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Variable selection in a flexible parametric
mixture cure model with
interval-censored data
Sylvie Scolas,a*† Anouar El Ghouch,a Catherine Legranda

and Abderrahim Oulhajb*†

In standard survival analysis, it is generally assumed that every individual will experience someday the event of
interest. However, this is not always the case, as some individuals may not be susceptible to this event. Also, in
medical studies, it is frequent that patients come to scheduled interviews and that the time to the event is only
known to occur between two visits. That is, the data are interval-censored with a cure fraction. Variable selection
in such a setting is of outstanding interest. Covariates impacting the survival are not necessarily the same as those
impacting the probability to experience the event. The objective of this paper is to develop a parametric but flex-
ible statistical model to analyze data that are interval-censored and include a fraction of cured individuals when
the number of potential covariates may be large. We use the parametric mixture cure model with an accelerated
failure time regression model for the survival, along with the extended generalized gamma for the error term.
To overcome the issue of non-stable and non-continuous variable selection procedures, we extend the adaptive
LASSO to our model. By means of simulation studies, we show good performance of our method and discuss the
behavior of estimates with varying cure and censoring proportion. Lastly, our proposed method is illustrated with
a real dataset studying the time until conversion to mild cognitive impairment, a possible precursor of Alzheimer’s
disease. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

Keywords: accelerated failure time; cure model; interval-censoring; extended generalized gamma; adaptive
LASSO

1. Introduction

Alzheimer’s disease is the most common cause of dementia. Recently, scientists have begun to use the
term mild cognitive impairment (MCI) when an individual has difficulty remembering things or thinking
clearly, but the symptoms are not severe enough to warrant a diagnosis of Alzheimer’s disease. Recent
research has shown that individuals with MCI have an increased risk of developing Alzheimer’s disease.
However, the conversion from MCI to Alzheimer’s disease is not automatic, and consequently, a diagnosis
of MCI does not always mean that the person will go on to develop Alzheimer’s disease. In the manage-
ment of at risk populations (i.e. elderly), it is therefore important to study the time to MCI conversion
and to identify risk factors associated with it. Several studies were performed within this respect [1–3].
In particular, we consider here a study [4] conducted from 1988 to 2008, which included 241 healthy
elderly people (average age of 72 years) and presents several interesting features. Because participants
were followed at regular interviews, the endpoint of interest in this study, the time to MCI conversion, is
only known to occur between two successive visits. That is, all the observed data are interval-censored.
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Participants who do not experience conversion at their last follow-up date are right-censored. Also, it is
known that even in this at-risk population, some individuals will never experience conversion [5]; there-
fore, a fraction of the population is ‘immune’ to the event or ‘cured’, as opposed to ‘susceptible’ or
‘uncured’. It is interesting to identify which covariate impacts the probability of being susceptible or not,
the time until the conversion or both. We, thus, need a method that allows such variable selection and
analysis. Up to now, these data have been analyzed without variable selection and without accounting for
a possible cure fraction but dealing with the interval-censored nature of the data.

Most statistical softwares propose methods for right-censored data, but few of them allow data to be
interval-censored [6]. In a non-parametric setting, the Kaplan–Meier estimator is no longer available as,
in most cases, the events can no longer be ordered. To overcome this, the Turnbull non-parametric survival
estimator was proposed [7], and only recently, a generalization to allow for continuous covariates was
proposed [8]. Regression models have also been studied under that type of censoring [9–14]. However, all
these methods usually make use of complex algorithms or methods, such as expectation–maximization
(EM) algorithm [15] , self-consistency algorithm [7], iterative convex minorant algorithm[11], or B-spline
smoothing techniques [12]. Conversely, assuming a specific distribution for the event times makes the
analysis much simpler in the presence of interval-censoring.

When a fraction of the population is not susceptible, the survival distribution is improper, leading the
survival function to level off at a value different from zero. In this case, estimation of the proportion of
immune individuals is of primary importance. In the past decades, numerous authors have proposed alter-
natives to standard survival techniques to take a cure fraction into account. Pioneers in that field were
[16] and [17]. They supposed the global population could be seen as a mixture of cured and suscepti-
ble individuals, leading to the mixture cure model. An alternative is the promotion time model [18, 19],
which assumes an upper bound for the cumulative hazard and, hence, is also called the bounded cumula-
tive hazard model. It was developed to maintain the assumption of proportional hazards and is based on
a biological interpretation. In a mixture cure model, the incidence, that is, the cure probability, is often
modeled parametrically, usually via a logistic regression model, or more rarely via a logit or a probit
model. Only very few attempts to model this part of the model non-parametrically have been proposed.
Regarding the latency part, that is, modeling the impact of covariates on the time to event of susceptible
individuals, both parametric and semi-parametric models have been proposed. Semi-parametric models
do not specify any distribution function in the latency part [20–24]. These models, however, have a disad-
vantage in that they rely on the time-consuming EM algorithm for inference. Therefore, fully parametric
mixture cure models, in which the latency is often modeled via a Cox PH model, in which the baseline
hazard is defined parametrically [25], can be a good alternative. Another choice for the latency part can
be the accelerated failure time (AFT) model, for example, when the hypothesis of proportional hazards
is not met [26]. Besides, as Sir David Cox stated [27], ‘accelerated life models are in many ways more
appealing because of their quite direct physical interpretation’. In a parametric AFT model, a specific
distribution is assumed for the error-term. To avoid strong assumptions with regard to this specification,
the extended generalized gamma (EGG) has been proposed as a flexible choice [28,29]. This distribution
includes, as special cases, the normal and Weibull distributions, both widely used in survival analysis.

The mixture cure model also allows a direct interpretation of the effect of covariates on the cure prob-
ability and on the survival distribution for susceptible individuals, separately. Interestingly, these two
sets of covariates may not necessarily be the same, and the number of potential covariates to be included
in each component of the model can be large. Variable selection is thus needed so that the final model
possesses good predictability and can easily be interpreted. Classical variable selection methods, like
the well-known best subset or stepwise selection, suffer from some serious drawbacks. For example, the
computational load increases with an increasing number of variable in the model, and the process is dis-
crete and non-stable, as it either enters or deletes a covariate from the model. Several other drawbacks
are described by Fan, 2001 [30] and Harell, 2001 [31]. On the contrary, shrinkage methods, such as the
LASSO [32] and adaptive LASSO [33], are continuous processes: the general idea is to shrink some coef-
ficients towards zero. This allows simultaneous variable selection and coefficient estimation. Moreover,
newly proposed algorithms, such as the least angle regression (LARS) algorithm [34], the coordinate
descent [35], and the unified algorithm with quadratic approximation [30], allow results to be obtained
in an efficient way.

