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Abstract: Mast cells are major effector cells in eliciting allergic responses. They also play a significant
role in establishing innate and adaptive immune responses, as well as in modulating tumor growth.
Mast cells can be activated upon engagement of the high-affinity receptor FcεRI with specific IgE to
multivalent antigens or in response to several FcεRI-independent mechanisms. Upon stimulation,
mast cells secrete various preformed and newly synthesized mediators. Emerging evidence indicates
their ability to be a rich source of secreted extracellular vesicles (EVs), including exosomes and
microvesicles, which convey biological functions. Mast cell-derived EVs can interact with and affect
other cells located nearby or at distant sites and modulate inflammation, allergic response, and tumor
progression. Mast cells are also affected by EVs derived from other cells in the immune system or in
the tumor microenvironment, which may activate mast cells to release different mediators. In this
review, we summarize the latest data regarding the ability of mast cells to release or respond to EVs
and their role in allergic responses, inflammation, and tumor progression. Understanding the release,
composition, and uptake of EVs by cells located near to or at sites distant from mast cells in a variety
of clinical conditions, such as allergic inflammation, mastocytosis, and lung cancer will contribute to
developing novel therapeutic approaches.
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1. Introduction

Mast cells (MCs) are derived from hematopoietic progenitor cells that enter almost
all vascularized tissues, where they complete their maturation. [1–3]. MCs are known as
essential effector cells in eliciting allergic responses and play a key role in innate and adap-
tive immunity. They are associated with a wide variety of pathophysiological processes,
including tissue damage repair, thrombosis and homeostasis, autoimmune injury, and
mastocytosis [2,4–6]. MCs are also often found at the site of tumors and are a component
of the tumor microenvironment (TME). They function to promote or restrict tumor growth,
depending on the mediators they release [5,7,8].

MCs are well-recognized by two kinds of highly expressed cell surface receptors:
FcεRI, which is the IgE receptor, and c-kit (CD117), which is the stem cell factor (SCF)
receptor. MCs can be activated by the binding of allergen-specific IgE via cross-linking of
the FcεRI. MCs may also be activated via several FcεRI-independent mechanisms as well,
including microbial products that signal through Toll-like receptors (TLR), direct injury,
compounds known as basic secretagogues, IgG-antigen complexes, peptides, complement,
proteases, and several cytokines and chemokines [9–13]. In addition to soluble mediators,
we have shown that MCs can be activated by direct interaction with activated T cells or
their microvesicles [14].
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Upon activation, MCs can release a variety of bioactive mediators that are pre-stored
in cytoplasmic granules (a process known as degranulation), including histamine, heparin,
proteases, proteoglycans, and antimicrobial peptides. They can also selectively produce
and release newly synthesized potent inflammatory mediators such as leukotriene C4
(LTC4), prostaglandin D2 (PGD2), and several pro- and anti-inflammatory cytokines and
chemokines [9,10,15,16]. In addition to releasing different mediators, MCs secrete extracel-
lular vehicles (EVs) spontaneously or in response to different stimuli [17].

EVs are membrane-surrounded structures that are secreted by various cell types.
They are detectable in many biological fluids, including blood, urine, saliva, breast milk,
amniotic fluid, ascites, cerebrospinal fluid, bile, and semen, as well as in conditioned
media of cell cultures [18–21]. Once released to the extracellular space, EVs circulate in
body fluids and modulate the metabolism of both neighboring and distant cells via the
horizontal transfer of bioactive molecules, including proteins, lipids, DNA, RNA, and
microRNA to recipient cells [22,23]. They have been implicated in several physiological
and pathological processes, such as immune disorders, inflammation, neurological diseases,
and cancer [19,24–26].

EVs are heterogeneous structures that differ from each other based on their biogenesis
and size. They can be divided into three main subgroups: microvesicles, exosomes, and
apoptotic bodies. Microvesicles range in size from 150 to 1000 nm and are formed by the
outward budding and fusion of the plasma membrane.

