the three-core domains 
in an independent cohort of affected sibs with autism, should 
help to systematically characterize domain-specific and/
or overlapping roles for key signaling networks in autism 
spectrum disorders.
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