To the best of our knowledge, no work in the literature dealing with a cure fraction and interval-
censoring implements such a variable selection approach. Dealing with right-censoring only, the adaptive
LASSO procedure was extended to a Cox mixture cure model [36]. The authors use the fact that a mixture
cure model, in which a Cox proportional hazard is assumed in the latency, can be estimated iteratively in
two parts: the Cox model and the logistic regression. In this context, the use of existing adaptive LASSO
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procedure for the Cox model and for the logistic regression in the incidence is straightforward. However,
such a split in parametric models is not feasible, so that existing methods can not be applied directly.
Therefore, we believe that the extension of the adaptive LASSO in this case can really be convenient if,
for example, one wants to use a specific distribution.

In this paper, we account for a fraction of immune individuals in the global population by assuming a
mixture cure model, allowing to distinguish effects of covariates on the probability of experiencing the
event and on the survival times for susceptibles. To cope with a possible departure of proportional hazards
and to ease interpretation of the results, we assume an AFT regression model for the latency part. The
EGG distribution is used for the error term, and the maximum likelihood function can be derived while
taking interval-censoring into account. This distribution has the advantage of being very flexible while
avoiding the use of the EM algorithm. And last but no least, we extend the adaptive LASSO procedure
to our mixture cure model to perform a continuous variable selection for each component of the model.

The paper is divided as follows: in Section 2, we describe the model, as well as the estimation method.
Section 3 presents our extension of the adaptive LASSO to the presence of a cure fraction. We investigate
the finite sample properties of the method via a simulation study in Section 4. Lastly, we present results
of the application of the method to the aforementioned Alzheimer’s disease database in Section 5, and
we end with a conclusion. We also provide an appendix with more simulation results.

2. Model and estimation method

2.1. Extended generalized gamma accelerated failure time model for uncensored data

Consider n independent subjects, and let T1,… ,Tn represent their event times. We assume the following
transformed location-scale model,

log(T) = 𝜇(𝜷,X) + 𝜎𝜀.

The location 𝜇 is parametrically defined through parameters 𝜷 = (𝛽0, 𝛽1, ..., 𝛽m)T and an m-vector of
covariates X. As stated in [29], the scale 𝜎 can also depend on covariates, but we will assume a constant
form for more simplicity. 𝜀 is an error term with probability density function f𝜀 and survival distribution
S𝜀. Assuming that 𝜇(𝜷,X) = XT𝜷 leads to the classical AFT model:

log(T) = XT𝜷 + 𝜎𝜀.

Making the assumption that the error term 𝜀 is independent of the covariates X, the conditional survival
distribution of T = t, S(t|x), is given by:

S(t|X = x) = S𝜀
(
v𝜷,𝜎(t,X)

)
, (1)

where v𝜷,𝜎(t,X) = log(t)−XT𝜷

𝜎
. The probability density function and survival distributions of 𝜀 are given by

the following:

f𝜀(v; q) =
⎧⎪⎨⎪⎩

|q|
Γ(q−2)

(q−2)q−2
exp(q−2(qv − eqv)) if q ≠ 0

1
(2𝜋)1∕2

exp(−v2∕2) if q = 0
(2)

and

S𝜀(v; q) =
⎧⎪⎨⎪⎩

1 − I(q−2eqv, q−2) if q > 0

I(q−2eqv, q−2) if q < 0

∫ ∞
v

1√
2𝜋

e−x2∕2dx if q = 0,
(3)

where I(⋅, k) is the incomplete gamma integral, that is, I(⋅, k) = 1
Γ(k)

∫ ⋅
0 xk−1e−xdx [37]. The resulting con-

ditional distribution of T is called the EGG distribution. It covers a wide class of distributions and is
negatively skewed if q > 0 and positively skewed if q < 0. It includes, as special cases, extensively
used distributions in survival analysis, that is, the log normal distribution (q = 0), the Weibull distri-
bution (q = 1), and the inverse Weibull (q = −1). Originally, the EGG was introduced by [38]. It was
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later re-parameterized to avoid, among others, boundary problems for the normal distribution. For more
information, we refer to [37] and [39].

2.2. Logistic extended generalized gamma accelerated failure time model with interval-censored data
and a cure fraction

In the presence of interval censoring, we do not observe t1,… , tn. Rather, we observe li and ri such that
ti ∈ [li, ri[ for i = 1,… , n. Note that right-censored observations are also covered if we allow ri = ∞.
We also assume independent censoring conditional on the covariates. The contribution to the likelihood
of each observation is S(li) − S(ri) for an interval censored observation and S(li) for a right-censored one.
We define the censoring indicator to be 𝛿i, with 𝛿i = 1 if the observation i is interval-censored and 𝛿i = 0
if it is right-censored.

In the mixture cure model, we assume that the population is a mixture of susceptible and cured individ-
uals, and we model separately the probability of being susceptible (the incidence) and the time-to-event
for the susceptibles (the latency). First, denote by Y the variable such that yi = 1 if individual i will
experience the event (susceptible) and 0 otherwise (cured). Because of censoring, the variable Y is only
partially observed. The conditional probability to develop the event is modeled by a logistic regression:

p(z) = P(Y = 1|Z = z) =
exp (zT𝜸)

1 + exp (zT𝜸)
,

where Z is an s-vector of covariates, not necessarily the same as those of X, and 𝜸 = (𝛾0, 𝛾1,… , 𝛾s)T is
the corresponding vector of coefficients.

Second, the time-to-event for a susceptible individual is modeled with the EGG-AFT model. Denote
by Su(⋅|x) the survival distribution for the uncured individuals, given by (1) and (3). The conditional
survival distribution for the global population is given by

SG(t|x, z) = p(z)Su(t|x) + 1 − p(z).

All interval censored observations are susceptible, and this occurs with probability p; their contribution
to the likelihood is therefore p(z)(Su(li|x) − Su(ri|x)). On the other hand, right-censored observations are
either susceptible (with probability p) or actually cured (with probability 1− p); their contribution to the
likelihood is then p(z)Su(li|x) + (1 − p(z)).

