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ABSTRACT. When an insect hovers or performs constant-speed flight, its wings flap at certain amplitude, frequency, angle of attack,
etc., and the flight is balanced (vertical force equals to the weight, and horizontal force and pitch moment are zero). It is possible that
when some other sets of values of wing kinematical parameters are used, the force and moment balance conditions can still be satis-
fied. Does the wing kinematics used by a constant-speed flying insect minimize the power expenditure? In this study, whether the wing
kinematics used by a freely hovering dronefly minimizes its energy expenditure was investigated. First, the power consumption using
the set of values of wing kinematical parameters that was actually employed by the insect was computed. Then, the kinematical param-
eters were changed while keeping the equilibrium flight conditions satisfied, and the power consumption was recalculated. It was
found that wing kinematical parameters used by the freely hovering dronefly are very close to that minimize its energy consumption,
and they can ensure the margin of controllability from hovering to maneuvers. That is, slight change of wing kinematical parameters
did not cause significant change of the specific power (maintained a relatively small value).
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When an insect hovers or performs constant-speed flight, its wings flap
at certain amplitude, frequency, angle of attack, etc.; the vertical com-
ponent of the aerodynamic force of the wings balances the weight, the
thrust overcomes the body drag, and the aerodynamic moment about
the center of mass of the insect is zero. It is possible that when some
other sets of values of wing kinematical parameters are used, the force
and moment balance conditions can still be satisfied, and the insect can
still perform constant-speed flight or hovering. For example, when the
stroke amplitude is decreased, but the angle of attack is increased, by
certain amount (with some adjustments on the mean stroke angle), the
same vertical force, thrust, and moment (zero) can be produced. That is,
an insect could perform constant-speed flight or hovering using differ-
ent combinations of wing kinematical parameters. Although different
combinations of wing kinematical parameters might give the same
aerodynamic forces and moments, the energy consumption is different
in general. It is of great interest to ask the question “Does the wing kine-
matics used by a hovering (or constant-speed flying) insect minimize
the power expenditure?” In this study, this question is addressed.

Power consumption in insect flight was studied using theoretical,
numerical, and experimental method (e.g., Ellington 1984a, 1984b;
Dudley and Ellington 1990; Sun and Tang 2002; Sun and Du 2003; Liu
and Aono 2004; Fry et al. 2005; Zhao and Deng 2009). Early works
used the blade-element theory combined with vortex theory or momen-
tum theory to compute the aerodynamic power (Ellington 1984a,
Dudley and Ellington 1990). Because the method did not take into ac-
count some major aerodynamic mechanisms, such as the leading-edge
vortex, the computed power was much lower than that was expected
from measurements of oxygen consumption. Recent studies on power
consumption employed computational method based on computational
fluid dynamics (CFD) (Sun and Tang 2002, Sun and Du 2003, Liu and
Aono 2004) or experimental method of measuring the aerodynamic
force and torque of the wings using a dynamically scaled robotic
wing model (Fry et al. 2005, Zhao and Deng 2009). Using the wing ki-
nematics of flying insects, these numerical and experimental methods
gave a vertical force that approximately balanced the insect weight and
a horizontal force and a moment about the center of mass that were

close to zero. This indicated that the aerodynamic forces and moment
were computed or measured with good accuracy, and hence, the aero-
dynamic power could be correctly estimated.

In this study, we employ the CFD method to calculate the aerody-
namic power and investigate whether the wing kinematics used by a
freely hovering dronefly minimizes its energy consumption.Wing kine-
matical parameters of freely hovering droneflies (Eristalis tenax) were
measured recently by our group (Liu and Sun 2008). We first compute
the power consumption using the set of wing kinematical parameters
that is actually employed by the insect. We then change the kinematical
parameters while keeping the equilibrium flight conditions satisfied
and recalculate the power consumption. With the computed data, the
question raised above can be addressed.

Materials and Methods
The Wings, the Coordinate Systems, and the Wing Kinematics.

