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Tumor microenvironment 
characterization in head and neck 
cancer identifies prognostic 
and immunotherapeutically 
relevant gene signatures
Mengqi Huo3, Ying Zhang2, Zhong Chen1, Suxin Zhang1, Yang Bao1 & Tianke Li1*

The tumor microenvironment (TME) is of great clinical significance for predicting the therapeutic 
effect of tumors. Nonetheless, there was no systematic analysis of cellular interactions in the TME 
of head and neck cancer (HNSC). This study used gene expression data from 816 patients with HNSC 
to analyze the scores of 22 immune cells. On this basis, we have established a novel TMEscore-based 
prognostic risk model. The relationship between TMEscore and clinical and genomic characteristics 
was analyzed. The sample was divided into risk-H and risk-L groups based on the prognosis risk 
model of TMEscore, with significant differences in overall survival between the two groups (log 
rank p < 0.001). In terms of clinical features, the TMEscore is closely related to the T staging, Grade, 
and HPV. As for genomic characteristics, the genomic features of the Risk-H samples are a low 
expression of immune-related genes and high-frequency mutations of TP53 and CEP152. This model 
was validated in an external test set, in which the prognosis for Risk-H group and Risk-L group was 
also significantly different (log rank p = 0.017). A quantitative method of TME infiltration pattern is 
established, which may be a potential predictor of HNSC prognosis.

Head and neck cancer (HNSC) is one of the most common malignant tumors worldwide1. In most coun-
tries, HNSC patients over the age of 50 are more common. Among them, more than 90% are squamous cell 
carcinomas2. Because of the complexity of head and neck anatomy, it is difficult to perform surgery. Although 
significant progress has been made in the treatment of HNSC in recent years, the total global survival rate of 
HNSC is only 50%3. Surgery and radiotherapy are the standard modalities for patients with early head and neck 
cancer. However, when head and neck cancer is diagnosed, more than 50% of the patients are in clinical phase 
stage III or IV, and lose their best chance of operation. Also, for patients with recurrence after surgery, secondary 
surgery trauma is more dangerous. For such locally advanced patients, the prognosis is poor4,5.

Given the poor prognosis after standard treatment and the low level of targeted therapies in HNSC, immu-
notherapy is a promising additional approach. It is currently undergoing intensive research6,7. At the same time, 
some immune related parameters have also been reported to predict the prognosis of HNSC patients. These stud-
ies further show that different immune states have a significant effect on the prognosis of HNSC patients8,9. The 
sensitivity of therapeutic targets is different among patients due to the heterogeneity of tumors. Immunotherapy, 
therefore, has a certain selectivity for the patient population10. Further differentiation of the immune subtype of 
cancer is necessary to identify patients who may benefit from immunotherapy.

Different tumor microenvironment (TME) can induce various adverse and beneficial consequences. Immune 
cells are most likely to be affected by TME and can be activated to promote tumor growth and progression11. More 
and more studies have shown that TME plays an essential role in tumor progression and therapeutic response. 
Some studies have shown that the infiltration of a large number of immune cell into tumor tissue is strictly 
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related to the prognosis of patients12. In particular, changes in the quantitative of cytotoxic T cells, helper T cells, 
dendritic cells (DCs), tumor-associated macrophages, mesenchymal stem cells, and associated inflammatory 
pathways and fibroblasts affect the prognosis of a variety of malignancies13–18. Indeed, it is generally believed that 
an individual’s immune state is too complex to be illustrated by a single immune marker. Therefore, it is urgent 
to integrate a large number of HNSC transcription data to construct a new immune-related prognostic factor.

At present, the study of TME has shown great potential in the treatment of solid tumors, such as melanoma, 
non-small cell lung cancer, renal cancer, and prostate cancer19–22. In She and Chen’s studies, prognosis signatures 
based on immune genes and the corresponding immunotherapy for different immune subgroups have been 
proved to be feasible strategies for head and neck cancer23,24. Currently, there are some algorithms associated 
with immune scores that can be used to estimate the abundance of immune cells in TME. However, there is still 
a lack of research on the quantitative model of TME infiltration by these algorithms.

