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microbiota in recurrent
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Recurrent aphthous ulcer (RAU), one of the most common diseases in humans,

has an unknown etiology and is difficult to treat. Thalidomide is an important

immunomodulatory and antitumor drug and its effects on the gut microbiota

still remain unclear. We conducted a metagenomic sequencing study of fecal

samples from a cohort of individuals with RAU, performed biochemical assays

of cytokines, immunoglobulins and antimicrobial peptides in serum and saliva,

and investigated the regulation effects of thalidomide administration and

withdrawal. Meanwhile we constructed the corresponding prediction

models. Our metagenome-wide association results indicated that gut

dysbacteriosis, microbial dysfunction and immune imbalance occurred in

RAU patients. Thalidomide regulated gut dysbacteriosis in a species-specific

manner and had different sustainable effects on various probiotics and

pathogens. A previously unknown association between gut microbiota

alterations and RAU was found, and the specific roles of thalidomide in

modulating the gut microbiota and immunity were determined, suggesting

that RAU may be affected by targeting gut dysbacteriosis and modifying

immune imbalance. In-depth insights into sophisticated networks consisting

of the gut microbiota and host cells may lead to the development of emerging

treatments, including prebiotics, probiotics, synbiotics, and postbiotics.
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Introduction

Recurring aphthous ulcer (RAU), also known as recurrent

oral ulcer, is a condition that affects 20% of the world’s

population and is characterized by painful, yellow ulcers in the

oral mucosa (1). Frequent or almost continuous recurrence

causes terrible difficulties in eating, drinking, swallowing, and

speaking, and as a result, it negatively affects the quality of life of

RAU patients. Several factors have been proposed as possible

causative agents for RAU, including microbial and immune

factors, but a definitive etiology of RAU has yet to be clearly

established (2).

Characterization of the gut microbiota has become an

important research area for human diseases. The important

role of dysbacteriosis in a variety of diseases [colorectal cancer,

type 2 diabetes, and Behcet’s disease (BD)] has been widely

recognized (3–5). The gut microbiota, microbial function, and

immune factors, which are generally in a state of dynamic

balance, contribute substantially to human health. A previous

study indicated that RAU is related to changes in the oral

microflora (6), but the relationship between the gut microbiota

and RAU is still rarely reported. Moreover, a correlation network

study based on metagenomic analysis of the gut microbiota

along with immune factor assays of serum and saliva has not

been conducted.

Thalidomide has long been used for the treatment of RAU,

and can effectively reduce the frequency, number, and pain of

ulcers (7). Thalidomide has immunomodulatory, anti-

inflammatory and antiangiogenic effects and has been widely

applied in the treatment of immune system diseases and

malignant tumors (8). Thalidomide is effective in RAU

treatment, but the specific mechanism is still unclear. To the

best of our knowledge, thalidomide has not been linked to

microbiota modulation in the literature.

Pioneering studies on the oral microbiota characteristics of

RAU patients were based on 16S rRNA gene amplicon

sequencing (9, 10). So far, no individual pathogens have been

conclusively shown to be correlative agents of RAU (6). A recent

study suggested that RAU occurrence is significantly associated

with an increase in Escherichia coli and a decrease in

Alloprevotella abundances (11). However, few metagenomic

studies on RAU have been reported. Metagenomic sequencing

can provide better genome coverage and obtain genetic diversity,

molecular ecological, and microbial function information (12).

In this study, we first investigated the metagenome-wide

association of thegut microbiota in RAU and found previously

unknown aberrant profiles ofthe intestinal microbiota in RAU

and the specific regulatory effects of thalidomide on the

intestinal microbiota and immune factors. Our study might

improve the understanding of RAU pathogenesis and the

possible mechanism of thalidomide in treating the disease,

providing novel ideas for precision therapy by supplementing

with probiotics, prebiotics, synbiotics and postbiotics.
Frontiers in Immunology 02
Results

Diversity analysis of the gut microbiota
in RAU

To examine the gut microbiota of patients with RAU, we first

analyzed fecal samples from 81 patients with refractory RAU [at

the visit time (T)1] and 44 age- and sex-matched healthy controls

(Control) by metagenomic sequencing. The bacterial diversity of

the fecal microbiota in the RAU and control groups is shown

in Figure 1, and the baseline information of the two groups is

shown in Table S1. In total, 238 species belonging to 17 phyla

(Actinobacteria, Bacteroidetes, Fibrobacteres, Firmicutes,

Fusobacteria, Gemmatimonadetes, Proteobacteria, etc.) were

detected by comparisons [Control vs. T1, T1 vs. T2, T2 vs. T3,

false discovery rate (FDR)≤0.05] (Table S2) and there were no

differences of gut microbiome-associated taxonomic and

functional diversity in the RAU patients and controls (Figure 2).
Taxonomical signatures of the gut
microbiota in RAU and regulation
by thalidomide