The wing planform used (Fig. 1) is approximately the same as that of a
dronefly (Liu and Sun 2008). On the basis of measurement by Walker
et al. (2010) and calculation by Du and Sun (2012) on the effect of wing
deformation on aerodynamic forces, it is showed that as a first approxi-
mation, the deformable wing could be modeled by a rigid flat-plate
wing with its angle of attack being equal to the local angle of attack at
the radius of second moment of wing area. Thus, we assume that wings
are rigid flat-plate wings; the wing section is modeled as a flat plate
with rounded leading and trailing edges and the thickness of which is
3% c (c is the mean chord length of the wing). In accordance with our
past study (Wu et al. 2009), body movement is very little and can be
neglected for a hovering dronefly. The radius of the second moment of
wing area (r2) is computed as 0.55R, where R is the wing length (the
mean flapping velocity at span location r2 is used as reference velocity
in this study).

To clearly describe the wing motion and to resolve the force compo-
nents, three coordinate systems are used. Two are inertial coordinate
systems, OXYZ and OXeYeZe. For OXYZ, the origin O is at the wing
base (Fig. 2A); its X-Y plane coincides with the stroke plane (Fig. 2A
and B), and the Z direction is vertical to stroke plane. The coordinate
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system OXeYeZe has the same origin as the coordinate system OXYZ, its
Ye-axis coincides with the y-axis, and Xe-Ye plane is the horizontal plane
(Fig. 2B). The third is the body-fixed coordinate system oxwywzw. It has
the same origin as the two inertial coordinate systems, but it rotates
with the wing. The xw-axis is parallel to the wing chord, and the yw-axis
is on the pitching-rotation axis of the wing (Fig. 2A).

The stroke plane angle (b), the stroke deviation angle (y), the
geometrical angle of attack (a), and the positional angle (f) of a wing
are defined as in Figure 2. Based on the measured data of the insect
(Liu and Sun 2008), f, a, and y can be approximated by simple func-
tions in the following. f can be approximated by a simple harmonic
function

f ¼ �fþ 0:5Usinð2pntÞ (1)

where n is the wing-beat frequency, �f the mean stroke angle, and U
the stroke amplitude; �f and U are defined as follows:
�f ¼ ðfmax þ fminÞ=2, U ¼ fmax � fmin, where fmax and fmin are the
maximum and minimum values of f, respectively (see Ellington
1984b). The angle of attack of the wing (a) takes a constant value dur-
ing the down- or upstroke translation (the constant value is denoted by
ad for the downstroke translation and au for the upstroke translation);
around stroke reversal, the wing flips and a change with time, also
according to the simple harmonic function. The function representing
the time variation of a during the supination atmth cycle is:

a ¼ ad þ a ðt � t1Þ �
Dtr
2p

sin
2pðt � t1Þ

Dtr

� �� �
; t1 � t � t1 þ Dtr (2a)

where Dtr is the time duration of wing rotation during the stroke rever-
sal and a is a constant:

a ¼ ð180� � au � adÞ=Dtr (2b)

t1 is the time when the wing-rotation starts:

t1 ¼ mT � 0:5T � Dtr=2 (2c)

The expression of the pronation can be written in the same way.

Finally, the time variation of the deviation angle can be approxi-
mately represented by a simple harmonic function

yðtÞ ¼ y0 þ y1sinð2pntÞ (3)

where y0 and y1 are the mean deviation angle and the amplitude of devi-
ation angle, respectively.

Evaluation of Aerodynamic Forces and Mechanical Power. Under
hovering flight conditions, Aono et al. (2008) and Yu and Sun (2009)
showed that interaction between wing and body was negligibly small:
the aerodynamic force in the case with the body–wing interaction was
<2% different from that without body–wing interaction. Although the
left and right wings might interact via a “clap and fling” mechanism,
this mechanism is irrelevant in this study because of small stroke ampli-
tude. Therefore, in the present CFD model, the body is neglected, and
only the flows around one wing are computed (the aerodynamic forces
produced by the other wing are derived from the results of the computed
wing).