Exosomes refer to smaller vesicles ranging from 30 to 150 nm in size. They are
derived from the endosomal–lysosomal pathway by inward budding into endosomes, as
intraluminal vesicles (ILV) within large multivesicular bodies (MVB), and then released to
the extracellular space by fusion of MVB with the plasma membrane. Apoptotic bodies are
heterogeneous vesicles. They vary from 50 to 5,000 nm in diameter and are released from
cells undergoing apoptotic cell clearance [19,24,27].

Both EV subsets (microvesicles and exosomes) overlap in size and express some com-
mon identifying markers; making it more difficult to classify them. Therefore, guidelines
published by the International Society for Extracellular Vesicles currently recommend using
the term “EVs” when there is uncertainty about the subcellular origin of the vesicles [28].
In the present review, we chose to use the term “EVs” instead of the exact vesicle subset
that was documented in the original articles.

Several lines of evidence suggest that EVs released by MCs may convey biological
function by delivering them to distant target cells, thereby affecting inflammation, allergic
response, and tumor progression. Furthermore, MCs can also be affected by EVs derived
from other cells in the immune system or in the TME, which may lead to activating MCs to
release different mediators [29]. In the present review, we discuss findings published in the
last decade, using EVs and MCs as keywords. We focused on EVs derived from MCs and
their potential roles in inflammation, allergic response, and cancer procreation, as well as
the ability of EVs secreted from other cells to influence MCs in these conditions.

2. Mast Cells as the Origin of Extracellular Vesicles
2.1. Relevance of Mast Cell-Derived Extracellular Vesicles in Allergic Response and Inflammation

Data are continually emerging on the ability of MCs to exert interactions with other
cells located in their proximity by secreting numerous mediators from their pre-stored
granules and by releasing EVs [29,30]. MCs are able to release EVs either constitutively or
upon stimulation. The composition of MC-derived EVs may differ in size, protein, lipid,
and RNA and DNA content based on MC activation status and the type of MC stimuli.
Thus, they have distinct functions [30–32].

Several reports have shown that MCs secrete EVs during FcεRI-induced degranula-
tion [31]. Kormelink et al. showed that both mucosal-type MCs and connective tissue-type
MCs, which represent the two main functionally different murine MC phenotypes, con-
stitutively release EVs under resting conditions and have remarkably high amounts of
EVs upon FcεRI cross-linking [17]. EVs derived from activated MCs were enriched with
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the EV marker CD63 and differed in their buoyant density, size, and lipid composition, as
compared to EVs derived from resting MCs. Additionally, these activated MC-EVs con-
tained high amounts of functional MC-specific mediators that were previously described
as soluble only, as compared to EVs derived from resting MCs. Furthermore, activated
MC-EVs release was found to correlate with β-hexosaminidase release [17]. Comparisons
of the expression patterns of proteins, long non-coding RNAs, and miRNAs in EVs iso-
lated from resting or FcεRI-activated bone marrow-derived mast cells (BMMCs) revealed
that stimulated-EVs contained higher levels of tryptase, MC carboxypeptidase A, and
IL-4 in contrast to resting-EVs [33]. The basic genomic features of the identified long
non-coding RNAs and the length of the miRNAs differed between these two EV types,
suggesting a potential regulatory function of MC-derived EVs [33]. However, the role of
MC-derived EVs in the context of allergic reactions is still controversial. For example, EVs
isolated from FcεRI-activated MCs displayed IgE and antigens on their surface, which
enabled their efficient internalization by IgE-loaded MCs, mainly by endocytosis through
the binding of antigens on EVs and IgE bound to MCs [34]. This internalization resulted
in β-hexosaminidase release, a marker of MC degranulation, and induction of cytokine
production at a level similar to that obtained by FcεRI cross-linking. These findings indi-
cate a self-amplification mechanism that can contribute to exacerbation of local allergic
reactions. FcεRI-mediated EVs uptake may also deliver antigens to other immune cells,
such as FcεRI-positive dendritic cells (DC), further contributing to allergic responses [34].
Allergic diseases are characterized by increased serum levels of total IgE and specific IgE
against common allergens, thereby activating the FcεRI on MCs. The sera of atopic indi-
viduals displayed varying amounts of EV-associated IgE that positively correlated with
serum IgE levels, whereas IgE levels could not be detected on EVs purified from the sera of
nonatopic donors. Moreover, only EVs derived from atopic individuals carried the FcεRI-α
chain, supporting the assumption that these EVs display FcεRI/IgE complexes [34].