To reveal the differences in gut microbes between the RAU

patients and controls, we used Kraken2 to annotate the sequenced

reads and Bracken to correct the species abundance and screened

out the species with significant differences between different stages

(FDR ≤ 0.005). The results showed that a total of 86 species were

significantly differentially abundant between the RAU patients

and controls (comparison of Control vs. T1) (FDR ≤ 0.005). A

great number of probiotics were significantly depleted, while an

array of pathogens were remarkably enriched in the gut

microbiota of patients with RAU. Acidaminococcus intestini,

Raoultella terrigena, Enterococcus faecium, Hafnia paralvei and

other probiotics were significantly depleted in the RAU patients

(Figures 3A, S1). Bacteroides fragilis, Parabacteroides sp. CT06,

Enterococcus phage IMEEFm1, Enterobacter bugandensis and

other pathogens were significantly enriched in RAU patients

(Figures 3A, S1). Notably, A. intestini, Enterococcus faecium,

Proteus mirabilis and other probiotics increased in T2 and

continued to increase in T3 Figure 3A), indicating that

thalidomide has an upregulatory effect on the decreased

abundances of probiotics and that this effect could be

maintained via a long-term regulation. Our results showed that

A. intestine abundance decreased in RAU patients, indicating that

A. intestini is a potential probiotic. A. intestini is knownto be a

normal commensal of the human gut (13). Its metabolic end

products are acetic acid, butyric acid and propionic acid. The

antibiotic-resistant Enterococcus phage IMEEFm1 has shown

highly effective lytic activity against Enterococcus faecium (14).

Similarly, one month after taking thalidomide, B. fragilis,

E. coli, Parabacteroides sp. CT06, Enterococcus phage IMEEFm1,
frontiersin.org
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and Citrobacter freundii abundances were significantly reduced

and dropped continuously one month after thalidomide

withdrawal (Figures 3A, S1). These results indicated that

thalidomide had a downregulatory effect on the increase in

pathogenic bacteria abundance and that this effect could be

maintained via a long-term regulation. B. fragilis is an

opportunistic pathogen involved in causing disease in humans

under certain conditions, such as disruption of the colon

mucosal surface induced by inflammation, trauma, or surgery,

and the spread of B. fragilis to the bloodstream or surrounding

tissues results in clinically significant infection (15).
Frontiers in Immunology 03
A previous study also suggested that RAU occurrence is

significantly associated with an increase in E. coli abundance (11).

In this study, thalidomide increased the abundance of potential

probiotics, which was maintained after drug discontinuation, while

it reduced the abundance of potential pathogenic bacteria, which

was maintained after drug discontinuation. Our results suggest that

thalidomide can regulate the disturbance of the gut flora, which

further suggests that this may be a novel mechanism of thalidomide

in the treatment of RAU.

The symbiosis factor of B. fragilis, PSA, can directly induce

the anti-inflammatory function of regulatory T cells (Tregs) and
FIGURE 1

Metagenome-based diversity analysis of RAU gut microbiota. In total, 238 abundant species between RAU patients and healthy controls are
shown in a phylogenetic tree according to the color code. The phylums of bacterias are given in the outer circles with circled numbers which
including 17 phylums.
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restrain intestinal T helper 17 (Th17) cell development and

responses during commensal colonization (16). Moreover, B.

fragilis can produce propionic acid to increase Treg cell numbers

while decreasing Th17 cell numbers (17, 18). Additionally,
Frontiers in Immunology 04
Parabacteroides produces acetate to alleviate inflammation by

reducing neutrophil infiltration (17).