In this study, we used genetic expression data and clinical information from TCGA and GEO public databases 
to evaluate the proportion of 22 immune cells in HNSC TME. On this basis, the TME infiltrative patterns of 816 
HNSC patients were evaluated, and the phenotypes of TME were systematically correlated with the genomic 
and clinical pathological characteristics of HNSC, thus establishing a quantitative method for TME infiltrative 
pattern. The flow chart of the experiment is shown in Fig. 1.

Figure 1.   Flow chart of the experiment.
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Materials and methods
Data acquisition and preprocessing.  The RNA-Seq data of 546 HNSC samples were downloaded from 
the TCGA database on April 14, 2019. The clinical follow-up information of these samples was also down-
loaded at the same time. Additionally, samples without clinical data and follow-up time of less than 30 days were 
removed. The final study included 491 HNSC samples as training sets. Similarly, we downloaded the HNSC gene 
expression dataset GSE65858 from the Gene Expression Omnibus (GEO) database, which was annotated by the 
Illumina HumanHT-12 V4.0 expression beadchip platform. Samples with a follow-up time of less than 30 days 
were removed, and 270 samples were finally included as a test set. We scaled the gene expression data of the two 
platforms. The sample statistics of the two sets of data are shown in Table 1. For the probe data, we used the R 
software package Bioconductor to map the probe to Gene Symbol. Multiple probes correspond to the median 
expression of a gene.

TME analysis of HNSC samples.  CIBERSORT is a tool to deconvolute the expression matrix of immune 
cell subtypes based on the principle of linear support vector regression25. It can use RNA sequence data to infer 
the type proportion from large tumor samples with mixed cell types. To quantify the proportions of immune 
cells in HNSC samples, we used the CIBERSORT algorithm and the LM22 gene signature, which allows for sen-
sitive and specific discrimination of 22 human immune cell phenotypes, including B cells, T cells, macrophages, 
etc. The standardized gene expression data was loaded into the CIBERSORT website (https​://ciber​fort.stanf​ord.
edu/). Set the threshold value to p < 0.05, and exclude the sample data that does not reach the threshold value. 
In total, 452 TCGA samples and 199 GEO samples were eligible. Scores of 22 immune cells were obtained with 
LM22 signature and 1,000 permutation.

Consensus clustering for TME infiltrating cells.  Consensus clustering to obtain molecular subtypes 
was associated with TME-infiltrating cells. Consensus clustering was performed using the ConcensusCluster-
Plus package in R to determine subtypes of HNSC based on TME permeabilized cells26. We evaluated the opti-
mal number of clusters between k = 2–10 and repeated 1,000 times to ensure the stability of the results27. The 
cluster map was drawn using the pheatmap package in R.

Identification and clustering of differentially expressed genes (DEGs) between TMECs.  To 
identify genes associated with TME cell infiltration patterns, we used a linear model to analyze differentially 
expressed genes (DEGs) between subgroups. The gene expression data of HNSC samples in TCGA was selected 
for DEGs analysis of TMEC1 and TMEC2. The DEGs were calculated by DESeq2 package in R, which accorded 
with FDR < 0.05, | log2FC |> 2.

Table1.   Preprocessed clinical information of two data sets.