The flow equations (the Navier–Stokes equations) and solution
method used in this study are the same as those described in Sun and
Tang (2002) and Sun and Du (2003). In the method, the time derivatives
of the momentum equations are differenced using a second-order,
three-point backward difference formula. To solve the time-discretized
momentum equations for a divergence free velocity at a new time level,
a pseudotime level is introduced into the equations, and a pseudotime
derivative of pressure divided by an artificial compressibility constant
is introduced into the continuity equation. The resulting system of equa-
tions is iterated in pseudotime until the pseudotime derivative of pres-
sure approached zero, and, thus, the divergence of the velocity at the
new time level approaches zero. The derivatives of the viscous fluxes in
the momentum equation are approximated using second-order
central differences. For the derivatives of convective fluxes, upwind
differencing based on the flux-difference splitting technique is used. A
third-order upwind differencing is used at the interior points, and a sec-
ond-order upwind differencing is used at points next to boundaries.

Boundary conditions are as follows. For the far-field boundary con-
dition, at inflow boundary, the velocity components are specified as
free-stream conditions, whereas pressure is extrapolated from the inte-
rior; at the outflow boundary, pressure is set equal to the free-stream
static pressure, and velocity is extrapolated from the interior. On the

Fig. 1. Portions of the computation grid of the dronefly wing (A) in the plane of wing planform and (B) in a sectional plane.

Fig. 2. Definitions of the angles of a flapping wing (b, stroke plane angle; f, the positional angle; a, the geometrical angle of attack; y, the
stroke deviation angle) and the coordinate systems (inertial coordinate systems OXYZ and OXeYeZe; body-fixed coordinate system oxwywzw).
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wing surface, impermeable wall and nonslip conditions are applied,
and the pressure is obtained through the normal component of the
momentum equation written in the moving grid system.

Once the flow equations are numerically solved, the fluid velocity
components and pressure at discretized grid points for each time step
are available. The aerodynamic forces and moments acting on the wing
are calculated from the pressure and the viscous stress on the wing sur-
face. The inertial moments due to the acceleration of the wing mass are
calculated analytically.

The lift (l) is the component of the total aerodynamic force perpen-
dicular to the translational velocity of the wing (defined below), i.e.,
perpendicular to the stroke plane, and is positive when it is in the posi-
tive Z direction (Fig. 2A). The drag (d) is the component of the total
aerodynamic force parallel to the translational velocity and is positive
when directed opposite to the direction of the translational velocity of
the downstroke (Fig. 2A). The X component of d is denoted as d0, and
d0 ¼ dcosf. Resolving l and d0 into the ze and xe-axes, we obtain the
vertical force (V) and the thrust (H), respectively (Fig. 2B):

V ¼ l cosbþ d0sinb (4a)

H ¼ l sinb� d0cosb (4b)

The pitch moment of the total aerodynamic force about the center of
mass of the insect is denoted byN. V,H, l, d, and d0 are nondimensional-
ized by 0:5rU2S and N by 0:5rU2Sc, where r is the fluid density, S is
the wing area, c is the mean chord length of wing, and U is the mean
flapping velocity at span location r2, defined asU¼ 2Anr2, and the cor-
responding coefficients of these forces are denoted as follows: CV, CH,
CN,Cl, Cd, andCd’.

The aerodynamic and inertial moments about the wing root are
denoted as Ma and Mi, respectively. The mechanical power of a wing
(P) can be easily calculated:

P ¼ Ma þMið Þ � X (5)

where X is the angular velocity vector of the wing. Let Pa¼Ma�X and
Pi¼Mi�X be the aerodynamic and inertial power, respectively; thus
P¼PaþPi. The power is nondimensionalized by 0:5rU3S, giving the
aerodynamic, inertial, and total power coefficients as CP,a, CP,i, and CP,

respectively.
Before proceeding to compute the flows for obtaining the solution

that represents the hover flight, we conducted grid resolution test to
give some quantitative assessment of the accuracy of the aerodynamic
force calculation. Three grids for the hawkmoth wing were considered:
27 by 27 by 32 (in the normal direction of the wing surface, around the
wing section, and in the spanwise direction of the wing, respectively;
first layer grid thickness was 0.003c), 53 by 53 by 63 (first layer grid
thickness was 0.001c) and 107 by 107 by 126 (first layer grid thickness
was 0.0005c). Note that in each refinement, the grid dimension in each
direction was approximately doubled. In the normal direction, the outer
boundary was set at 20 chord lengths from the wing and in the spanwise
direction; the boundary was set at six chord lengths from the wing.
Portions of the dense grid (107 by 107 by 126) are shown in Figure 1.
The nondimensional time step was 0.02 (nondimensionalized by c/U;
the effect of time step value was studied, and it was found that a numeri-
cal solution effectively independent of the time step was achieved if the
time step value was< 0.02). Calculations were performed using the
above grids for the model dronefly wing in flapping motion (ad, au, and
�f are 41.8, 41.8, and 2.5�, respectively).

For a clear description of the results, the time in a cycle is expressed
as a nondimensional parameter, t̂, such that t̂ ¼ 0 at the start of the
downstroke and t̂ ¼ 1 at the end of the subsequent upstroke. The com-
puted lift (CL), drag (CD), and pitching moment (CM) coefficients are
shown in Figure 3. It is observed that the first grid refinement produces
a relatively large change in the results, but the second grid refinement

produces very small change in the results. By the first grid refinement
(from grid 27 by 27 by 32 to 53 by 53 by 63), the mean magnitudes of
change in CL, CD, and CM are 0.195, 0.142, and 0.034, respectively,
and the values for the second grid refinement (from grid 53 by 53 by 63
to grid 107 by 107 by 126) are 0.045, 0.042, and 0.011, respectively.
The ratio between the changes in CL, CD, and CM is about 1:4, as
expected for the second-order method. Let us use the above data to give
an estimate of the accuracy of the solution obtained by grid (107 by 107
by 126). Suppose that the grid is further refined (doubling the grid
dimension in each direction), one could expect that the changes in CL,
CD, and CM would be about 0.011 (0.045/4¼ 0.011), 0.01 (0.042/
4¼ 0.01), and 0.003 (0.011/4¼ 0.003), respectively. On the basis of
the 1/4-convergence ratio, we could estimate that the solution by grid
107 by 107 by 126 has errors in CL, CD, and CM as 0.015 (0.011�
[4/3]¼ 0.015), 0.013 (0.01� [4/3]¼ 0.013), and 0.004 (0.003�
[4/3]¼ 0.004), respectively. The mean CL, CD, and CM are 1.831,
1.827, and 0.195, respectively. Therefore, it is estimated that when
using the grid 107 by 107 by 126, the numerical discretization and con-
vergence errors in the mean CL, CD, and CM are <2.0%. The grid 107
by 107 by 126 is used for the present flow computations.

Flight Data. Flight data for the hovering dronefly are taken from
Liu and Sun (2008). Table 1 lists the general morphological data; the
data include m (insect mass), mwg (mass of one wing), R, c, r2, S, Ix,w,
Iy,w, Iz,w (moments of inertia of a wing about xw, yw, and zw axes,
respectively), and Ixz,w (product of inertia of a wing). Table 2 lists the
wing-kinematic data (U, n, ad, au, �f, y0, y1, Dtr, b).

Fig. 3. Time courses of the lift (CL), drag (CD), and pitching moment
(CM) coefficients of the wing of dronefly at hovering flight for
different grids.
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If data in Tables 1 and 2 are directly used in the calculation of aero-
dynamic forces and power requirement, the forces acting on the insect
might not be in balance, because there are necessarily errors in the
measurement of the data. Here, we make small adjustment on the values
of ad, au, and �f, so that the flight is balanced, i.e., the vertical force
being equal to the weight of the insect and the horizontal force and the
pitch moment about the center of mass being equal to zero. The reason
for only three parameters being modified is that there are three condi-
tions to be met in hovering flight (zero mean horizontal force, mean ver-
tical force balancing the weight, and zero mean pitch moment). The
reason for choosing ad, au, and �f to be modified is that experimental
data for ad and au have relatively large error (Liu et al. 2008), and the
aerodynamic forces and moments are very sensitive to the variations in
ad, au, and �f.