To reveal the key microbial groups leading to gut microbiota

variation in RAU, edgeR was used to evaluate the differences
BA

FIGURE 3

Metagenomic sequencing-based exploration of RAU-associated fecal microbiomes with those of healthy individuals and the prediction model
based on fecal microbial species of RAU and healthy controls. (A) Violin plot analysis comparing the levels of fecal microbial species in control,
T1, T2 and T3 groups (P<0.05). The vertical position of each histogram represents the relative expression level of fecal microbial species.
(B) Receiver operating characteristic curves for fecal microbial species comprising samples from RAU and healthy controls. “0.824” is the
sensitivity of the optimal threshold point, and “0.8” is the specificity. “-0.074” is the socre of adaboost modle at the optimal threshold point.
The blue area 95% confidence represents the confidence interval.
B
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D
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FIGURE 2

Gut microbiome-associated taxonomic and functional characteristics of RAU patients and healthy controls. (A) Taxonomic alpha-diversity of
RAU and healthy controls (P>0.05). (B) Functional alpha-diversity of RAU and healthy controls (P>0.05). (C) Taxonomic beta-diversity of RAU and
healthy controls (P>0.05). (D) Functional beta-diversity of RAU and healthy controls (P>0.05).
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between Control and T1 samples (FDR ≤ 0.05). A total of 190

bacterial species were screened out. The area under curve (AUC)

value (R function roc) was calculated for each of the 190 species,

and 38 species with AUC>0.7 were screened out. Through the

ensemble learning method, these bacteria were modeled (adabag

package), and the prediction model with an AUC of 0.863 was

obtained by 100 iterations (Figure 3B). AUC is used to judge the

advantages and disadvantages of the prediction model. The

closer the model is to one, the more accurate the prediction is.

In addition the correlation of gut microbiome-associated species

and blood and saliva factors is shown in the heatmap and some

distinct modules could be found (Figure 4).
Functional signatures of the gut
microbiota in RAU

We used HumanN3 to generate a functional map of the

gut microbiota, and our results indicated that there were 90

pathways with significantly distinct abundance between RAU

patients and healthy individuals (FDR ≤ 0.05). Among

these pathways, menaquinol-8_biosynthesis_II, L−arginine_

biosynthesis_IV_archaebacteria, folate_transformations_II,

chorismate_biosynthesis_from_3−dehydroquinateand other

pathways were significantly depleted in RAU patients at T1

compared with those in the controls (Figures 5A, S2). Acetylene

degradation, TCA cycle VII acetate production, phytate

degradation I and other pathways were significantly enriched at

T1 compared with those in the controls and positively correlated
Frontiers in Immunology 05
with pathogenic bacteria (Figures 5A, S3). L-arginine mediates an

important function, maintaining intestinal barrier function and

inflammation-associated immunosuppression. Pathways related

to short-chain fatty acid (SCFA) and L-arginine synthesis play a

significant role in shaping the gut microbiota and innate

immunity, thus improving gut development and protecting

against pathogenic infection (19). Dietary L-arginine

supplementation alleviates liver injury caused by E. coli LPS

(20), activates intestinal innate immunity (21), and protects

against deoxynivalenol-induced toxicity (22).

In particular, there was a positive correlation between

probiotics and menaquinol-8_biosynthesis_II, which were

significantly depleted at T1 compared with those in the

controls. We found that this pathway was negatively correlated

with some pathogenic bacteria, such as E. coli. It has been

reported that cytochrome bo(3) [cyt bo(3)] is one of the three

terminal oxygen reductases in the aerobic respiratory chain of E.

coli and maintains the activity of ubiquitin oxidase through the

menaquinol-8 pathway. A potential explanation is that the

decrease in the abundance of the menaquinol-8 pathway could

induce cyt bo(3) dysfunction or interruption or decrease the

function of the aerobic respiratory chain of E. coli and enhance

micro-oxygen or anaerobic conditions, initiating E. coli

pathogenicity and RAU (23).

The tricarboxylic acid cycle (TCA) cycle (24) has long been

considered a “housekeeping” pathway in E. coli and Salmonella

enterica, and the pathway is highly regulated at the

transcriptional level and responds to respiratory conditions.