On the other hand, it has recently been shown that MC-derived EVs may have a pro-
tective role in allergic asthma. EVs derived from unstimulated BMMCs harbored FcεRI and
could bind and neutralize free IgE in the serum, thus inhibiting MC activation by reducing
its levels. In addition, in a mouse model of allergic asthma induced by exposure to oval-
bumin, intravenous injection of MC-derived EVs eased the airway hyperresponsiveness
over time. This improvement was accompanied by a remarkable decrease in ovalbumin-
specific IgE in serum and histamine levels in bronchoalveolar lavage fluid. Changes in
bronchoalveolar lavage fluid cytokine levels were also noticed. Furthermore, MC-derived
EVs significantly modulated airway remodeling in allergic asthma, a suppressive effect
that was positively correlated with treatment duration [35].

Communication between MCs and group 2 innate lymphoid cells (ILC2) in allergic
inflammation occurs in the lungs, small intestine, and skin lesions of patients with atopic
dermatitis. It has recently been demonstrated that interactions between MCs and ILC2
occurs via EVs. IgE-activated synovium-derived cultured MCs released EVs that can
interact and be internalized into ILC2. The interaction of these EVs with ILC2 cells that
were pre-activated with IL-33 led to enhanced production of type 2 cytokines such as IL-5
but not IL-13. Ekström et al. [36] and Valadi et al. [37] reported that MC-derived EVs
contain miRNAs, which can be transferred to other cells and continue to function in these
recipient cells. Indeed, the effect of MC-EVs on ILC2 could be attributed to miR103a-3p,
which is highly expressed in EVs derived from activated MCs. The transfer of miR103a-3p
to ILC2 via EVs resulted in the downregulation of protein arginine methyltransferase
5 expression, which led to enhanced IL-5 production. Furthermore, EVs from the sera of
patients with atopic dermatitis express significantly higher levels of miR103a-3p than do
EVs from the sera of nonatopic donors. Thus, miRs in EVs derived from human MCs
following FcεRI aggregation might enhance the inflammation seen in atopic dermatitis [38].

Neuroinflammation is a response of the central nervous system to external stimuli,
including surgery, infection, and toxins. It is manifested in part by the microglial activation
and release of proinflammatory cytokines. Several studies have reported the central and
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peripheral MC critical roles in neuroinflammation by interacting with microglial cells to
increase their migration and release of proinflammatory cytokines. An example of this
interaction was found to occur via EVs released from LPS-activated MCs, which could
transfer miR-409-3p to microglia, causing the downregulation of nuclear receptor subfamily
4 group A member (2Nr4a2) expression and activation of the NF-κB pathway, thereby
promoting microglial migration, activation, and neuroinflammation [39].

In addition to miRs, EVs also contain and transfer extracellular RNA, such as ribo-
somal RNA, to recipient cells. Recently, it was established that EVs containing ribosomal
RNA are released from MCs during exocytosis and degranulation. Thereafter, these EVs
induced the release of pro-inflammatory cytokines such as MCP-1 and IL-6, as well as
procoagulant responses in human umbilical cord vein endothelial cells in an extracellular
RNA-dependent manner [40].