The adjustment of ad, au, and �f proceeds as follows. The original
data of ad, au, and �f (ad¼ 34�, au¼ 33�, and �f¼ 7�) are first used in
the flow calculation and a set of mean vertical force ( �V), mean horizon-
tal force ( �H), and mean pitch moment about center of mass ( �N) are
obtained. If �V is not equal to the insect weight, or �H and �N are not equal
to zero, ad, au, and �f are changed; the calculations are repeated until �V
is different from the insect weight, and �H and �N/c are different from
zero by<3% of the insect weight. The modified values of ad, au, and �f
are also given in Table 2 (values in parentheses).

Results and Discussion
Power Consumption in Actual Hovering. We first computed the

power consumption in the actual hovering of the insect; i.e., we used
the set of wing kinematical parameters that was actually employed by
the insects (Table 2). The instantaneous aerodynamic (Cp,a), inertial
(Cp,i), and total power (Cp) coefficients of a wing are given in Figure 4.
It is interesting to note that the time course of Cp is more similar to that
of Cp,i than to that of Cp,a, because the inertial power is larger than the
aerodynamic power in many part of the wing-beat cycle. This means
that elastic energy storage could be important for the droneflies.

Integrating Cp over the part of a wing-beat cycle where it was posi-
tive gave the nondimensional positive work ðCþwÞ; integrating Cp over
the part of a wing-beat cycle where it was negative gave the nondimen-
sional negative work ðC�wÞ. Let Cw be the mean mechanical power over
a wing-beat cycle. The mass-specific power (P*) was determined as the
mean mechanical power over a wing-beat cycle divided by the mass of
the insect:

P� ¼ 0:5rU3 � ð2SÞ � ðCW=T Þ=m (6)

where T was the wing-beat period. When calculating Cw, one needs to
consider how the negative work fitted into the power budget. Ellington

(1984a, 1984b) suggested that there were three possibilities. One was
that the negative power was simply dissipated as heat and sound by
some form of an end stop, and then it could be ignored in the power
budget. The second was that in the period of negative work, the excess
energy could be stored by an elastic element, and this energy could then
be released when the wing did positive work. The third was that the
flight muscles did negative work (i.e., they were stretched while devel-
oping tension, instead of contracting as in “positive” work), but the neg-
ative work used much less metabolic energy than an equivalent amount
of positive work, and again, the negative power could be ignored in the
power budget. That is, out of these three possibilities, two ways of com-
puting Cw could be taken. One is neglecting the negative work (zero
elastic energy storage), i.e.,

Cw ¼ Cw
þ (7a)

The other is assuming that the negative work can be stored and
released when the wing does positive work (100% elastic energy stor-
age), i.e.,

Cw ¼ Cw
þ � jCw

�j ¼ Cw
þ þ Cw

� (7b)

It should be noted that the inertial power in a complete cycle is
exactly zero because the wing stroke is periodic; that is, the time aver-
age of Cp,i in Figure 4 is zero. Thus, for the case of 100% elastic energy
storage,Cw is only contributed by theCp,a, the aerodynamic power.

Table 2. Kinematical data of actual hovering

U (�) n (Hz) ad (�) au (�) �f (�) y0 (�) y1 (�) Dtr b (�) Re

107.1 164 34 (29.8) 33 (29.7) 7 (2.5) 4.0 3.0 0.3 0 782

Numbers in parentheses represent data modified to satisfy force and moment equilibrium conditions. U, the stroke amplitude; n, the stroke frequency; ad,
the angle of attack in downstroke translation; au, the angle of attack in upstroke translation; �f, the mean stroke angle; y0, the mean deviation angle, y1, the
deviation amplitude; Dtr, the wing rotation duration; b, the stroke plane angle; Re, Reynolds number.