Characteristic TCGA datasets (n = 491) GSE65858 (n = 270)

Age(years)
 ≤ 50 88 41

 > 50 413 229

Survival status
Living 282 176

Dead 246 94

Gender
Female 134 47

Male 367 223

Grade

G 1 62

G 2 299

G 3 119

G 4 2

pathologic_T

T 1 45 35

T 2 132 80

T 3 96 58

T 4 152 97

pathologic_N

N 0 170 94

N 1 65 32

N 2 166 132

N 3 7 12

pathologic_M
M 0 187 263

M 1/ M X 62 7

Tumor Stage

Stage I 25 18

Stage II 69 37

Stage III 78 37

Stage IV 261 178

https://ciberfort.stanford.edu/
https://ciberfort.stanford.edu/
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Nonnegative matrix factorization (NMF) is an unsupervised clustering method widely used in the discovery 
of genomics-based tumor molecular subtypes28. To further investigate the relationship between differential gene 
expression and the TME phenotype, we used the NMF method to re-cluster HNSC samples and analyze their 
clinical features. The NMF method selects "brunet" and performs 50 iterations. Set the number of clusters k to 
2–10. The calculation is performed using the NMF package in R, and the minimum member of each subclass 
is set to 1029.

Construct a prognostic risk model based on TMEscore.  To obtain robust TME gene signatures, we 
first evaluated the prognostic value of each DEG. DEGs with significant effects on prognosis were selected, and 
random forest algorithms were then used to assess their importance. Genes with significant prognosis were 
included for randomForest feature selection using randomForest of R software package. We set the mtry for each 
split to be 1–279, ntree = 500. The mtry value with the lowest error rate is selected as the optimal mtry value of 
the random forest algorithm. Finally, the DEGs were sorted according to the degree of importance, and DEGs 
with cumulative importance > 95% were selected as candidate feature genes. Candidate feature genes were clus-
tered using the k-means algorithm and then were defined as signature Gs30. The principal component analysis 
(PCA) was performed on gene expression data of each signature G using the psych package in R. After 100 itera-
tions, the first principal component was extracted as a signature score.

The Cox multivariate regression analysis was used to establish a prognostic risk model for signature Gs. The 
TMEscore was calculated as follows:

Among them, β is the multifactor regression coefficient for each signature G, and PC1 is the score of the first 
principal component of each signature G.

TMEscore and clinical features.  To observe the relationship between TMEscore and clinical features, we 
divided HNSC samples into two groups by the median of TMEscore. The prognostic differences between high 
TMEscore and low TMEscore were compared. The relationship between TMEscore and clinical features, such as 
T staging, N staging, M staging, TNM stage, age, Grade, gender, smoking history and HPV was analyzed.

TMEscore and immune gene expression.  To observe the relationship between TMEscore and immune-
related gene expression, we collected three types of immune-related genes. (1) Immune-stimulating genes, 
including CXCL10, CXCL9, GZMA, GZMB, PRF1, IFNG, TBX2, TNF, CD8A. (2) Immunological checkpoint 
genes, including PDCD1, CTLA4, LAG3, PDCD1LG2, IDO1, CD274, HAVCR23. (3) Activation genes of the 
TGF/EMT pathway, including VIM, ACTA2, COL4A1, TGFBR2, ZEB1, CLDN3, SMAD9, TWIST1. The expres-
sion profiles of these genes were extracted to further analyze the differential expression of these three types of 
genes in high TMEscore and low TMEscore.

TMEscore and genomic variation.  To observe differences in genomic variation between high TMEscore 
and low TMEscore samples, we downloaded SNP data from TCGA to remove the intron and silent mutations. 
Genes for differential mutations in the two samples were analyzed using fisher’s exact test with a threshold of 
p < 0.05.

Statistical analysis.  The Shapiro–Wilk normality test was used to test the normality of the variables unless 
otherwise stated31. For the comparison of the two groups, the normal distribution variables were analyzed by 
the unpaired student t-test, and the non-normal distribution variables were analyzed by the Mann–Whitney U 
test. For comparisons of more than two groups, the Kruskal–Wallis test and the one-way ANOVA were used as 
non-parametric and parametric test methods, respectively32. Correlation coefficients were computed by Spear-
manand distance correlation analysis. Two-sided Fisher exact tests were used to analyze contingency tables. 
We used the Benjamini–Hochberg method to convert P values to FDR. The Kaplan–Meier method was used to 
generate survival curves for each subgroup. The log-rank test was used to determine the statistical significance of 
the difference, and the significance was defined as p < 0.05. All of these analyses were performed in R 3.4.3, based 
on default parameters unless otherwise stated.