Glyoxylate bypass has long been known to be essential for
FIGURE 4

Correlation heatmap of gut microbiome-associated species and the blood and saliva factors between RAU patients and healthy controls. Blue
boxes denote the cluster of negative correlation, those encompassed by the red box represent the cluster of positive correlation. The colors are
proportional to the correlation strength, the variation from red to blue represent positive to negative trend. “*” means P<0.05.
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growth on carbon sources such as acetate or fatty acids. Strains

lacking this pathway fail to grow on these carbon sources, since

acetate carbon entering the TCA cycle is quantitatively lost as

CO2, resulting in the lack of a means to replenish the

dicarboxylic acids consumed in amino acid biosynthesis. A

microbial production platform has been developed in E. coli to

synthesize D-glyceric acid from D-galacturonate (24). The use of

adequate probiotic lactobacilli, i.e., homolactic and/or

facultatively heterolactic l-lactic acid-producing lactobacilli

(25), reduces the amounts of intestinal bacteria, toxic

metabolites, D-lactic acid and ethanol by fermentative

production of the nontoxic l-lactic acid from glucose.
Frontiers in Immunology 06
Accordingly, through functional analysis, we found that the

beneficial bacteria were negatively correlated with the L-

tryptophan biosynthesis pathway, while pathogenic bacteria

were positively correlated with the L-tryptophan biosynthesis

pathway. A previous study (26) confirmed that some E. coli

variants can promote an increase in indole and tryptophan

production. Tryptophan and 5-hydroxyindomeacetic acid have

been found to be significantly enriched in patients with

colorectal cancer, indicating that the tryptophan metabolic

pathway is was closely related to anti-inflammatory effects

(27). Changes in the microbiome regulate the host immune

system by regulating tryptophan metabolism. In addition,
B

C

A

FIGURE 5

Contributional diversity of fecal microbiome pathways. (A) Violin plot analysis comparing the levels of fecal pathways in control, T1, T2 and T3
groups (P<0.05 between control and T1). (B) Receiver operating characteristic curves for fecal microbial pathways comprising samples from RAU
and healthy controls. “0.714” is the sensitivity of the optimal threshold point, and “0.8” is the specificity. “-0.277” is the socre of adaboost modle at
the optimal threshold point. The blue area 95% confidence represents the confidence interval. (C) Abundance-based species-pathways correlation
network enriched in RAU patients and healthy individuals. Two nodes are linked if they are related. The edge width is proportional to the correlation
strength. Nodes with the different color and shapes are classified in the different effective order level with Thalidomide.
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tryptophan has profound effects on gut microbiome

composition, microbial metabolism, the host immune system,

host-microbiome interplay, and hostimmune system-gut

microbiome interactions. Our results indicated that both E.

coli and the tryptophan pathway were significantly enriched in

RAU, suggesting that changes in the tryptophan metabolic

pathway along with E. coli abundance were closely related to

the occurrence of RAU.

To reveal the key pathways leading to functional variation of

the gut microbiota in RAU, differences in Control and T1

samples were evaluated by limma (FDR ≤ 0.05), and a total of

90 pathways were screened out. The AUC value (R function roc)

was calculated for each of the 90 pathways, and 5 pathways

(AUC>0.7) were selected. Through the ensemble learning

method, these pathways were modeled (adabag package) and

iterated 100 times to obtain the prediction model with an AUC

of 0.767, including pathways (Figure 5B). The correlation

network of relevant pathways and species between the RAU

patients and health controls is shown in Figure 5C. The main

contributional pathways of feces microbiota are shown in

Figure 6 and the correlation heatmap of gut microbiome-

associated metabolic pathways and blood and saliva factors is

shown in Figure 7.
Regulatory effects of thalidomide on
immune factor levels in RAU

To measure the alterations in serum and saliva levels of

cytokines, antimicrobial peptides, and immunoglobins between

groups, ELISAs were used. The results showed that the levels of

interleukin (IL)-17A, tumor necrosis factor (TNF)-a, IL-2, IL-4,
IL-8, b-defensin-2, b-defensin-3, immunoglobulin (Ig)A, and
Frontiers in Immunology 07
complement C3, C4 in serum were significantly different

between comparisons (Figures 8A, S4). The levels of IL-6, IL-

23, interferon (IFN)-g, lysozyme, IgA, IgG, IgM, and

complement C3, C4 in saliva were significantly different

between groups (Figures 8A, S5). Interestingly, we detected

that TNF-a, IL-4, IL-8, IL-17A, b-defensin-1, b-defensin-2,
and b-defensin-3 levels in serum were positively correlated

with probiotic abundances. However, lysozyme in serum and

lysozyme, IFN-g, IL-6, IL-23, IgA, complement C3, and C4 in

saliva were positively correlated with pathogenic bacteria. Most

notably, serum IL-17A levels significantly decreased at T1

compared with those in the controls, suggesting that systemic

and protective Th17 inflammation was inhibited in the RAU.