MCs can indirectly initiate the antigen-dependent T cell response by releasing EVs
containing MHC class II and co-stimulatory molecules. Indeed, these MC-derived EVs had
the capacity to induce B and T lymphocyte proliferation and cytokine production, which
correlated with the induction of a Th1-type immune response, involving the production
of IL-2, IL-12, and IFN-γ, but not IL-4 [29,41]. EVs derived from BMMCs enhanced the
differentiation of naive CD4+ T cells to Th2 cells. This effect was found to occur, at least
partially, by direct surface contact via ligation of OX40L present on MC-EVs with OX40
present on the surface of T cells, rather than by endocytosis [42].

Morphologic studies have documented an increase in the local density and activation
of MCs in T cell-mediated inflammatory processes, as observed in psoriasis [43]. Indeed, a
recent study has provided evidence that EVs derived from MCs are the source of cytosolic
phospholipase A2 contributing to a CD1a-reactive T cell response in psoriasis patients [44].

Altogether, these findings provide evidence of the ability of MC-derived EVs to deliver
certain messages and to act as mediators that contribute to immunomodulatory and/or
immunoregulatory properties by interacting with other cells in distant sites.

2.2. Relevance of Mast Cell-Derived Extracellular Vesicles in Tumor Progression

Tumor progression is determined not only by the tumor cells themselves but also by
their interactions with their surroundings, known as the TME. The TME has a dynamic
composition that includes various cell types, such as immune cells, blood and lymphatic
vessels, cancer-associated fibroblasts, tumor-associated macrophages, and myeloid-derived
suppressor cells [45,46]. In the TME, the tumor cells communicate with each other and
with stromal and immune cells via a sophisticated intercellular communication system
through direct cell-to-cell contact or by classical paracrine signaling loops of cytokines
or growth factors. MCs are often found in the microenvironment of several human solid
and hematologic tumors and function as a component of the TME [7]. Accumulating data
suggest that MCs have diverse roles in tumor biology. They were found to play both pro-
and anti-tumorigenic roles in the TME depending on the tumor type and its developmental
stage [5,7]. They can be pro-tumorigenic by affecting various events of tumor progression
such as angiogenesis, proliferation invasiveness, survival, and metastasis. This can be
mediated by releasing mediators such as histamine, prostaglandins, tryptase, β-FGF, TGF-
β, VEGF, and IL-8. In contrast, the anti-tumorigenic effects of MCs include direct growth
inhibition, immunologic stimulation, and decreased cell mobility. These effects involve the
release of chymase, tryptase, TNF-α, and IL-9 [5,7,47–49].

Emerging data demonstrate that EVs are important in the mechanism of the cellular
interchange of bioactive molecules. A number of studies have suggested that tumor cells
communicate with each other and with neighboring microenvironmental cells via EVs,
which coordinate various steps of tumor progression such as proliferation, angiogene-
sis, metastasis, and drug resistance [50]. Increasing evidence suggests that EVs derived
from MCs have distinct functions in tumor progression. For example, EVs derived from
HMC-1, a human neoplastic MC cell line, contain the KIT receptor, but not c-KIT mRNA.
These EVs can be internalized into the A549 lung cancer cell line, which leads to enhanced
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proliferation and migration of the lung cancer cells by activating the PI3K/AKT signaling
pathway [51]. Furthermore, EVs derived from MCs were also found to induce the epithelial
to mesenchymal transition in these cells due to the induction of protein phosphorylation
cascades known to be involved in this transition phenotype [52].