Results
TME landscape in HNSC.  We used CIBERSORT to calculate 22 immune cell scores in the training set and 
analyzed the correlation between them (Fig. 2A, Table S1). We used a univariate cox model to analyze the rela-
tionship between these 22 immune cell scores and prognosis. The score of Macrophage M0, Mast cell activated, 
and Neutrophils were significantly associated with poor prognosis (log rank p < 0.05, HR > 1). The score of T cells 
CD4 memory activated, T cells follicular helper, T cells CD8, etc. was associated with a better prognosis (log 
rank p  < 0.05, HR < 1). The detailed results are shown in Fig. 2B and Table S2. We selected 8 immune cell scores 
that were significantly associated with prognosis for consistent cluster analysis. As shown in Figure S1, select 
k = 2 as the optimal cluster number based on the CDF value and Delta area, so the two types of subtypes based 
on the immune cells score were defined as TMEC1 and TMEC2 (Table S3). Figure 2C shows the heat map of 22 
immune cell scores in TME. From the clustering results, immune cells such as Macrophages M0, T cells CD4 
memory resting, Mast cells activated, etc. have higher scores in the TMEC1 subtype, while Macrophages M1, T 
cells CD8, T cells CD4 memory activated, etc. have higher scores in the TMEC2 subtype. The overall survival 
between the two TMEC subtypes indicated a significant difference in prognosis (log rank p < 0.0001), as shown 

(1)TMEscore =

∑
PC1 ∗ β
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in Fig. 2D. We analyzed the difference in 22 immune cell scores between the two types of samples, 13 of which 
were significantly different (59.09%), as shown in Fig. 2E.

Figure 2.   (A) The correlation of 22 immune cells of TME, in which the dot size and color indicate correlation, 
blue indicates negative correlation, red indicates positive correlation, white area in the figure indicates 
insignificant, and the number in the upper right corner of the figure represents correlation coefficient; (B) Forest 
map of 22 immune cells of TME; (C) The heat map of 22 immune cell scores. Red indicates high scores, blue 
indicates low scores; (D) KM survival curves of two types of TMEC; (E) Distribution box plot of 22 immune cell 
scores in two types of TMEC, * indicates significant difference.
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Similarly, we performed unsupervised clustering in the GSE65858 test set. The optimal number of clusters 
between k = 2–10 was evaluated and repeated 1,000 times. k = 2 was selected as the optimal cluster number based 
on the CDF value and Delta area (Figure S2). There was a significant difference in prognosis between two TMEC 
subtypes (log rank p = 0.015).

Identification and clustering of DEGs between TMECs.  We selected 714 DEGs between TMEC1 and 
TMEC2 for subsequent analysis in the training set (Fig. 3A). Among them, there were 157 up-regulated genes 
and 557 down-regulated genes (Table S4). We first filtered out genes that have a value of 0 in more than 50% of 
the samples. After that, 669 filtered genes were analyzed for univariate cox analysis, and 279 genes significantly 
associated with prognosis were obtained (p < 0.05). Finally, based on 279 gene expression profiles, we used the 
NMF algorithm to re-cluster the HNSC samples in TCGA. As shown in Fig. 3B, select k = 2 as the optimal clus-
ter number according to indicators such as cophenetic, dispersion, and rss, so the two subtypes were defined 
as GeneC1 and GeneC2 (Figure S2). There was a significant prognostic difference in overall survival between 
GeneC1 and GeneC2, as shown in Fig. S3C. We analyzed the difference in 22 immune cell scores between the 
two types of samples. GeneC2 with high scores of T cells CD8, T cells CD4 memory activated, etc. has a better 
prognosis. GeneC1 with low scores of Macrophages M0, T cells CD4 memory resting、Mast cells activated, etc. 
has a poor prognosis. (Fig. 3D).