Writing 𝜼 = (q, 𝜷T , 𝜎, 𝜸T )T , the log-likelihood function of the model is given by the following:

ln(𝜼) =
n∑

i=1

𝛿i

[
log(p(zi)(Su(li|xi) − Su(ri|xi)))

]
+ (1 − 𝛿i)

[
log(p(zi)Su(li|xi) + (1 − p(zi)))

]
.

Note that, according to Theorem 3 in [40], see also [41], our EEG-AFT mixture cure model is iden-
tifiable. The likelihood function can be maximized using standard methods (e.g. Newton–Raphson) to
obtain maximum likelihood estimates (MLEs) �̂� = (q̂, �̂�T

, �̂�, �̂�T )T . Theoretical large-sample properties
of MLE’s follow, such as consistency and unbiasedness. Also, the Hessian matrix provides an estimate
of the variance–covariance matrix of �̂�. Inference for latency and incidence parts is straightforward. In
particular, a likelihood ratio test can be used to detect departure from a particular distribution included
in the EGG, for example, the Weibull or the log normal distributions [37,42]. This way, a simpler model
can always be reached when appropriate. For tests of the form H0 ∶ q = q0 versus H1 ∶ q ≠ q0, the
likelihood ratio statistic is

Λ = 2(ln(�̂�0) − ln(�̂�)),

where �̂�0 is the MLE assuming q = q0. For finite q, the distribution of Λ under the null hypothesis
asymptotically follows a chi-square distribution with one degree of freedom.

3. Variable Selection

3.1. The adaptive LASSO

Consider first the case of no cure fraction, that is, a classical EGG-AFT model with parameter 𝜼 =
(q,𝜷T , 𝜎)T . Hereafter, we assume that the covariates are standardized. In this setting, penalized regression
methods have been widely used and are based on a penalized log-likelihood of the form:
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− ln(𝜼) + n𝜆
m∑

j=1

pj(|𝛽j|), (4)

where ln(𝜼) is the log-likelihood function. In the second term of (4), 𝜆 represents the penalty term (the
tuning parameter), controlling for the amount of shrinkage of the estimates. If it is equal to zero, then
minimizing (4) leads to the usual unpenalized MLE; otherwise, the coefficients are shrunk towards zero.
The function pj(| ⋅ |) is the penalty function and can take several forms (e.g., the LASSO penalty [32],
SCAD penalty [30], or ridge penalty [43]). The adaptive LASSO penalty [33] is given by

pj(|𝛽j|) = |𝛽j|wj,

with w = (w1,… ,wm)T being a known weight vector. The adaptive LASSO is, as the LASSO, a convex
optimization problem with l1-norm, and any algorithm used to solve a LASSO problem can be easily
adapted to the adaptive LASSO case [33], for example, the LARS algorithm [34]. Unlike the LASSO, the
adaptive LASSO possesses the oracle property, as long as the weights wj are data-dependent and chosen
wisely [33]. We follow the proposal of Zhang, 2007 [44] to take wj = 1∕|𝛽j|, where 𝛽j is the unpenalized
MLE, reflecting somehow the importance of corresponding covariates. Of course, any other consistent
estimator can be chosen for 𝛽j, see [33] for guidance when, for example, there is collinearity issues.

The LARS algorithm was originally aimed at solving penalized least square problems. Nevertheless,
any likelihood function can be expressed in an asymptotic least square equivalent, so that use of LARS
algorithm is possible. Following [45], using Taylor expansion, ln(𝜼) can be approximated by

ln(�̂�) +
1
2
(𝜼 − �̂�)T l̈n(�̂�)(𝜼 − �̂�),

where �̂� is an unpenalized consistent estimator and l̈n(�̂�) represents the matrix of second derivatives
of the log-likelihood at �̂�. The following equation is the least square approximation (LSA) of the
log-likelihood ln(𝜼):

Q(𝜼, �̂�) = (𝜼 − �̂�)T l̈n(�̂�)(𝜼 − �̂�). (5)

The minimizer of −Q(𝜼, �̂�) is different from the estimates obtained by minimizing the minus log-
likelihood; henceforth, the maximizer of (5) is called the LSA estimator [45].

3.2. The adaptive LASSO in the presence of cured individuals

In the presence of cured individuals, 𝜼 = (q,𝜷T , 𝜎, 𝜸T )T and the variables impacting the probability of
being cured may not necessarily be the same as those impacting the survival distribution of the susceptible
people. Therefore, we propose to penalize both the incidence and the latency part, allowing a different
penalty term in each part. This leads to the following minimization criterion:

−Q(𝜼, �̂�) + n𝜆𝛽

m∑
j=1

|𝛽j||𝛽j| + n𝜆𝛾

s∑
j=1

|𝛾j||�̂�j| ,
where s is the number of variables in the incidence part, 𝜆𝛽 is the tuning parameter for the 𝛽’s, and 𝜆𝛾 is
the tuning parameter for the 𝛾’s. Again, we assume that all covariates are standardized.

To solve this optimization problem with the LSA estimator and the LARS algorithm, one can proceed
iteratively in several steps. We optimize first with respect to the 𝛽’s, holding every other parameter fixed,
then do the same for the 𝛾’s. This way, we can easily obtain adaptive LASSO solutions, with two different
penalty terms. We have the following algorithm:

Step 1. Obtain the unpenalized MLE �̂� = (q̂, �̂�T
, �̂�, �̂�T )T by maximizing l(𝜼).

Step 2. Set 𝜼 = (q̂, 𝜷T , �̂�, �̂�T )T , that is, every parameter other than 𝜷 are fixed. Minimize −Q(𝜼, �̂�) +
n𝜆𝛽

∑m
j=1

|𝛽j||𝛽j| to obtain adaptive LASSO estimate 𝜷.

Step 3. Set 𝜼 = (q̂,𝜷T
, �̂�, 𝜸T )T , that is, every parameter other than 𝜸 are fixed. Minimize −Q(𝜼, �̂�) +

n𝜆𝛾
∑m

j=1

|𝛾j||�̂�j| to obtain adaptive LASSO estimate �̃�.
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Step 4. Set 𝜼 = (q,𝜷T
, 𝜎, �̃�T )T , that is, every parameter other than q and 𝜎 are fixed. Maximize the

unpenalized likelihood l(𝜼) with respect to q and 𝜎. We then have �̃� = (q̂, �̃�, �̂�, �̃�).
Step 5. Repeat steps 2 to 4 until convergence.

