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Objective. Dysregulation of cell cycle progression (CCP) is one of the hallmarks of cancer. Here, our study is aimed at developing a
CCP-derived gene signature for predicting high-risk population of hepatocellular carcinoma (HCC). Methods. Our study
retrospectively analyzed the transcriptome profiling and clinical information of HCC patients from The Cancer Genome Atlas
(TCGA) and International Cancer Genome Consortium (ICGC) projects. Uni- and multivariate cox regression models were
conducted for identifying which hallmarks of cancer were risk factors of HCC. CCP-derived gene signature was developed with
LASSO method. The predictive efficacy was verified by ROC curves and subgroup analyses. A nomogram was then generated
and validated by ROC, calibration, and decisive curves. Immune cell infiltration was estimated with ssGSEA method. Potential
small molecular compounds were predicted via CTRP and CMap analyses. The response to chemotherapeutic agents was
evaluated based on the GDSC project. Results. Among hallmarks of cancer, CCP was identified as a dominant risk factor for
HCC prognosis. CCP-derived gene signature displayed the favorable predictive efficacy in HCC prognosis independent of other
clinicopathological parameters. A nomogram was generated for optimizing risk stratification and quantifying risk evaluation.
CCP-derived signature was in relation to immune cell infiltration, HLA, and immune checkpoint expression. Combining
CTRP and CMap analyses, fluvastatin was identified as a promising therapeutic agent against HCC. Furthermore, CCP-derived
signature might be applied for predicting the response to doxorubicin and gemcitabine. Conclusion. Collectively, CCP-derived
gene signature was a promising marker in prediction of survival outcomes and therapeutic responses for HCC patients.

1. Introduction

Hepatocellular carcinoma (HCC), an aggressive malignancy
with undesirable prognosis, occupies 85% of liver cancer
cases, which usually develops in the context of chronic liver
diseases [1]. The complex etiology and highly intratumoral
and intertumoral heterogeneity make prognosis prediction
more challenging [2]. The current TNM staging system is
not sufficient for precise therapy decision-making and prog-
nostic prediction for HCC patients. Emerging evidence dem-
onstrates that genomic signatures can be applied for risk
stratification and prognostic prediction in HCC [3–5]. Nev-
ertheless, due to insufficient sample size, interpatient, inter-

tumoral, and intratumoral heterogeneity, and technical bias,
most of prognostic models possess low reproducibility, which
cannot be utilized for clinical routine practice [6]. Hence,
new methods of identifying high-risk subgroups of HCC
patients will bring great implications to personalized cancer
care.

The hallmarks of cancer include six biological abilities
acquired during the multistep progression of cancers,
including sustained proliferation, evasion of growth inhibi-
tors, cell death resistance, replicative immortality, angiogen-
esis, invasion activation, metastases, metabolic
reprogramming, and immune escape [7]. Among them, cell
cycle progression (CCP) is a key biological event that has a

Hindawi
Disease Markers
Volume 2021, Article ID 1986159, 36 pages
https://doi.org/10.1155/2021/1986159

https://orcid.org/0000-0003-2108-3266
https://orcid.org/0000-0003-2374-9519
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/1986159


Variable

Glycolysis

CCP

Age

Gender

Grade

Stage

HR

47.425

98.541

1.017

0.936

1.024

1.443

Lower 95%CI

0.797

7.104

1.002

0.646

0.795

1.168

upper 95%CI

2822.596

1366.811

1.032

1.355

1.321

1.782

pvalue

6.42e−02

6.23e−04

2.57e−02

7.24e−01

8.52e−01

6.82e−04

0 2 4 6 8 10 12

Log2 HR

(a)

0.0

0.5

1.0

1.5

2.0

CC
P

Status

Age

Gender

Grade

Stage

Status
Alive Dead

30 50 70 90
Age

Gender
Female Male

Grade
G1 G2 G3 G4

Stage

Stage I Stage II Stage III Stage IV

(b)

Figure 1: Continued.