Several studies have explored the role of EVs derived from neoplastic MCs on systemic
mastocytosis (SM). SM is a clonal disorder that harbors abnormal MC proliferation and
pathological accumulation in several tissues, including bone marrow, lymph nodes, skin,
liver, and spleen. SM displays various degrees of severity, from indolent to more aggressive
forms. Among patients with SM, somatic mutations in c-kit that encodes for the KIT receptor
have been detected in the bone marrow, as well as in skin and peripheral blood cells.
The most common somatic mutation, Asp816Val (D816V), is located in the catalytic domain
of KIT and results in augmented MC proliferation and survival [53]. The sera of SM patients
contain high concentrations of small EVs that express hallmarks of MCs, such as FcεRI,
MRGPRX2, tryptase, and activated KIT receptors. In addition, the concentration of these
EVs correlated with other SM disease parameters such as serum tryptase. In liver biopsies
obtained from SM patients, MCs infiltrate around hepatic portal areas, which is associated
with development of liver fibrosis and other hepatic abnormalities [54]. Indeed, EVs
derived from the sera of SM patients or from the human HMC-1 cell line affected the
activation of hepatic stellate cells (HSC) by transferring active KIT from SM-EVs into the
HSC cell line, resulting in proliferation, cytokine production, and differentiation of HSC, a
process associated with liver pathology. The authors also demonstrated that injection of
SM-EVs, but not EVs from healthy control subjects, into recipient mice resulted in increased
α-SMA expression, a marker of HSC activation, around portal areas. These findings suggest
a role for KIT within SM-EVs in the activation of HSC in vivo [55].

SM patients have high rates of osteoporosis and other bone diseases in association
with the presence of MCs infiltrating bone marrow [56]. EVs derived from SM patients
or from the HMC-1 MC cell line delivered miR-23a and miR-30a into pre-osteoblast cells.
The internalization of these miRs via SM-EVs prevented osteogenic transcriptional pro-
grams, thus controlling their differentiation into osteoblasts, inhibiting bone production,
and contributing to bone diseases, both in vitro and in vivo [57].

3. Mast Cells as Targets of Extracellular Vesicles
3.1. The Contribution of Extracellular Vesicles to Mast Cell-Induced Non-Allergic Responses

In addition to the function of EVs released by activated MCs, accumulated data
published by our group and others have documented that EVs originating from various
cell types can activate MCs [29].

The close physical proximity observed between MCs and T lymphocytes in inflamed
tissues has raised the possibility of a functional interaction between these two cell popula-
tions. Indeed, morphologic studies have documented an increase in the local density of
MCs and their activation during T cell-mediated inflammatory processes, as observed in
cutaneous delayed-type hypersensitivity, sarcoidosis, inflammatory bowel disease, and
rheumatoid arthritis [1,58]. We have documented that direct contact between MCs and
activated T cells or their membranes is associated with Ras activation and sustained ERK
phosphorylation, which results in MC activation and mediator release [59,60]. MCs were
also found to be activated by EVs derived from activated T cells [14]. These T cell-derived
EVs are actively internalized into MCs, a process that can be detected as early as one hour
after initiation and appears to be completed after 24 h, resulting in both degranulation and
release of specific cytokines such as Oncostatin M, IL-8, and IL-24 [14,61,62].

We also observed that EVs derived from these activated T cells contained high levels
of miR-4443, which was delivered to MCs by the EVs. Mir-4443 serves as a negative
regulator of the protein tyrosine phosphatase receptor type J (PTPRJ) gene, known to
modulate the Ras signaling pathway by dephosphorylation of ERK [63]. Indeed, delivering
miR-4443 into MCs by EVs-derived from activated T cells was found to augment ERK
phosphorylation and IL-8 release. Thus, by delivering miR-4443, T cell-derived EVs may
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play an important role in MC activation within T cell-mediated inflammatory processes
where MCs are involved [64].

Additionally, perivascular CD301b+ primed DC can shed antigen-bearing EVs after
exposure to antigen. These antigen-loaded EVs were capable of trafficking to neighboring
MCs and activating them to cause systemic anaphylaxis [65].

A recent study demonstrated that EVs derived from packed red blood cells (EVs-RBC)
can activate human MCs, resulting in the increased expression of tryptase and PGD2 and
the production of multiple inflammatory mediators, including IL-6, TNF-α, IL-4, INF-γ,
CXCL-1, CXCL-5, and LTB-4. The activation of MCs with EVs-RBC also increased the levels
of Toll-like receptor-3 (TLR-3) and MAPK activation. Inhibition of the MAPK pathway
and TLR-3 resulted in the decreased production of inflammatory mediators, indicating
that EVs-RBC activate MCs and elicit the production of multiple inflammatory mediators,
partly via the TLR-3 and MAPK pathways. This observation may indicate that EVs-RBC
can contribute to potentially harmful outcomes in recipients after blood transfusion by
inducing MC activation [66].