The extra tuning parameter 𝜆 do not lead to any identifiability issues of the parameters of interest
𝜂. However, during our simulation studies, some numerical instabilities (divergence of the algorithm or
incoherent estimates) were observed. In such case, the algorithm was rerun, starting from different initial
values, a few times.

3.3. Tuning parameter selection and variance estimation

The choice of the optimal penalty �̂� = (�̂�𝛽 , �̂�𝛾 ) is of crucial importance and is done via a BIC selection
criterion [45]. First, for fixed 𝜆𝛽 and 𝜆𝛾 , let 𝜷𝜆𝛽

and �̃�𝜆𝛾 be the adaptive LASSO estimates with 𝜆𝛽 and
𝜆𝛾 , respectively. We minimize

BIC(𝝀) = −Q(𝜼𝝀, �̂�) + log(n)df𝜆,

where 𝜼𝝀 =
(

q̂, 𝜷
T

𝜆𝛽
, �̂�, �̃�T

𝜆𝛾

)T
and df𝜆 is the number of non-zero coefficients in 𝜼𝝀. We then take

�̂� = (�̂�𝛽 , �̂�𝛾 ) = arg min
(𝜆𝛽 ,𝜆𝛾 )

BIC((𝜆𝛽, 𝜆𝛾 )).

The minimization can be done via a grid search among selected values of 𝜆𝛽 and 𝜆𝛾 and we take the
combination leading to the smallest BIC. This procedure allows �̂�𝛾 to be different from �̂�𝛽 ; therefore, a
different amount of shrinkage in the latency part and in the incidence part can be reached.

Standard errors for adaptive LASSO estimates are calculated based on a ridge regression approximation
and on the sandwich formula for computing the covariance matrix of the estimates [30, 32, 33].

Denote H the matrix of second derivatives of the log-likelihood at �̃� = (q̂, �̃�, �̂�, �̃�). Define

A = 𝑑𝑖𝑎𝑔

(
1, 1,

𝜆𝛽

𝛽2
1

, · · · ,
𝜆𝛽

𝛽2
m

, 1, 1,
𝜆𝛾

�̃�2
1

, · · · ,
𝜆𝛾

�̃�2
s

)
.

Also, define

D = 𝑑𝑖𝑎𝑔

(
1, 1,

1(𝛽1 ≠ 0)𝜆𝛽
𝛽2

1

, · · · ,
1(𝛽m ≠ 0)𝜆𝛽

𝛽2
m

, 1, 1,
1(�̃�1 ≠ 0)𝜆𝛾

�̃�2
1

, · · · ,
1(�̃�s ≠ 0)𝜆𝛾

�̃�2
s

)
.

Then, the sandwich formula gives the following estimated covariance matrix:

cov(�̂�) = (H + A)−1 (H + D)H−1 (H + D) (H + A)−1 .

The estimated variance of a coefficient set to zero is equal to zero. More details about this equation can
be found in [46].

4. Simulation studies

The first objective of the simulation study is to investigate the behavior of our method and to dis-
cuss the impact of the amount of cured and right-censored observations on the results. Secondly, we
study the performance of the likelihood ratio test to detect whether the true underlying distribution is
either log-normal or Weibull. Finally, we evaluate the adaptive LASSO procedure described previously,
both in terms of estimation and variable selection. We use an adaptation of LSA R code from [45] to
obtain estimates.

4.1. Simulations setting

Data are generated from the EGG-AFT mixture cure model. We consider three different sets of parameter
value to reach three different levels of cure and right-censoring as shown in Table I.

© 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 1210–1225
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Table I. Parameter values for three levels of cure propor-
tion and right-censoring.

Scenario 1 Scenario 2 Scenario 3

Cure proportion 20% 30% 40%
Right-Censoring 40% 40% 60%
q 0 0,5 1
𝛾0 2 1 0,85
𝛾1 −1 −0,2 −0,85
K 14 14 12

As stated in Section 2.1, the scale 𝜎 may depend on covariates as well. Here, we simply allow for
one covariate. For all three scenarios, event times for susceptible individuals are generated to follow an
EGG-AFT distribution with the following:

log(T|X) = 𝛽0 + 𝛽1X1 + 𝛽2X2 + 𝛽3X3 + exp(𝛼0 + 𝛼1X1)𝜀
= 4.1 − 0.2X1 + 0.5X2 − 0.5X3 + exp(−2 + 0.5X1)𝜀,

(6)

where X1 ∼ Bern (0.5), X2 ∼ N(0, 0.16), and X3 ∼ N(0, 0.25), and 𝜀 has probability density function
(2) with parameter q.

For the incidence part, the cure variable Y|Z ∼ Bern (p(Z)) and

p(Z) =
exp (𝛾0 + 𝛾1Z1 + 0.2Z2 − 0.4Z3)

1 + exp (𝛾0 + 𝛾1Z1 + 0.2Z2 − 0.4Z3)
, (7)

with Z1 = X1, Z2 ∼ N(0, 0.4), and Z3 ∼ N(0, 0.5). Values for q, 𝛾0 and 𝛾1 are given in Table I for
each scenario.

To simulate intervals in which Ti lies, i = 1, · · · , n, we follow the idea of Chen et al., 2013 [29]. For
each i, generate Vi ∼ U[0, 25], the first visit. Also, fix a maximum number of visits, say K. Then, if
Ti < Vi, set Li = 0, Ri = Vi. Else, if Ti > Vi + 4K, the observation is right-censored; set Li = Vi + 4K,
Ri = ∞. Otherwise, there exists ki = 1, 2, 3, · · · ,K such that Vi + 4(ki − 1) ⩽ Ti < Vi + 4ki; in this case,
set Li = Vi +4(ki −1) and Ri = Vi +4ki. For each scenario, the value of K is given in Table I. We simulate
2000 datasets of sizes n = 200, n = 300, and n = 500 for each scenario.

4.2. Simulations results

First, we analyze the datasets with our EGG-AFT mixture cure model, without considering any variable
selection. For comparison purposes, we also analyze the data without considering a cure fraction with a
classical EGG-AFT model. Tables II, III, and IV show the results for n = 200, n = 300, and n = 500,
respectively. For any sample size, the bias and MSE for the latency part, that is, the 𝛽’s, are low. However,
for the smallest sample sizes (n = 200), the bias and MSE in the incidence part, that is, the �̂�’s, can
be large, especially if the cure proportion is low compared with the right-censoring rate. Table II shows
large bias for the first scenario, where the cure proportion is 20% and the right-censoring rate is 40%.
These bias and MSE are decreasing with the sample size. Obviously, we need enough information, that
is, enough cured individuals, in order to discriminate between cured and susceptible and, thus, to be able
to perform accurate estimation in the incidence part. Globally, for a fixed right-censored proportion, if
the cure fraction increases, the MSE in incidence decreases. The opposite for a fixed cure proportion: the
more the right-censoring, the higher the MSE.