2 Disease Markers



controlled regulation in normal cells, but it nearly generally
becomes abnormal or dysregulated in tumor cells [8]. Evi-
dence suggests that CCP could be a useful biomarker in pre-
diction of recurrence and metastasis following surgical
resection in several cancer types such as breast cancer and
prostate cancer [9–11]. Aberrations of CCP-related genes
are frequently found across diverse human neoplastic pro-
cesses, and their expression profiling possesses wide ranging
prognostic significance [12]. In our research, CCP was iden-
tified as a dominant risk factor of HCC survival outcomes.

Accurate bioinformatic and machine learning methods were
adopted for screening reliable candidate variables as well as
building a personalized CCP-derived gene signature in pre-
diction of prognosis and the response to immune- and che-
motherapies for HCC patients.

2. Materials and Methods

2.1. Data Acquisition. This study gathered the mRNA
expression profiling and clinical features of HCC patients
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Figure 1: CCP acts as the most significant risk factor of HCC prognosis in TCGA-LIHC cohort. (a) Multivariate cox regression models that
included glycolysis, CCP, age, gender, grade, and stage. (b) Heat map showing the associations between CCP score and clinicopathological
parameters. (c) Prognostic analysis of HCC patients with high and low CCP score.
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from the Cancer Genome Atlas (TCGA; https://
cancergenome.nih.gov/) [13] and International Cancer
Genome Consortium (ICGC; https://dcc.icgc.org/) [14].
Only patients with complete follow-up time and vital status
were included in this study. In total, we finally retrieved 368
HCC patients from TCGA-LIHC cohort (Supplementary
table 1) and 260 HCC patients from ICGC (LIRI-JP)
cohort for further analysis. Then, FPKM value was
converted to TPM value. The somatic mutation data in
Mutation Annotation Format (MAF) of HCC were
downloaded from TCGA database, which were analyzed
through maftools package [15].

2.2. Quantification of Hallmarks of Cancer. The gene sets of
hallmarks of cancer raised by Hanahan and Weinberg [7]
including glycolysis, CCP, angiogenesis, apoptosis, DNA
repair, epithelial-mesenchymal transition (EMT), hypoxia,
inflammation, and stemness were acquired from the
MSigDB database (http://software.broadinstitute.org/gsea/
index.jsp) [16]. Single sample gene set enrichment analysis
(ssGSEA) was adopted to quantify the activity of above hall-
marks of cancer with gene set variation analysis (GSVA)
[17]. Immune infiltration was quantified using Cell type
Identification By Estimating Relative Subsets Of RNA Tran-
scripts (CIBERSORT) computational method [18]. The
ssGSEA and immune infiltration scores were scaled with Z
-score. Uni- and multivariate cox regression models were
conducted to evaluate the prognostic implications of above
hallmarks of cancer in TCGA-LIHC cohort. Supplementary
table 2 listed the gene sets of hallmarks of cancer.

2.3. Differential Expression Analysis. CCP-relevant genes
were identified through presenting differential expression
analysis between high and low CCP score groups via limma
package. The criteria were set as ∣fold − change ∣ >2 and
adjusted p < 0:05.

2.4. Functional Enrichment Analysis. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses of CCP-relevant genes were conducted
through adopting clusterProfiler package [19]. GO covered
three categories: biological process, cellular component,
and molecular function.

2.5. Establishment and Verification of a Prognostic Gene
Signature. Univariate Cox regression models were con-
ducted to assess the association between CCP-relevant genes
and HCC prognosis in TCGA-LIHC cohort. CCP-relevant
genes with p < 0:05 were included for least absolute shrink-
age and selection operator- (LASSO-) penalized Cox regres-
sion analysis utilizing glmnet package [20]. Variable
selection and shrinkage were carried out. Penalty parameter
(λ) of this model was determined through tenfold crossver-
ification in line with the λ value that corresponded to the
lowest partial likelihood deviance. The risk score (RS) was
calculated following the normalized expression of each can-
didate variable and its matched regression coefficient. The
formula was constructed as follows: RS =
esum ðeach variable’s expression×corresponding regression coefficientÞ. HCC