Activated MCs participate in the chronic inflammation of cerebral arteries associated
with intracranial aneurysm formation and rupture. Activated MCs can infiltrate into
the aneurysmal walls and participate in the inflammatory response by releasing a wide
range of inflammatory mediators that promote vascular destruction. In various models
of organ injury, mesenchymal stem cells (MSC) were found to release EVs, which selec-
tively accumulate at the lesion sites, where they mediate the processes of tissue repair
and anti-inflammation by transferring proteins, lipids, and RNA into target cells [67].
Recently, it was demonstrated that MSC-derived EVs can internalize into MCs and prevent
the rupture of intracranial aneurysms, in part through suppressing MC activation. The sup-
pressive effect on MCs was mediated via a prostaglandin E2 (PGE2)-dependent mechanism.
MSC-EVs increased the synthesis and release of PGE2 and upregulated the expression of
the EP4 receptor on MCs, which may be associated with the anti-inflammatory response of
MCs [68].

3.2. Mast Cells as Target of Extracellular Vesicles within the Tumor Microenvironment

In addition to tumor cells, a variety of other cells, such as stroma cells, fibroblasts,
and immune cells, as well as the extracellular matrix and the network of blood-supplying
vessels, together form the TME. Several studies have suggested that tumor-derived EVs
influence a multitude of processes that aid in tumor progression, including angiogenesis,
cellular proliferation, migration, invasion, metastasis, immunoediting, and drug resistance.
This can be mediated by transferring bioactive cargos to recipient cells that are found in the
TME. These bioactive materials can be comprised of markers and signaling molecules, onco-
genic proteins, and nucleic acids, including various RNAs, such as microRNAs [50,69–72].
For example, tumor-derived EVs released from the non-small cell lung cancer (NSCLC)
cell line A549 were shown to affect endothelial cells and stroma fibroblasts [73]. MCs are
often found in the periphery of tumors and have been associated with both pro- and
anti-tumorigenic features. The pro- and anti-tumorigenic role of MCs varied according to
the tumor type and composition of the TME. Multiple features of the TME may affect the
MC phenotype such as the SCF, hypoxia, accumulation of lactic acid, adenosine, PGE2, and
low pH [74–77]. EVs derived from tumor cells are able to activate MCs to release several
mediators [78–80]. Thus, EVs derived from NSCLC cells were internalized into MCs, in
part by phagocytosis. The interaction of these EVs with MCs resulted in increased ERK
phosphorylation, a rapid process that reached a maximal response at 1 min of activation
and declined after 5 min. NSCLC-derived EVs stimulated MCs to release several mediators,
such as TNF-α and monocyte chemoattractant protein 1 (MCP-1)/chemokine (C-C motif)
ligand 2 (CCL2), as well as enhancing both their chemotactic and chemokinetic activity [78].
The activation of MCs by NSCLC-derived EVs may be due to the transfer of SCF found on
EVs to the MCs, which leads to MC activation through SCF-KIT signal transduction [80].
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In addition, EVs derived from pancreatic and NSCLC lung cancer cells can stimulate
MCs to release several other mediators, including IL-8, IL-6, VEGF, and amphiregulin.
This activation involves the autocrine formation of adenosine by a CD73-dependent mech-
anism and activation of the adenosine A3 receptor, leading to upregulation of tissue remod-
eling genes [79]. Thus, tumor-derived EVs provide a new possibility, in addition to soluble
mediators in the TME, to activate MCs, which, in turn, can affect the cancerous process.