Construct a prognostic risk model based on TMEscore.  We evaluated the importance of 279 DEGs 
using a random forest algorithm. Set ntree = 100 according to the error rate, as shown in Figure S4A. A total of 
160 candidate feature genes were identified by selecting DEGs with cumulative importance > 95% (Figure S4C). 
The GO and KEGG enrichment analysis showed that they mainly participated in pathways such as the adaptive 
immune response, T cell activation, lymphocyte differentiation, regulation of lymphocyte activation, regulation 
of leukocyte activation, leukocyte differentiation, B cell activation, T cell differentiation, positive regulation of 
lymphocyte activation, T cell selection. (Fig. 4A,B, Table S5–S6). Candidate feature genes were clustered using 
the k-means algorithm. The optimal number of clusters is 3 (Fig. 4C), defined as signature G1, signature G2, and 
signature G3, which contains 20, 56, and 84 genes, respectively. These genes have different expression patterns in 
each sample. Signature G3 is the low expression group, signature G1 is the high expression group, and signature 
G2 is in the middle (Fig. 4D).

Figure 3.   (A) Volcano map of DEGs between TMEC1 and TMEC2. (B) Consistency matrix heatmap of NMF 
algorithm; (C) KM survival curve of GeneC1 and GeneC2; (D) Box plot of 22 immune cell scores in GeneC1 
and GeneC2.
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The TMEscore of different subtypes was calculated based on the prognostic risk model, and the detailed 
information is shown in Tables S7–S9. By comparing the TMEscore of the two GeneCs, we found that the score 
of GeneC1 with the worst prognosis is significantly higher than the GeneC2 with the best prognosis (Fig. 4E, F). 
The median value of the TMEscore (0.146) was chosen as a threshold to classify samples into the Risk-H group 
and the Risk-L group. There was a significant difference in the prognosis between the Risk-H group and the 
Risk-L group (log rank p = 0.0031, HR = 1.52 (1.16–2.00) Fig. 4G).

Relationship between TMEscore and clinical characteristics.  We evaluated the relationship between 
TMEscore and clinical information, such as T staging, N staging, M staging, TNM stage, Age, Grade, Gender, 
smoking history and HPV. The results showed significant differences in TMEscore in different T staging samples. 
There are significant differences in TMEscore for different Graded samples. TMEscore was significantly higher 
in HPV negative samples than that in HPV positive samples. This significant difference was not observed in 
other clinical information (Figure S5).

Relationship between TMEscore and immune genes.  We analyzed the relationship between immune 
activation genes and TMEC, GeneC, and TMEscore. These genes have different expression patterns in differ-

Figure 4.   (A) GO enrichment analysis of 160 genes; (B) KEGG enrichment analysis of 160 genes; (C) k-means 
clustering results of 160 genes; (D) heat map of 160 gene expression levels; (E) Comparison of TMEscore 
between GeneC1 and GeneC2; (F) TMEscore distribution of GeneC1 and GeneC2; (G) KM survival curves for 
the Risk-H and Risk-L.
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ent subtypes (Fig.  5A). Among them, genes such as CXCL10, CXCL9, GZMA, GZMB, PRF1, IFNG, TBX2, 
TNF, CD8A were significantly lower in the Risk-H group with poor prognosis than those in the Risk-L group 
(Figure S6A). The relationship between the expression of the immune checkpoint gene and TMEC, GeneC, and 
TMEscore is shown in Fig. 5B. Most genes are at a low expression level. Among them, genes such as PDCD1, 
CTLA4, LAG3, PDCD1LG2, IDO1, CD274, HAVCR2 were significantly lower in the poor prognosis of the Risk-
H group than those in the Risk-L group (Figure S6B). The expression levels of the TGF/EMT pathway activation 
genes on TMECs, GeneCs, and TMEscore are shown in Fig. 5C. Among them, genes such as ACTA2, TGFBR2, 
VIM, ZEB1, CLDN3, SMAD9 were significantly lower in the poor prognosis of the Risk-H group than those in 
the Risk-L group (Figure S6C), and there was no significant difference in other genes. Also, we found similar 
phenomena in TMEC1 and TMEC2, as shown in Figure S7.