Table 1. Morphological data of wing

m (mg) mwg (mg) R (mm) c (mm) S (mm2) r2/R Ixx (kg m
2) Iyy (kg m

2) Izz (kg m
2) Ixz (kg m

2)

88.88 0.560 11.2 2.98 33.34 0.550 5.23� 10�13 1.25� 10�11 1.20� 10�11 8.04� 10�13

m, insect mass; mwg, mass of one wing; R, wing length; c, mean chord length of wing; S, area of one wing; r2, radius of second moment of wing area; Ix,w, Iy,w,
and Iz,w, moments of inertia of a wing about xw, yw and zw axes, respectively; Ixz,w, product of inertia of a wing.

Fig. 4. The aerodynamic (Cp,a), inertial (Cp,i), and total power (Cp)
coefficients of a wing in a wing-beat cycle at actual hovering.

4 JOURNAL OF INSECT SCIENCE VOLUME 14

is
less than 
-
-
`
``
'
''
i
s


There could be other possibilities; e.g., only certain amount of the
negative work can be stored and released when the wing does positive
work. We take 50% elastic energy storage as a forth possibility and an
additional way of computing Cw is:

Cw ¼ Cw
þ � 0:5jCw

�j ¼ Cw
þ þ 0:5Cw

� (7c)

With Cw computed by equations 7a, 7b, or 7c, the specific power P�

could be computed using equation 6. When Cw is computed by equa-
tions 7a, 7b, and 7c, the resulting P� is denoted by P�1, P�2, and P�3,
respectively. The computed results are as follows: P�1, P�2, and P�3, are
63.2, 52.4, and 41.5 W kg�1, respectively. It is obvious that the power
saving by elastic energy storage could be significant. The largest possi-
ble effect of elastic energy storage amounts to reduce the power by
�34%.
Power Consumption When Wing Kinematical Parameters Are
Changed. In the section of “Power Consumption in Actual

Hovering”, power consumption in the case of actual hovering had been
computed; i.e., wing kinematical parameters used in the computation
were those actually employed by the hovering insect. Here, we change
the kinematical parameters from the actual ones while keeping the equi-
librium flight conditions satisfied and recalculate the power
consumption.

The aerodynamic power in the midportion of a down- or upstroke is
due to the wing drag and is mainly influenced by the lift-to-drag ratio of
the wing (Sun and Tang 2002, Sun and Du 2003). Usherwood and
Ellington (2002a, 2002b) measured the lift-to-drag ratios from mayfly
to quail using rotating wings. Dickinson et al. (1999) measured lift-to-
drag ratio of fruit fly wings, also using rotating-wing experiment. They
showed that the lift-to-drag ratio of an insect wing was dependent on
the angle of attack of wing; it decreased as angle of attack increased.
From our computation, the lift-to-drag ratio of the dronefly wing can
also be obtained, and it is shown in Figure 5. The lift-to-drag ratio
decreases with angle of attack approximately linearly. Therefore, the
aerodynamic power can be greatly influenced by ad and au. The inertial
power is mainly due to the translational acceleration of the wing (Sun
and Tang 2002, Sun and Du 2003), which is proportional to Un2 (Sun
and Du 2003). We thus see that power consumption is relatively sensi-
tive to variations in U, n, ad, and au. In this study, we would change the
stroke amplitude (U), wing-beat frequency (n), and angle of attack (ad
and au); �f is also adjusted to keep the equilibrium flight conditions sat-
isfied. Note that because there are three conditions to be met for bal-
anced flight (vertical force equals to the weight, and horizontal force

and pitch moment are zero), only the variation of one of the four
parameters (U or n, ad, au, and �f) can be prescribed; variations of the
other three parameters are determined by the equilibrium flight condi-
tions. Here, we prescribed the variation of U or n and adjust ad, au, and
�f based on equilibrium flight conditions. The process of adjusting ad,
au, and �f has been described under Flight Data.