One month after taking thalidomide, serum IL-17A levels

significantly increased at T2 compared with T1 (Figures 8A),

indicating that thalidomide can rescue protective Th17

inflammation and immunity against pathogens. Moreover, our

results indicated that serum IL-4 and IL-8 levels significantly

increased at T2 compared with T1 (Figures 8A, S4).

Additionally, our results indicated that serum IL-23 level and

saliva IL-6, IFN-g, lysozyme, complement C3, and C4levels

significantly decreased at T2 compared with T1 (Figures 8A,

S4, S5). Since most inflammatory and autoimmune diseases

involve Th17 generation, it could be proposed that one of the

novel mechanisms of action of thalidomide and its analogs could

be blocking this cytokine, enhancing an anti-inflammatory

response (28).

Digestive tract dysbacteriosis may cause diseases. Most

recently, studies have demonstrated that finely tuned crosstalk

between the microbiota, immune cells, and the epithelium is

critical for the maintenance of the mucosal architecture and

homeostasis (29–31). An increasing body of evidence suggests

that perturbations of the mucosal microbiota can modulate innate
B

C D

A

FIGURE 6

Dominant species contributing to metabolic pathways. (A) L−arginine biosynthesis IV (archaebacterial). (B) Superpathway of L-tryptophan
biosynthesis. (C) Chorismate biosynthesis from 3−dehydroquinate. (D) Superpathway of fatty acid biosynthesis I (E. coli).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1018567
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2022.1018567
and adaptive immune responses, with inflammation arising due to

a reduction in the number of symbiont microorganisms and/or an

increase in the number of pathobiont microorganisms

(commensal bacteria with pathogenic potential) (32, 33). For

example, one mechanism by which these microbes regulate

immunity is by controlling Tregs and Th17 cells (34). In

addition, the epithelium recognizes and responds to the

microbiota, and in turn, microbial dysbiosis and associated

metabolite alterations destroy the integrity of the mucosal

epithelium and its barrier functions (35). The protective effects

of the newly identified lineage of Th17 cells against pathogens

such as E. coli, Klebsiella pneumoniae, Citrobacter rodentium and

Candida albicans indicate the capacity of Th17 cells to confer

protection against extracellular bacterial and fungal pathogens.

The immunopathogenesis of RAU probably involves a cell-

mediated immune response mechanism including TNF-a (36).

TNF-a, a major inflammatory mediator, induces regulation of

immune cells and initiation of the inflammatory process to

protect the host from pathogens. Our data suggest that serum

TNF-a levels were negatively correlated with the tryptophan,

tyrosine and phenylalanine biosynthesis pathways. TNF-a is

strongly modulated by microbial metabolism and degradation of

tryptophan to tryptophol (37). Changes in the microbiota

stimulate the immune system of the host by regulating

tryptophan and other amino acid metabolism, which may be

accompanied by changes in factors such as TNF-a and IL-17.

The use of thalidomide plays a certain role in the regulation of

the gut microbiota and immune system, contributing to the

recovery of homeostasis in the host.

To reveal the key immune factors leading to functional

variation of the gut microbiota in RAU, differences in Control
Frontiers in Immunology 08
and T1 samples were evaluated by limma (FDR ≤ 0.05), and

these immune factors were modeled (adabag package) and

iterated 100 times to obtain the prediction model with an

AUC of 0.996 (Figure 8B). All metagenomic results in this

study are summarized in Table S1. The correlation network of

relevant factors and species is shown in Figure 8C. Given that the

entire community of microbial inhabitants in the digestive tract

influences immune response balance and epithelial barrier

function, our results suggested that RAU could potentially be

the outcome of microbiota dysbiosis due to homeostatic

disturbance of host-microbe interactions.
Relapsable characterization of gut
microbiota after thalidomide withdrawal

At T3 the taxonomic differences between relapsable and

relapse-free individuals were calculated by edgeR (FDR<=0.05),

and a total of 20 bacteria were screened out as shown in

Figure 9A. According to the results, the reduction of

Mycoplasma flocculare or Metallosphaera sedula is more likely

to cause relapse, suggesting that these two bacteria may be

probiotics to prevent relapse. The AUC value (R function roc)

was calculated for each of the species, and 10 species with

AUC>0.7 were screened out. The prediction model with an

AUC of 0.899 was obtained by 100 iterations (Figure 9B),

meaning that these bacteria have about 89.9% accuracy of

predicting recurrence. The correlation heatmap of relapse-

associated species and blood and saliva factors between

replasable patients and replase-free individuals is shown

in Figure 9C.
FIGURE 7

Correlation heatmap of gut microbiome-associated metabolic pathways and the blood and saliva factors between the RAU patients and health
controls. Blue boxes denote the cluster of negative correlation, those encompassed by the red box represent the cluster of positive correlation.
The colors are proportional to the correlation strength, the variation from red to blue represent positive to negative trend. “*” means P<0.05.
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Discussion