Relationship between TMEscore and genomic variation.  We downloaded the predicted MAF 
results of the mutect2 software. Training set samples with SNP data were included in subsequent analysis. To 
observe the relationship between the distribution of gene mutations and TMEScore, Fisher’s exact test was used 
to compare genes with significant differences in mutation frequency between the Risk-H and Risk-L samples. 
Finally, 26 genes with different mutation frequency were identified (p < 0.01). (Fig. 6, Table S10). Among them, 
the mutation frequency of TP53 and CEP152 in Risk-H was significantly higher than that of Risk-L.

Figure 5.   (A) heatmap of immune activation genes expression of TCGA samples; (B) heatmap of the immune 
checkpoint gene expression of TCGA samples; (C) heatmap of TGF pathway genes expression of TCGA 
samples.
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External dataset validation.  We used the same method to perform TMEscore calculations in the test set. 
The median value of the TMEscore was chosen as a threshold to classify samples into the Risk-H group and the 
Risk-L group. In the test set, we also analyzed the relationship between TMEscore and prognosis, clinical data, 
and immune gene expression.

We ploted survival curves for the Risk-H group and the Risk-L group. As a result, it was found that the AUC 
value of five-years was 0.70 (Fig. 7A). There was a significant difference in prognosis between the two groups 
(log rank p = 0.017), as detailed in Fig. 7B.

We evaluated the relationship between TMEscore and clinical information, such as T staging, N staging, M 
staging, TNM stage, Age, Gender, smoking history and HPV in the test set. TMEscore was significantly higher 
in HPV negative samples than that in HPV 16 and other HPV samples. This result is similar to the one in the 
training set. This significant difference was not observed in other clinical information (Figure S8).

In the test set, we analyzed the relationship between immune activation genes and TMEscore. Among them, 
genes such as CXCL10, CXCL9 were significantly lower in the Risk-H group with poor prognosis than those in 
the Risk-L group (Figure S9A). The relationship between the expression of the immune checkpoint gene and 
TMEscore is shown in Figure S9B. Among them, genes such as IDO1, HAVCR2 were significantly lower in the 
poor prognosis of the Risk-H group than those in the Risk-L group. The relationship between the expression 
levels of the TGF/EMT pathway activation genes and TMEscore is shown in Figure S9C. Among them, genes 
such as ACTA2, VIM were significantly lower in the poor prognosis of the Risk-H group than those in the Risk-L 
group. The experimental results of the test set are similar to those of the training set.

Discussion
A comprehensive understanding of HNSC not only needs to focus on tumor cells but also on TME33.We have 
elucidated the global landscape of the interaction between HNSC clinical characteristics and infiltrating TME 
cells. With the help of several computational algorithms, we have established a method to quantify the infiltrat-
ing mode of TMEscore.

In this study, we obtained gene expression data and clinical annotations from 761 HNSC samples. TMEC1 
and TMEC2 were obtained by clustering of 8 immune cells significantly related to prognosis. After that, DEGs 
associated considerably with prognosis were clustered to obtain GeneC1 and GeneC2. Among these subtypes, 