Regarding likelihood ratio tests, the first null hypothesis is H0 ≡ q = 0, that is the survival times of the
susceptibles follow a log normal distribution; and the second one is H0 ≡ q = 1, i.e. the survival times of
the susceptibles follow a Weibull distribution. The 𝛼 level of the test is fixed to 5%. In all cases, we report
the proportion of times the null hypotheses are rejected. This is the observed power (level) of the test
when H1 (H0) is true. It can be seen that in all cases, when H0 is true, the observed level is close to 5%.
When the true parameter q is equal to 0.5, i.e. in between the log-normal and the Weibull distribution, the
observed power is less than 50% for small sample sizes, revealing the difficulty to discriminate between
these distributions. But as the sample size increases, this power increases toward 100%, showing strong
evidence against any two of these distributions.
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Table II. Results of 2000 simulations.

Sample size : n = 200

(20% Cure, 40% RC) (30% Cure, 40% RC) (40% Cure, 60% RC)

Bias MSE Bias MSE Bias MSE

EGG-AFT mixture cure model
q −0,023 0,107 0,010 0,098 0,214 0,811
𝛽0 −0,001 0,001 −0,000 0,001 0,003 0,002
𝛽1 −0,000 0,001 −0,000 0,002 0,004 0,003
𝛽2 −0,001 0,002 0,003 0,002 0,004 0,005
𝛽3 0,000 0,001 −0,001 0,002 −0,001 0,003
𝛼0 −0,049 0,016 −0,053 0,022 −0,135 0,123
𝛼1 0,014 0,025 0,007 0,026 0,013 0,045
𝛾0 0,320 5,286 0,051 0,105 0,063 0,158
𝛾1 −0,209 1,668 −0,020 0,170 −0,047 0,226
𝛾2 0,066 7,085 0,002 0,246 0,020 0,284
𝛾3 −0,073 1,357 −0,016 0,171 −0,014 0,169

Likelihood ratio test
True value of q q = 0 q = 0.5 q = 1
Cov. H0 ≡ q = 0 6,15% 41,85% 74,95%
Cov. H0 ≡ q = 1 93,25% 39,30% 9,35%

EGG-AFT model without cure
q −1,577 2,622 −2,210 5,038 −2,315 5,675
𝛽0 −0,068 0,005 −0,068 0,006 −0,057 0,008
𝛽1 0,023 0,003 −0,029 0,004 0,147 0,034
𝛽2 −0,002 0,003 0,002 0,005 0,006 0,010
𝛽3 −0,000 0,002 −0,003 0,003 −0,006 0,007
𝛼0 0,118 0,038 0,512 0,295 0,785 0,656
𝛼1 0,243 0,096 0,024 0,050 0,226 0,118

RC, right-censored; MSE, mean squared error; EGG-AFT, extended generalized gamma acce-
larated failure time.
Bias and MSE of the EGG-AFT mixture cure model in the upper part of the Table; rejection
percentage of the likelihood ratio test in the middle; bias and MSE of the EGG-AFT model in
the lower part.

Concerning the analysis with an EGG-AFT model when no cure fraction is taken into account (lower
part of Tables II, III and IV), the bias are larger than when using the EGG-AFT mixture cure model, espe-
cially for parameters q and 𝛼. More results about the impact of cured and the right-censored proportion
can be found in the appendix.

4.3. Simulation results: adaptive LASSO

We assess the performance of the adaptive LASSO pertaining to variable selection and estimation. Firstly,
we simulated data as described in Section 4.1, and we added 10 standard normal variables in both latency
and incidence parts, whose coefficients are truly zero. Tables V, VI , and VII show the results for n = 200,
n = 300, and n = 500 for all three scenarios. The upper part shows bias and MSE for the truly non-
zero coefficients, and the lower part gives the average number of correct (resp., incorrect) zero’s, that is,
the average number of times the adaptive LASSO sets a coefficient to zero when it truly is zero (resp.,
non-zero). In the simulations, the optimal tuning parameter 𝝀 was chosen via the BIC-type selection
criterion from Section 3.3. Globally, those results reflect the same trend as the previous analysis, that is,
low bias and MSE except for small sample size (n = 200) and increasing bias and MSE when, for a fixed
right-censored proportion, the cure proportion decreases.

Compared to the analysis without variable selection, for non-zero coefficients, we detect larger bias
and MSE in incidence. Indeed, the coefficients are shrunk to zero and this implies that the estimates
are biased.

For n = 500, we see that our method performs well for both coefficient estimation and variable selec-
tion. The average number of correct zero’s is very close to the optimal value of 10, in both latency and
incidence parts. The average number of incorrect zero’s is very close to the optimal value of 0 in the
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Table III. Results of 2000 simulations.

Sample size : n = 300

(20% Cure, 40% RC) (30% Cure, 40% RC) (40% Cure, 60% RC)

Bias MSE Bias MSE Bias MSE

EGG-AFT mixture cure model
q −0,048 0,096 −0,013 0,077 0,050 0,210
𝛽0 −0,002 0,000 −0,001 0,001 0,002 0,001
𝛽1 −0,000 0,001 −0,000 0,001 0,001 0,003
𝛽2 0,003 0,006 0,007 0,009 0,004 0,016
𝛽3 −0,003 0,003 −0,003 0,004 −0,005 0,008
𝛼0 −0,025 0,012 −0,029 0,016 −0,058 0,054
𝛼1 0,011 0,019 0,006 0,019 0,008 0,034
𝛾0 0,398 2,435 0,052 0,104 0,124 0,518
𝛾1 −0,298 2,111 −0,031 0,148 −0,100 0,492
𝛾2 0,024 0,028 0,006 0,008 0,014 0,012
𝛾3 −0,054 1,007 −0,034 0,433 −0,059 0,650

Likelihood ratio test
True value of q q = 0 q = 0.5 q = 1
Cov. H0 ≡ q = 0 6,50% 48,40% 79,70%
Cov. H0 ≡ q = 1 98,30% 55,00% 7,60%