patients were stratified into high- and low-risk subgroups
in line with the median value of the RS. Overall survival
between two subgroups was compared with survminer pack-
age. Uni- and multivariate cox regression models were estab-
lished for assessing the predictive independency of the gene
signature through adjustment of clinicopathological param-
eters (age, gender, grade, and stage). Time-dependent
receiver-operating characteristic (ROC) curve analyses were
conducted for evaluating the predictive power of the gene
signature with survivalROC package. The CCP-derived gene
signature was externally verified in the LIRI-JP cohort.

2.6. Establishment of a Prognostic Nomogram. Nomogram
was established in TCGA-LIHC cohort with rms package.
The 1-, 3-, and 5-year overall survival was assessed through
total points, sum points of stage, and RS. The predictive per-
formance of this nomogram was verified by ROC, calibra-
tion, and decisive curves.

2.7. Assessment of Tumor Microenvironment (TME). Estima-
tion of STromal and Immune cells in MAlignant Tumours
using Expression data (ESTIMATE; https://sourceforge.net/
projects/estimateproject/) method [21] was adopted for esti-
mating the fractions of stromal and immune cells in TCGA-
LIHC cohort. Through combination of stromal and immune
scores, tumor purity was inferred. The ssGSEA algorithm
was utilized for quantifying the relative abundance of 28
tumor-infiltrating immune cells in TCGA-LIHC cohort.
The marker genes of immune cells were obtained from
Charoentong et al. [22, 23]. The enrichment score was deter-
mined, which represented the infiltration of immune cells in
HCC specimens. The mRNA expression of human leukocyte
antigen (HLA) genes and immune checkpoints was analyzed
in HCC samples.

2.8. Quantifying the Activity of Known Signaling Pathways.
We collected the gene sets of IFN-γ signature, APM signal,
base excision repair, cell cycle, DNA replication, Fanconi
anemia pathway, homologous recombination, microRNAs
in cancer, mismatch repair, nucleotide excision repair,
oocyte meiosis, p53 signaling pathway, progesterone-
mediated oocyte maturation, proteasome, pyrimidine
metabolism, spliceosome, systemic lupus erythematosus,
and viral carcinogenesis from published literature [24–26].
Spearman correlation test was presented between RS and
above biological pathways.

2.9. Prediction of Potential Therapeutic Agents. This study
gathered drug sensitivity profiling of human cancer cell lines
from the CTRP (https://portals.broadinstitute.org/ctrp) pro-
jects. The area under the curve (AUC) value was utilized for
inferring drug sensitivity. Moreover, transcriptome data in
Cancer Cell Line Encyclopedia (CCLE) database (https://
portals.broadinstitute.org/ccle/) were applied for CTRP
analysis [27].

2.10. Screening Small Molecule Compounds. RS-relevant
genes with ∣fold − change ∣ >1:5 and adjusted p < 0:05 were
screened between high- and low-risk HCC specimens. The
up- and downregulated RS-relevant genes were separately
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uploaded into the Connectivity map (CMap; http://portals
.broadinstitute.org/cmap/) project [28]. Potential small molec-
ular compounds with ∣enrichment score ∣ >0:8 and p < 0:05
were discovered. Mechanism of action of these compounds
were evaluated with mode-of-action (MoA) analyses.