Figure 6.   Relationship between TMEscore and genomic mutations. The horizontal axis represents the sample, 
the vertical axis represents the gene, the black rectangle represents the mutation, and the gray represents the 
unmutated.
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TMEC2 and GeneC2 have a better prognosis. It is worth noting that their B cells naive, Plasma cells, T cells 
CD8, T cells CD4 memory activated, T cells follicular helper, T cells regulatory Tregs, NK cells activated, Mast 
cells resting all scored higher. TMEC1 and GeneC1 have poor prognosis. Their T cells CD4 memory resting, 
Macrophages M0, Dendritic cells resting, Mast cells activated all scored higher. Of the 22 immune cells, only 
the scores of Macrophages M1 and T cells gamma delta indicated different results. Therefore, we believe that 
there are some similarities in the results of the two clustering methods. It can be speculated that the prognosis 
of TMEC2 and GeneC2 may be related to the enhanced immunological activity of B cells naive, plasma cells, T 
cells CD8, T cells CD4 memory activated, T cells follicular helper, T cells regulatory Tregs, NK cells activated, 
and Mast cells resting.

We further screened and clustered prognosis-related DEGs to obtain signatures G1, signature G2, and sig-
nature G3. On this basis, we have established an algorithm for a comprehensive evaluation of TMEscore. A high 
TMEscore is associated with poor prognosis. There was a significant difference between the Risk-H group and 
the Risk-L group (log rank p < 0.001, HR = 4.06). After that, the samples classified by TMEscore were correlated 
with clinical features. The results showed that there were significant differences in TMEscore for samples of 
different T staging, grades, and HPV. Comprehensive analysis showed that the TMEscore may be a potential 
predictor of prognosis in HNSC.

In previous studies, prognosis prediction based on TNM staging was the primary prognosis prediction model 
for HNSC and many other solid tumors34. With the discovery of the relationship between the characteristics of 
tumor immune microenvironment and tumor progression, it was confirmed that the information of prognosis 
prediction based on a single TMN stage is incomplete33. Therefore, this study attempted to establish a quantita-
tive method of TME infiltration pattern and predicted the prognosis of cancer based on the TME characteristics.

In addition to clinical information, we also analyzed the relationship between TMEscore and immune gene 
expression, and genomic variation. Samples based on the TMEscore classification were associated with immune 
activation genes, activation genes for the TGF pathway, and immune checkpoint genes. The results showed that 
the expression of immune activation genes, immune checkpoint genes, and TGF pathway activating genes showed 
the same trend. Overall, these genes are underexpressed in Risk-H samples and highly expressed in Risk-L sam-
ples. It was found that the mutation frequency of TP53 and CEP152 in the Risk-H group was significantly higher 
than that in the Risk-L group, while other genes showed the opposite trend. TP53 is one of the most common 
tumor suppressor genes35. TP53 protein is mainly involved in regulating cell cycle, promoting apoptosis, and 
participating in DNA damage repair36. Mutations or deletions of TP53 will result in the cell cycle disorders and 
inhibition of apoptosis. More importantly, it will affect the function of DNA damage repair, leading to genomic 
instability37. CEP152 is the coding gene for the Centrosomal protein of 152 kDa38. The relationship between its 
mutation and HNSC has not been reported in the literature.

Our research also has certain limitations, however. At present, genome-wide sequencing data from more than 
1,000 samples is still challenging to obtain39. With the restriction of social ethics and other factors, the number of 
available cancer samples is relatively limited. As biotechnology evolves, the number of patient samples increases, 
which is conducive to the improvement of data integrity and model reliability. Also, our research requires valida-
tion of biological experiments. In the next study, we will screen and validate DEGs between different subtypes of 
HNSC. Their molecular functions will be studied to analyze their role in the development of cancer. Correlation 
analysis of their regulated protein expression with clinical features of patients will be performed. The reliability 

Figure 7.   (A) ROC curve and AUC values in the test set; (B) KM survival curves for the two groups of samples 
in the test set.
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of TMEscore will be verified from the overall level, providing a valid criterion for the prognosis and diagnosis 
of HNSC.

Conclusions
In summary, in this study, we systematically evaluated the TME infiltration pattern from 816 HNSC patients 
and developed a TME infiltration model approach, which may be a potential predictor of HNSC prognosis.
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