EGG-AFT model without cure
q −1,514 2,375 −2,125 4,604 −2,195 5,010
𝛽0 −0,066 0,005 −0,063 0,005 −0,044 0,005
𝛽1 0,028 0,002 −0,024 0,003 0,161 0,035
𝛽2 0,001 0,002 0,004 0,003 0,007 0,006
𝛽3 0,000 0,001 −0,003 0,002 −0,005 0,004
𝛼0 0,142 0,035 0,549 0,321 0,822 0,702
𝛼1 0,241 0,083 0,020 0,033 0,220 0,092

RC, right-censored; MSE, mean squared error; EGG-AFT, extended generalized gamma accelarated
failure time.
Bias and MSE of the EGG-AFT mixture cure model in the upper part of the Table; rejection percentage
of the likelihood ratio test in the middle; bias and MSE of the EGG-AFT model in the lower part.

latency part and higher in the incidence part. This is explained by the fact that, in the logistic regression
(7), some covariates (here, Z2 and Z3) do not have an impact on the cure probability. So, the adaptive
LASSO procedure interestingly sets these coefficients to zero. As a consequence, the bias for �̂�2 and �̂�3
is slightly larger. The effect of cured proportion and right-censoring rate, concerning variable selection,
follows the same trend as analyzed before: the number of correct zero slightly decreases when there is
more right-censoring.

Secondly, we assess the performances of our method on the basis of the second scenario, where there
is 30% cured individuals and 40% right-censored individuals, by adding 25 covariates whose coefficients
are truly zero, in each part of the model. Table VIII gives results of 2000 replications for n = 500. These
results can be compared with the second column of Table VII. Bias and MSE are slightly larger when
there are more zero covariates, but conclusions about selected variables stay the same.

Thirdly and lastly, we investigate the issue of correlated variables. Indeed, in presence of strong corre-
lation, it is well known that the LASSO, or adaptive LASSO, may choose only one of the two correlated
variables. To see the effect of small correlation on adaptive LASSO, we slightly modified the second
scenario by adding a correlation structure between covariates. More specifically, X2,X3, X4, and X5 are
generated though a multivariate normal distribution with covariance matrix V:

V =
⎛⎜⎜⎜⎝

1 𝜌 𝜌2 𝜌3

𝜌 1 𝜌 𝜌2

𝜌2 𝜌 1 𝜌

𝜌3 𝜌2 𝜌 1

⎞⎟⎟⎟⎠ , (8)

where 𝜌 ∈ [0, 1] is chosen to reach a different level of correlation between the variables. The same
generation process is used for Z2,Z3, Z4, and Z5. Results of the 2000 replications are given in Table IX
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Table IV. Results of 2000 simulations.

Sample size : n = 500

(20% Cure, 40% RC) (30% Cure, 40% RC) (40% Cure, 60% RC)

Bias MSE Bias MSE Bias MSE

EGG-AFT mixture cure model
q −0,025 0,050 −0,006 0,036 0,045 0,089
𝛽0 −0,001 0,000 −0,001 0,000 0,002 0,001
𝛽1 −0,001 0,001 0,001 0,001 0,001 0,001
𝛽2 0,001 0,004 0,004 0,005 0,005 0,008
𝛽3 0,000 0,002 −0,002 0,002 0,000 0,004
𝛼0 −0,016 0,007 −0,016 0,009 −0,040 0,026
𝛼1 0,003 0,011 0,007 0,011 0,002 0,017
𝛾0 0,122 0,397 0,022 0,050 0,030 0,085
𝛾1 −0,081 0,385 −0,002 0,073 −0,020 0,105
𝛾2 0,009 0,007 0,004 0,004 0,006 0,004
𝛾3 −0,025 0,399 −0,007 0,237 0,016 0,268

Likelihood ratio test
True value of q q = 0 q = 0.5 q = 1
H0 ≡ q = 0 5,75% 70,95% 95,95%
H0 ≡ q = 1 100% 78,10% 6,95%

EGG-AFT model without cure
q −1,474 2,218 −1,974 3,943 −2,474 6,167
𝛽0 −0,063 0,004 −0,063 0,004 −0,063 0,004
𝛽1 0,028 0,002 0,028 0,002 0,028 0,002
𝛽2 0,000 0,001 0,000 0,001 0,000 0,001
𝛽3 0,000 0,001 0,000 0,001 0,000 0,001
𝛼0 0,170 0,038 0,170 0,038 0,170 0,038
𝛼1 0,222 0,064 0,222 0,064 0,222 0,064

RC, right-censored; MSE, mean squared error; EGG-AFT, extended generalized gamma accelarated failure time.
Bias and MSE of the EGG-AFT mixture cure model in the upper part of the Table; rejection percentage of the
likelihood ratio test in the middle; bias and MSE of the EGG-AFT model in the lower part.

Table V. Results of 2000 simulations, with adaptive LASSO.

Sample size : n = 200

(20% Cure, 40% RC) (30% Cure, 40% RC) (40% Cure, 60% RC)

Parameter Bias MSE Bias MSE Bias MSE

q 0,007 0,207 0,109 0,271 0,007 0,504
𝛽0 0,000 0,001 0,002 0,001 −0,009 0,003
𝛽1 0,016 0,002 0,020 0,003 0,031 0,008
𝛽2 −0,011 0,002 −0,012 0,003 −0,010 0,006
𝛽3 0,009 0,001 0,009 0,002 0,003 0,005
𝛼0 −0,139 0,041 −0,184 0,079 −0,217 0,156
𝛼1 0,071 0,047 0,086 0,056 0,129 0,127
𝛾0 0,874 5,767 0,176 0,216 0,312 0,498
𝛾1 −0,562 5,272 0,002 0,153 0,009 0,525
𝛾2 −0,138 0,415 −0,182 0,059 −0,185 0,125
𝛾3 0,274 0,472 0,332 0,173 0,325 0,189

Average correct/incorrect number of zero’s
Latency

Correct 9,202 9,283 8,685
Incorrect 0,006 0,010 0,086

Incidence
Correct 9,176 9,805 9,707
Incorrect 1,966 2,633 2,138

RC, right-censored; MSE, mean squared error.
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Table VI. Results of 2000 simulations, with adaptive LASSO.