Evidence that the gut microbiota contributes to the

development of RAU is accumulating. Thus, characterization

of the gut microbiota in RAU and identification of microbial

therapeutic targets are highly warranted. In this study, it was

found for the first time that there were concurrent gut

dysbacteriosis, microbial dysfunction and immune imbalance

in RAU. Although there were no significant differences in the

relative abundances of enteroviruses and fungi between RAU

patients and healthy individuals, we found that an array of

probiotics were depleted while a large number of pathogens were

enriched in the gut microbiota of RAU patients. Overall, there is

an imbalance between probiotics and pathogenic bacteria.

Notably, some Lactobacillus, Bifidobacterium, Streptococcus,

and Enterococcus species, such as Lactobacillus ruminis

Bifidobacterium animalis, S. thermophilus and Enterococcus

faecium, have been used as commercial probiotic products (38).
Frontiers in Immunology 09
Existing studies suggest that microbiota-driven variations in

the inflammatory response regulate the host response to

infection (37). A possible explanation is that the imbalance

between anti-inflammatory and proinflammatory responses

suppresses protective Th17 inflammation and impairs defense

against pathogens. In particular, a considerable decrease in the

abundance of probiotics, including A. intestine, and an increase

in the abundance of numerous pathogens, including B. fragilis

and E. coli, were noted in this study. Moreover, pathogen-

associated pathways were significantly increased, such as the

TCA cycle and tryptophan biosynthesis pathways.

Thalidomide treatment contributes to an increase in the

abundance of some probiotics, such as A. intestine, and a

decrease in the abundance of some pathogens, such as B.

fragilis. This regulation can be maintained long-term, but

thalidomide has no regulatory role for some pathogenic

bacteria, suggesting that thalidomide may indirectly alter the

gut microbiota by regulating immune factor levels of the host.
B

C

A

FIGURE 8

Contributional diversity of fecal microbiome cytokines. (A) Violin plot analysis comparing the levels of serous and salivary cytokines in control,
T1, T2 and T3 groups (P<0.05 between control and T1). (B) Receiver operating characteristic curves for fecal microbialcytokines comprising
samples from RAU and healthy controls. “1” is the sensitivity of the optimal threshold point, and “0.955” is the specificity. “-0.048” is the socre of
adaboost modle at the optimal threshold point. The blue area 95% confidence represents the confidence interval. (C) Abundance-based
species-cytokines correlation network enriched in RAU patients and healthy individuals. Two nodes are linked if they are related. The edge width
is proportional to the correlation strength. Nodes with the different color and shapes are classified in the different effective order level with
Thalidomide.
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Probiotics and prebiotics can promote the balance of the

intestinal microbiota by regulating specific microbes, and the

effects of a suitable combination of synbiotics are beneficial (39).

Probiotics, prebiotics, synbiotics and other emerging treatments

may be beneficial supplements. Our study indicated that gut

dysbacteriosis is a prominent feature of this disease model, and

the alleviation and aggravation of gut dysbacteriosis is also

consistent with recurrence features. Based on the treatment

model and recurrence model, our results demonstrated that

thalidomide may differentially regulate gut probiotics and

pathogens in RAU according to long-term or short-term

patterns. In the long-term pattern, thalidomide is considered

to have a persistent effect on the results, that is, at T3, it can still

continue the trend of T2; otherwise, it is considered to be a

short-term pattern.