Table 3 lists the prescribed U values and the corresponding values
of ad, au, and �f that gave equilibrium flight (values of U, ad, au, and �f
actually employed in the hovering flight are included for comparison).
As given in the table, when U is increased or decreased from the value
actually employed by the hovering insect, ad and au decrease or
increase (�f changes only a little). This is because when U is increased
(or decreased), the speed of the wing would be increased (or decreased),
hence smaller (or larger) ad and au are required to keep the vertical
force unchanged.

Figure 6 shows the computed coefficients of aerodynamic (Cp,a),
inertial (Cp,i), and total power (Cp) in a wing-beat cycle at various U
(and the corresponding ad, au, and �f). First, we examine the aerody-
namic power coefficient Cp,a (Fig. 6A). Let us first look at Cp,a in the
midportion of the down- and upstroke (t̂ ¼ 0:1� 0:4; t̂ ¼ 0:6� 0:9).
When U is increased from the actual value (U¼ 107.1�), Cp,a decreases
slightly, but when U is decreased, Cp,a increases significantly. This is
explained as follows. The slope of the curve of lift versus a of an insect
wing becomes smaller and smaller as a is larger than 30� (Dickinson
et al. 1999, Usherwood and Ellington 2002b, Wu and Sun 2004). In the
actual hovering, ad and au are already about 30� (Tables 2 and 3).
When U is decreased from the actual value, ad and au must have rela-
tively large increase to produce enough lift because of the relatively
small slope of the lift-versus-a curve at a larger than 30� (as U was
decreased to 87�, ad and au became 52� [Table 3]). Large a would pro-
duce large drag and small lift-to-drag ratio (as seen in Fig. 5, when ad or
au is 52� the lift-to-drag ratio is <2.8), resulting in the large increase in
Cp,a. Let us now look at Cp,a during the stroke reversal (Fig. 6A:
t̂ ¼ 0:4� 0:6; and t̂ ¼ 0:9� 1:0 and t̂ ¼ 0� 0:1). Here, unlike the
case of Cp,a in the midportion of the down- and upstroke, as U is
increased (or decreased), Cp,a increases (or decreases). The reason for
this is as follows. When U is increased (or decreased), ad and au
become smaller (or larger). Thus, the wing needs to rotate by a larger
(or smaller) angle during stroke reversal, resulting a larger (or smaller)
power.

Next, we examine at the inertial power coefficient Cp,i (Fig. 6B).
When U is increased or decreased from the actual value (107.1�), Cp,i

would increase or decrease (Fig. 6B). This is because a larger (or smaller)
U gives larger (or smaller) translational acceleration of the wing.

Comparing Cp,a (Fig. 6A) and Cp,i (Fig. 6B) shown the following:
when U is increased from the actual value, the change (increase) in Cp,i

is larger than the change (decrease) inCp,a, hence the total power or spe-
cific power consumption would increase. When U is decreased from
the actual value, first the change (increase) in Cp,a is a little smaller, and
then became larger, than the change (decrease) in Cp,i; as a result, the
power consumption would first decrease slightly and then increase.

Figure 7 shows the computed specific power, P�1, P�2, and P�3. As
expected, when U was increased (ad and au decreased) from the actual

Fig. 5. The lift-to-drag ratio of the dronefly wing as a function of
angle of attack.

Table 3. Values of ad, au and �f determined by force and moment
equilibrium conditions when U is varied

U (�) ad (�) au (�) �f (�)

87.1 52.0 51.5 2.6
97.1

(107.1)
37.1
(29.8)

37.0
(29.7)

2.6
(2.5)

117.1 24.8 24.7 2.8
127.1 21.1 20.9 2.8

Values in the parentheses are those employed in the actual hovering flight.
U, the stroke amplitude; ad, the angle of attack in downstroke translation; au,
the angle of attack in upstroke translation; �f, the mean stroke angle.
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value, in general the specific power increased and when U was
decreased (ad and au increased) from the actual value, the specific
power first decreased slightly and then increased rapidly.