Sample size : n = 300

(20% Cure, 40% RC) (30% Cure, 40% RC) (40% Cure, 60% RC)

Parametere Biais MSE Biais MSE Biais MSE

q −0,031 0,099 0,080 0,109 0,178 0,276
𝛽0 −0,002 0,001 0,003 0,001 0,001 0,001
𝛽1 0,008 0,001 0,013 0,002 0,023 0,004
𝛽2 −0,007 0,001 −0,007 0,002 −0,010 0,003
𝛽3 0,006 0,001 0,004 0,001 0,004 0,002
𝛼0 −0,077 0,016 −0,112 0,031 −0,190 0,096
𝛼1 0,034 0,020 0,046 0,025 0,076 0,049
𝛾0 0,310 0,379 0,104 0,100 0,140 0,169
𝛾1 −0,200 0,486 0,047 0,087 0,051 0,255
𝛾2 −0,175 0,073 −0,183 0,049 −0,180 0,050
𝛾3 0,304 0,180 0,324 0,157 0,334 0,158

Average correct/incorrect number of zero’s
Latency

Correct 9,646 9,640 9,306
Incorrect 0,000 0,001 0,019

Incidence
Correct 9,624 9,858 9,859
Incorrect 1,921 2,601 2,034

RC, right-censored; MSE, mean squared error.

Table VII. Results of 2000 simulations, with adaptive LASSO.

Sample size : n = 500

(20% Cure, 40% RC) (30% Cure, 40% RC) (40% Cure, 60% RC)

Parameter Bias MSE Bias MSE Bias MSE

q −0,017 0,045 0,029 0,042 0,178 0,152
𝛽0 −0,001 0,000 0,001 0,000 0,006 0,001
𝛽1 0,004 0,001 0,007 0,001 0,016 0,002
𝛽2 −0,005 0,001 −0,004 0,001 −0,004 0,002
𝛽3 0,004 0,000 0,003 0,001 0,002 0,001
𝛼0 −0,043 0,007 −0,056 0,011 −0,133 0,048
𝛼1 0,019 0,011 0,025 0,012 0,038 0,020
𝛾0 0,152 0,148 0,051 0,045 0,059 0,067
𝛾1 −0,091 0,201 0,086 0,053 0,055 0,117
𝛾2 −0,182 0,053 −0,178 0,047 −0,189 0,043
𝛾3 0,306 0,152 0,309 0,140 0,315 0,142

Average correct/incorrect number of zero’s
Latency

Correct 9,859 9,834 9,705
Incorrect 0,000 0,000 0,002

Incidence
Correct 9,845 9,896 9,909
Incorrect 1,862 2,540 1,872

RC, right-censored; MSE, mean squared error.

for different values of 𝜌, and can be compared with the second column of Table VII. We see that the
correlation has practically no effect on the latency part. In the incidence part, we see that the number of
incorrect zero’s is lower for negative values of 𝜌, slightly improving the variable selection. In this setting,
we do not observe any issues related to correlation.

Overall, the adaptive LASSO performs satisfactorily for estimation as well as for variable selection,
as it includes variables that truly have an impact on the model.
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Table VIII. Results of 2000 simulations,
with adaptive LASSO, for n = 500 and
25 covariates with zero coefficients.

(30% Cure, 40% RC)

Parameter Bias MSE

q 0,114 0,082
𝛽0 0,004 0,000
𝛽1 0,012 0,001
𝛽2 −0,008 0,001
𝛽3 0,006 0,001
𝛼0 −0,132 0,030
𝛼1 0,066 0,018
𝛾0 0,125 0,073
𝛾1 0,045 0,070
𝛾2 −0,187 0,043
𝛾3 0,337 0,146

Average correct/incorrect
number of zero’s Latency

Correct 24,540
Incorrect 0,000

Incidence
Correct 24,813
Incorrect 2,539

RC, right-censored; MSE, mean squared error.

5. Application on real data : Oxford Project To Investigate Memory and Aging

We apply our approach to a dataset related to a study on Alzheimer’s disease [4]. The main objective of
that study was to identify a set of cognitive scores that predict the probability of conversion from healthy
to MCI stage in elderly subjects. MCI often represents the pre-dementia stage of a neuro-degenerative
disorder, including Alzheimer’s disease, vascular dementia, or other dementia syndromes, and hence,
early detection of its onset is of great relevance for patients, carers, and government. For that study, a
cohort of 241 normal elderly volunteers was followed for up to 20 years with regular assessments of their
cognitive abilities using the Cambridge Cognitive Examination (CAMCOG). Among them, 91 converted
to MCI (37.8%), and the other 150 (62.2%) were right-censored. The CAMCOG score ranges from 0 to
107 with high scores indicating higher abilities. It is comprised of sub-tests including orientation, com-
prehension, expression, recent memory, remote memory, learning, abstract thinking, perception, praxis,
attention, and calculation. Criteria for diagnosis of MCI and control were carried out according to inter-
national guidelines. For more details see ([4]). To summarize, conversion to MCI was determined by a
neuropsychologist at each visit, which took place in average every year and a half. The data are clearly
interval-censored because conversion actually occurred between visits, and the exact date was not known.

Considering interval-censoring only, these data were previously analyzed by [4], using a semi-
parametric AFT model. In that analysis, baseline CAMCOG sub-tests along with other baseline covariates
such as age, years of total education, gender, and presence or absence of Apolipoprotein E4 (ApoE4; a
gene known to increase the risk to develop Alzheimer’s disease [47]) were used as potential predictors of
the probability of conversion from healthy to MCI. They identified three significant covariates. Two of
them with a positive impact on time to MCI-conversion: expression and learning scores at baseline, and
one with a negative impact: age at baseline. However, they did not use a specific model to acknowledge
that a proportion of patients will never convert to MCI. This is why we propose to analyze the data with
our method, which considers both interval censoring and a cure proportion. Figure 1 shows the Turnbull
[7] nonparametric survival estimator, taking interval-censoring into account. The curve shows a plateau
with only one event after more or less 12.5 years, revealing the possibility that a fraction of the population
will never experience the event.

In our analysis, 12 potential prognostic factors were included in the model, both in the latency and
in the incidence part : Mini-Mental State Examination (MMSE), expression, remote memory, learning,
attention, praxis, abstract thinking, perception, ApoE4 status, gender, age, and years of total education,
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Table IX. Result of 2000 simulations, with adaptive LASSO for n = 500.