Tryptophan can be used as a biomarker to reflect the

occurrence and development of diseases and can also be used

to monitor the response to treatment. Tryptophan and other

amino acid metabolic pathways are activated in cancers and

other diseases (27). Our results indicated that these pathways

were significantly enriched in RAU, suggesting an anti-

inflammatory role of these pathways in RAU. Based on our

results and the literature (40), the possible mechanisms are
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shown in Figure 10. Studies (41, 42) suggest that intestinal

dysbacteriosis may promote the pathogenesis of BD through

various mechanisms, such as damaging the intestinal

mucosal barrier, inducing the overactivation of Th1 and Th17

responses, and reducing the number of Tregs. In addition to

oral ulcers, BD patients have systemic manifestations different

from those of RAU. Moreover, except for oral lesions,

systemic inflammation is absent in RAU. Our study further

demonstrates from the microecological and immunological

perspectives that BD and RAU are dissimilar and may have

different pathogeneses.

The limitations of our study should be considered. Although

in this study we investigated changes in species abundance at the

metagenomic level, microbial function of the gut microbiota,

and serum and saliva levels of immune factors in RAU, animal

experiments are absent because there is currently a void

regarding animal models exactly simulating RAU in humans.

Second, we performed a metagenomic study of saliva microbial

samples (data not shown), but enough high-quality

metagenomic data were not available due to host exfoliated

cell DNA. Therefore, technological breakthroughs in oral and

salivary metagenomics are urgently needed to fulfill disease-

associated metagenomic profiling.
B

C

A

FIGURE 9

Relapsable characteristics of gut microbiota in RAU patients after thalidomide withdrawal. (A) The significantly different species between the
replasable and replase-free individuals. (B) Receiver operating characteristic curves for fecal microbial species comprising samples from replasable
and replase-free individuals. “1” is the sensitivity of the optimal threshold point, and “0.762” is the specificity. “0.429” is the socre of adaboost modle at
the optimal threshold point. The blue area 95% confidence represents the confidence interval. (C) Correlation heatmap of relapse-associated species
and the blood and saliva factors between replasable patients and replase-free individuals. Blue boxes denote the cluster of negative correlation, those
encompassed by the red box represent the cluster of positive correlation. The colors are proportional to the correlation strength, the variation from
red to blue represent positive to negative trend. “*” means P<0.05.
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Conclusion

In the present study, species-pathway-factor correlation

networks facilitated improved metagenomic analysis and helped

pinpoint disease- and host-associated shifts in the microbiome’s

functional capacity. We observed dynamic shifts in the species

composition of the gut microbiota, functional pathways of signature

bacteria and immune factor levels in RAU. It was noted that

protective Th17 inflammation against pathogens was impaired,

contributing to an immunosuppressive microenvironment and

probiotic-pathogen dysbiosis. Thalidomide ameliorated gut

dysbacteriosis, regulated immune imbalance, and alleviated RAU

severity. Probiotics, prebiotics, synbiotics, postbiotics, and other

emerging treatments may be beneficial supplements for RAU

treatment. With the continuous in-depth study of RAU-related

pathogenesis, it may be possible to apply precise treatment of RAU

in the future. In conclusion, our findings extend our insights into

the metagenome of the gut microbiota and the host in RAU and the

regulatory roles of thalidomide, pointing to possible future

modalities for RAU prophylaxis and treatment.
Methods

Study subjects

This study was approved by the Ethics Committee, Nanjing

Stomatological Hospital, Medical School of Nanjing University

[2014NL-002(KS)]. The samples and clinical information used

in this study were obtained under conditions of informed

consent. The diagnostic criteria of RAU patients referred to

the criteria previously documented in the literature (43).

According to recurrence period and frequency (44, 45), RAU
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is classified as refractory type (attack at least once per month,

totally more than 50% of the time with aphthous ulcers) and

common type (attack once 2 or more months) based on the

literature and our previous study. According to the severity,

RAU is classified as minor, major and herpetiform types

classically. Only the patients affected with refractory and

minor RAU were included in this study. Individuals with

inflammatory diseases, including BD and Crohn’s disease;

systematic diseases, including cardiovascular diseases, diabetes

and anemia; infectious diseases; and a history of drug abuse were

excluded from this study. In this study, 81 RAU patients

receiving no medicat ion consist ing of antibiot ics ,

corticosteroids or analgesics for at least 1 month along with 44

sex-, age-, and BMI-matched healthy controls were recruited

according to the previous studies on gut microbiota and

metagenomic analysis (46–48). Information on lifestyle, oral

health status, clinical characteristics of ulcers, and blood test-

related data were obtained. The participants in this study were

healthy controls labeled Control and RAU patients at three

points labeled T1, T2, and T3 [T1: before thalidomide

administration (thalidomide 50mg nightly) (7, 49); T2: one

month after thalidomide administration; T3: one month after

thalidomide withdrawal].
Sample collection and processing

Serum, saliva and fecal samples were collected from

participants at approximately 8 am before breakfast. Venous

blood from each individual was collected to harvest serum

samples. Fecal samples were collected using an OMNIgene·GUT

stool/feces sampling kit (DNA Genotek, Ottawa, Canada).