4. Concluding Remarks

In addition to being a source of various mediators in response to different stimuli, MCs
have recently captured considerable attention as an important source of EVs implicated
in many physiological and pathological processes. EVs generated by stimulation differ
in terms of size, morphology, and molecular profiles depending on the MC stimulus, in
addition to differing from EVs derived from unstimulated MCs. EVs released from MCs can
interact with other cell types located in their proximity or at distal sites, including immune
cells (T, B, and DC), neurons, and vascular cells (see Figure 1). They act as a vehicle for a
wide variety of biological cargo, including lipids, DNA, RNA, and microRNA, to recipient
cells. These interactions may influence allergic reactions and inflammation. Furthermore,
increasing evidence suggest that MC-derived EVs also have a distinct function in tumor
progression. EVs derived from MCs located in the TME can increase the proliferation and
migration of tumor cells, as well as induce angiogenesis, stimulate antitumor immune
response, and recruit fibroblasts and macrophages [81].
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Figure 1. How MC-derived EVs communicate with other cells. The figure illustrates how MCs interact and communicate
with other cells via EVs (as indicated in the references). Clockwise: EVs derived from MCs deliver antigens that are
presented on their surface, to DC, contributing to allergic responses; EVs derived from FcεRI-activated MCs display IgE and
antigens on their surface and induce degranulation and cytokine release from MCs; MC-derived EVs enhanced proliferation
and migration of lung cancer cells; ribosomal RNA is delivered to endothelial cells by MC-derived EVs and induces the
release of pro-inflammatory cytokines; miR-409-3p is carried and transferred by MC-EVs to microglial cells, increasing their
migration and release of pro-inflammatory cytokines; MC-derived EVs carry OX40L, which interacts with OX40 present
on the surface of T cells, enhancing the differentiation of naïve CD4+ T cells into Th2 cells; EVs derived from MCs deliver
miR-103a to IL-33-activted ILC2 and induce IL-5 release. The figure was created with BioRender.com.

Accumulated data also reveal that MCs may serve as a target for EVs that originate
from various cell types (see Figure 2). In the context of inflammatory diseases, MCs can be
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activated by EVs derived from activated T cells and DC, thus leading to MC degranulation
and cytokine release, in part by delivering miR (such miR-4443) via T cell derived-EVs.
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Figure 2. The effect of EVs originating from various cell types on MC activation. MCs may be a target
for EVs originating from various cell types. From top to bottom (The colors of the arrows refer to the
colors of the boxes): activated T cells release EVs that induce MC degranulation and cytokine release
in part by carrying and transferring miR-4443 to MCs; perivascular CD301b+-primed DC can shed
antigen-loaded EVs that bind to MCs and activate them; EVs derived from packed red blood cells
can activate MCs, resulting in degranulation and release of PGD2 and cytokines; MSC-derived EVs
induce the release of PGE2 from MCs; EVs derived from lung cancer cells induce MC migration and
cytokine release. The figure was created with BioRender.com.

The presence of MCs in the TME has been well-documented [47]. However, one
important question is whether EVs derived from tumor cells can activate MCs. Indeed, our
group and others have shown that EVs derived from tumor cells can activate MCs, resulting
in enhancing their migration ability and release of specific cytokines.

The possibility that MCs interact with other cell types via EVs may contribute to
understanding how MCs communicate with nearby and with distant cells and their contri-
bution to various diseases, as described above. This may help in the development of novel
therapeutic modalities. Furthermore, due to the bioactive cargoes of EVs (e.g., miRNAs,
nucleic acids, or proteins) and their distribution in most body fluids [82–84], they may
provide a promising source of diagnostic biomarkers for MC-related diseases. Indeed, EVs
were found to serve as biomarkers in cancer [85], asthma [86], Alzheimer’s [87] and kidney
disease [88]. However, several limitations, including the lack of sensitive purification
method, storage stability, low yield, and purity, limit EV’s clinical applications. New EV
screening techniques and storage preservation technologies, which are under development,
will help to overcome the challenges associated with EV isolation and processing [82,89].

Finally, MCs have been implicated in the pathogenesis of the cytokine storm in
COVID-19 [90,91]. It will be interesting to verify whether EVs cause this MC activation.
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