The results for varying n (and ad and au and �f) are given in Table 4
and Figures 8 and 9, which show the prescribed values of n (and the cor-
responding values of ad, au and �f for equilibrium flight), the power
coefficients, and the specific power as a function of n, respectively.
Explanation of these results is similar to that in the case of varyingU.

For a real freely hovering dronefly, it was possible that the specific
power was between P�1 and P�2 in Figures 7 and 9. This indicated that,
on the one hand, wing kinematical parameters used by the freely hover-
ing dronefly were very close to that minimize its energy consumption;
on the other hand, these wing kinematical parameters could ensure the
margin of controllability from hovering to maneuvers. That is, slight
change of wing kinematical parameters did not cause significant change
of the specific power (P� maintained a relatively small value).
Some Discussions on the Assumptions Made in the Modeling. In

the above calculations, we varied the stroke amplitude (U) or frequency
(n), angle of attack (ad and au), and mean positional angle of wing

subject to force and moment balance conditions. However, variations in
other kinematical parameters, e.g., phase angle between wing stroke
and pitching, elevation angle (y), stroke plane angle (b), and the wave-
forms of U, a, and y were not considered. Furthermore, the wings were
assumed to be rigid. Some comments on these assumptions are given
here.

The effect of varying phase angle between wing strokes and pitch-
ing on power requirement was investigated by Sun and Tang (2002).
They showed that either an advanced or a delayed wing pitching would
increase the power requirement. Symmetrical wing pitching, as that
employed in this study, gave minimum power requirement. The effect
of varying stroke plane angle on power requirement was considered by
Mou et al. (2011). It was shown that changing b produce only very
small change in power requirement. Thus, b being fixed at zero in this
study should be reasonable.

The wings of most insects are corrugated, and in flapping motion,
they undergo time-varying deformation. Walker et al. (2010) measured
the time-varying deformation of wings in droneflies, and Rees (1975)
measured the corrugation in droneflies and several other insects.
Recently, Du and Sun (2012) studied the effects of wing deformation
and corrugation on aerodynamic force and power of dronefly wings.
They showed that when acting alone, wing deformation increases the
lift and decreases aerodynamic power, but wing corrugation has oppo-
site effects; when acting together, the effects of wing corrugation parti-
ally cancel that of the wing deformation. They concluded that using a
rigid flat-plate wing to model the corrugated deforming dronefly wing
is a good approximation.

Fig. 7. The specific power, P�1, P
�
2, and P�3, at various U.

Fig. 6. The coefficients of aerodynamic (Cp,a), inertial (Cp,i), and total power (Cp) in a wing-beat cycle at various U values (and the
corresponding values of ad, au, and �f).

Table 4. Values of ad, au
, and �f determined by force and moment

equilibrium conditions when n is varied

n (Hz) ad (�) au (�) �f (�)

131.2 52.0 51.5 2.6
147.6
(164.0)

37.9
(29.8)

37.3
(29.7)

2.6
(2.5)

180.4 24.2 24.1 2.8
196.8 20.4 20.0 2.8

Values in the parentheses are those employed in the actual hovering flight.
n, the flapping frequency; ad, the angle of attack in downstroke translation;
au, the angle of attack in upstroke translation; �f, the mean stroke angle.
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As far as we know, how changes in the amplitude of y and in the
waveforms of U, a, and y would affect power requirements in equili-
brium flight have not been investigated. Future work is required to
investigate this.

When U or n was increased or decreased from the value actually
employed by the hovering dronefly, ad and au decreased or increased
(�f changed a little) to keep the equilibrium flight conditions satisfied.
WhenU or nwas increased (ad and au decreased) from the actual value,
in general the specific power increased and when U or n was decreased
(ad and au increased), the specific power first decreased slightly and
then increased. Therefore, it could be said that wing kinematical param-
eters used by the freely hovering dronefly were very close to that

minimize its energy consumption, and they could ensure the margin of
controllability from hovering to maneuvers. That is, slight change of
wing kinematical parameters did not cause significant change of the
specific power (P� maintained a relatively small value).
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