Unstimulated whole saliva was collected using a sampling tube
FIGURE 10

A schematic diagram showing the main functions and cytokines of the gut microbes that had a predicted RAU association. Red text denotes
enriched functions, species and cytokines in RAU patients. Green text denotes depleted functions, species and cytokines in RAU patients.
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and an ORAgene·DNA saliva sampling kit (DNA Genotek,

Ottawa, Canada). All samples were immediately frozen and

stored at −80°C until analysis.
Biochemical assays

Serum and saliva samples for biochemical assays were

analyzed by ELISA. IL-2, IL-4, IL-6, IL-8, IL-10, IL-17A, IL-23,

TNF-a, IFN-g, IgA, IgG, IgM, and IgE were analyzed using

ELISA kits (MultiScience, Hangzhou, Zhejiang, China). LL-37,

hBD-1, hBD-2, and hBD-3 were detected using ELISA kits

(Cusabio, Houston, TX, USA). Lysozyme, complement-3, and

complement-4 were measured using ELISA kits (Abcam,

Cambridge, MA, USA). ELISA was performed according to

the manufacturers’ instructions.
Metagenomic sequencing

Paired-end metagenomic sequencing was performed on the

Illumina HiSeq 4000 platform (BGI-genomics, China) with an

insert size of 350 bp and paired-end (PE) reads of 150 bp for

each sample. After removing adaptors and low quality

(quality ≤ 20) and ambiguous bases from the raw reads, the

remaining reads were aligned to human genome reference

(hg19) by SOAPaligner (v2.22, parameters: -m 280 -x 420 -r 1

-l 32 -s 75 -c 0.9) to remove human host DNA contamination.
Microbiome characterization

All metagenomic sequencing data were processed using the

same extensive processing pipeline: bacterial, archaeal, viral, and

microeukaryote abundances were determined using Kraken2 (50)

and corrected by Bracken (51). A cladogram was produced by

GraPhlAn (52). Microbial pathways and abundances were

determined using HUMAnN3 (53)(nucleotide-database:

chocophlan; protein-database: uniref90) software.
Statistical analyses

To compare the collected phenotypes of the disease cohort with

the population controls, categorical data were tested using edgeR

(54) (calcNormFactors: trimmed mean of M-values method). The

statistical analysis for differentially expressed (DE) was done using

edgeR (glmLRT test). Pathways or species with FDR ≤ 0.05 were set

as cutoff values to be considered differentially expressed. ANOVA

(Tukey-HSD) test was used to assess differences in taxonomic and

functional diversity.

To test for differentially distributed pathways across

genotypes, data obtained with HUMAnN3 (pathway
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composition) were fitted into limma’s model (55) using

subjects as blocking variables. Since both software programs

quantify biological units using relative counts (HUMAnN2 uses

“copies per million”), we transformed these data into

logarithmic values using the formula log2(x + 0.1), where x is

the relative counts. The obtained P values were corrected using

the Benjamini–Hochberg correction method.

The Spearman coefficient was used to evaluate the correlation

between phenotypes and the correlation between microbiome

features. Correlations with corresponding empirical P values less

than 0.05 were retained. Correlation coefficients with magnitudes

of 0.3 or greater were selected for visualization in Cytoscape.

The AUC value of one hundred ninety statistically significantly

differentially abundant species (edgeR-TMM, FDR ≤ 0.05) between

CONTROL vs. T1 calculated by the ROCR package, and thirty-

eight species with AUC>0.7 were discriminated cases (T1

phenotype) from controls with an AUC value according to the

adabag package (56) (boosting, mfinal=100). All relevant pathways,

factors, and species were screened based on Spearman’s correlation

coefficient. Correlation coefficients with magnitudes of 0.2 or

greater were selected for visualization in Cytoscape (v. 3.8.2). For

model training, the adabag (R package) was used to create an

adaboost model. Half of the samples were randomly selected as the

training set and the other half as the test set. About the parameter

set of training, we defined 1000 trees for fitting, and set parameter

shrinkage = 0.01 and cv. folds = 5.
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