𝜌 = 0.5 𝜌 = 0.75 𝜌 = −0.75 𝜌 = −0.3

Parameter Bias MSE Bias MSE Bias MSE Bias MSE

q 0,036 0,036 0,033 0,033 0,052 0,057 0,042 0,050
𝛽0 0,001 0,000 0,001 0,000 0,002 0,001 0,001 0,000
𝛽1 0,008 0,001 0,007 0,001 0,010 0,001 0,009 0,001
𝛽2 −0,002 0,000 −0,003 0,000 −0,000 0,000 −0,001 0,000
𝛽3 0,002 0,000 0,003 0,000 0,001 0,000 0,001 0,000
𝛼0 −0,060 0,011 −0,054 0,010 −0,081 0,017 −0,071 0,014
𝛼1 0,028 0,011 0,027 0,011 0,038 0,015 0,034 0,014
𝛾0 0,050 0,041 0,044 0,034 0,062 0,047 0,056 0,043
𝛾1 0,086 0,051 0,103 0,048 0,082 0,055 0,087 0,053
𝛾2 −0,177 0,038 −0,185 0,041 −0,080 0,043 −0,130 0,034
𝛾3 0,237 0,090 0,284 0,110 0,095 0,073 0,116 0,052

Average correct/incorrect number of zero’s
Latency

Correct 9,843 9,852 9,817 9,839
Incorrect 0,000 0,000 0,000 0,000

Incidence
Correct 9,866 9,838 9,729 9,818
Incorrect 2,155 2,345 1,745 1,736

MSE, mean squared error.
Each column represents a different value of 𝜌 in the correlation matrix V. The case where
𝜌 = 0 is given in the second column of Table VII.

Figure 1. Turnbull survival curve, taking interval-censoring into account.

resulting in a total of 26 parameters. We used the EGG-AFT cure mixture model to obtain unpenalized
maximum likelihood estimates and the adaptive LASSO procedure described in Section 3 to perform
variable selection.

Table X shows the adaptive LASSO estimate, the standard error estimated using formula from
Section (3.3), and the exponentiated estimates. This allows a direct interpretation of the impact of covari-
ates, in terms of acceleration or deceleration of the time to the event in latency and in terms of increase
or decrease in odds for the incidence.

Focusing on susceptible people (the latency part), there are three variables increasing the expected
duration, thus, having a positive impact on the survival, by at least 15%: Expression (38%), Perception
(20%) and Education (16%). On the other hand, only the age shortens the duration by at least 15%: When
age increases by 5 years, the expected time until conversion is shorten by 27%. For comparison, without
considering cure, the perception score was not significant, whereas the learning score was significant,
with a positive impact on the survival. However, we see that learning still has a positive impact, but in
the incidence part, reducing the risk to be susceptible. Three other variables have a positive impact on the
probability to be susceptible: MMSE (−89%), praxis (−73%), ApoE4 status (−43%). At the opposite,
the abstract thinking (62%) and the total years of education (883%) have here a highly negative impact
and significantly increases the odds ratio.
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Table X. MCI results: adaptive LASSO estimates, standard errors,
and exponentiated estimates.

Parameter aLASSO SD Exp(Estimate)

Latency

Intercept (Lat.) 2,628 0,155
MMSE — —
Expression 0,321 0,077 1,38
Remote — —
Learning — —
Attention −0,057 0,043 0,94

Praxis — —
Abstract thinking 0,086 0,034 1,09
Perception 0,182 0,052 1,20
ApoE4 −0,092 0,025 0,91
Gender −0,061 0,022 0,94
Age (5y.) −0,321 0,144 0,73
Total education 0,152 0,163 1,16

Incidence Intercept (Inc.) 2,657 0,985
MMSE −2,250 0,802 0,11
Expression — —
Remote — —
Learning −0,969 0,425 0,38
Attention — —
Praxis −1,302 0,564 0,27
Abstract thinking 0,483 0,456 1,62
Perception — —
ApoE −0,556 0,264 0,57
Gender — —
Age (5y.) — —
Total education 2,285 2,081 9,83

MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination;
ApoE E4, Apolipoprotein E4.
Last column gives the increase in time-to-the-event (for the latency) and
odds ratio (for incidence).

With these results, we estimated the average cure proportion in the whole sample to 20%. Analyzing
these data taking a cure fraction into account leads to more information: first, the positive impact of the
learning variable is now due to the fact that it reduces the probability to convert to MCI. Second, we now
consider other variables that have an impact: those impacting the probability to experience the disease.

6. Conclusion and Discussion

In this article, we consider the AFT model in a context where data are interval censored and where a
fraction of the population is not susceptible or cured from the event of interest. In survival analysis, the
Cox proportional hazards model is widely used, provided that the proportional hazards assumption is met.
Typically, in these cases, survival curves do not cross with each other. In the presence of a cure fraction,
even if the survival distribution for susceptibles truly comes from a PH model, curves can cross with
each other [21]. To our knowledge, there is no method to distinguish crossing hazards that are due to the
presence of cure from crossing hazards that are due to a true non-proportionality in the latency. Using an
AFT model circumvents this issue in addition of providing a straightforward interpretation of the results.

Parametric models are often criticized because a departure from the true underlying distribution can
have substantial consequences. Nonetheless, in the presence of interval-censoring and cure, it is very
difficult to develop simple yet efficient estimation procedures without imposing parametric restrictions.
This is why a flexible distribution, capable of capturing a lot of characteristics, is an excellent compromise
in this context.

Although widely used in the context of dimension reduction, when the number of covariates exceeds
the number of observations, shrinkage methods are also useful in our context. Indeed, the number of
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covariates may be large, as a set of covariates can be included twice, that is, in both parts of the model.
This is why we believe that such shrinkage methods should be extended to the mixture cure model.

Different aspects were highlighted from the simulation studies. First, using a mixture cure model, when
a cure fraction is truly present, reduces the bias in the latency part. Second, if sample size is small and if
there are not enough cured individuals compared with the right-censoring proportion, then the bias and
MSE in the incidence part can be large. Thus, there is a trade-off between the gain in bias in the latency
and the instability of estimates in the incidence. It is clear that if not enough cured individuals are present
in the database, the model will not be able to discriminate between the susceptible and cured ones. Also,
making use of the mixture cure model results in a different interpretation. Covariates can have an impact
on the survival, on the cure probability, or on both. This leads to even more information about the event
of interest.

In conclusion, our model and variable selection procedure offers flexibility as well as an easy way to
interpret the results. Even more flexibility can be reached, and other variable selection procedures deserve
more attention in parametric cure mixture models. Those are subject to future work.
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