2.11. Analysis of Chemotherapy Response. The response to
chemotherapeutic agents was evaluated based on the Geno-
mics of Drug Sensitivity in Cancer (GDSC, https://www
.cancerrxgene.org/) project [29]. Through applying pRRo-
phetic package, the half-maximal inhibitory concentration
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Figure 2: Identification of CCP-relevant genes in HCC and their biological functions. (a) Volcano plots showing CCP-relevant genes
between high and low CCP score groups in HCC specimens from TCGA-LIHC cohort. (b) Heat map visualizing the mRNA expression
of CCP-relevant genes in HCC patients with high and low CCP score. (c–e) The networks showing the significant biological process,
cellular component, and molecular function enriched by CCP-relevant genes. (f) The gene-pathway network visualizing the KEGG
pathways involved in CCP-relevant genes.
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(IC50) values of doxorubicin, cisplatin, gemcitabine, and
sorafenib were calculated in each HCC specimen [30].

2.12. Statistical Analysis. Statistical analysis was conducted
with R language (version 4.0.2). Comparisons between two
groups were carried out via Student’s t-test or Wilcoxon test.
Spearman correlation test was utilized for assessment of the
correlation between parameters. Two-sided p < 0:05 indi-
cated statistical significance.

3. Results

3.1. CCP Acts as a Dominant Risk Factor for HCC Prognosis
among Cancer Hallmarks. This study evaluated the prognos-
tic significance of hallmarks of cancer defined by Hanahan
and Weinberg. As shown in univariate cox regression
models, angiogenesis (HR: 1.55 (0.45-5.29), p = 0:48), apo-
ptosis (hazard ratio (HR): 0.64 (0.04-10.96), p = 0:76),
EMT (HR: 2.01 (0.63-6.40), p = 0:24), hypoxia (HR: 13.17
(0.86-200.85), p = 0:06), inflammation (HR: 1.04 (0.26-
4.15), p = 0:96), and immune infiltration (HR: 0.9997
(0.9996-1), p = 0:29) did not significantly affect the survival
outcomes of HCC patients in TCGA-LIHC cohort. Mean-
while, DNA repair (HR: 1524850.08 (953.23-
2439263968.30), p = 0:0002), glycolysis (HR: 3325.14
(67.71-163303.93), p < 0:0001), stemness (HR: 705.26

(35.39-14055.11), p < 0:0001), and CCP (HR: 439.59
(44.74-4319.26), p < 0:0001) were significant risk factors of
HCC prognosis. Further multivariate cox regression models
showed that glycolysis (HR: 447.32 (4.76-42064.25), p =
0:008) and CCP (HR: 63.19 (1.33-3001.70), p = 0:04) not
DNA repair (HR: 993.12 (0.08-13051084.68), p = 0:15) and
stemness (HR: 0.30 (0.002-41.35), p = 0:63) were indepen-
dent risk factors for HCC. By adjusting clinicopathological
parameters, we observed that, in addition to stage (HR:
1.44 (1.17-1.78), p = 0:0006) and age (HR: 1.01 (1.002-
1.03), p = 0:03), CCP (HR: 98.54 (7.10-1366.81), p = 0:0006
) was the only significant risk factor of HCC prognosis
among hallmarks of cancer according to multivariate cox
regression models (Figure 1(a)). The ssGSEA score was used
to quantify CCP level in each HCC specimen. Figure 1(b)
visualized the associations of CCP score and common clini-
copathological parameters. Survival analysis uncovered that
high CCP score was in relation to unfavorable clinical out-
comes of HCC patients (Figure 1(c)). Above findings sug-
gested that CCP acted as a dominant risk factor for HCC
prognosis among cancer hallmarks.

3.2. Identification of CCP-Relevant Genes in HCC. In total,
549 CCP-relevant genes were identified across HCC speci-
mens in TCGA-LIHC cohort (Figures 2(a) and 2(b)). The
detailed information was listed in Supplementary table 3.
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Figure 3: Construction of a CCP-derived prognostic gene signature for HCC in TCGA-LIHC cohort. (a) The change in trajectory of
candidate variables. The x-axis represented the log (lambda) of variables, and the y-axis represented the coefficient of variables. (b)
Partial likelihood deviance corresponding to each lambda. (c) The interactions between six candidate genes in the LASSO model. (d)
Distribution of CCP-derived RS in each HCC patient. The high- and low-risk groups were separated in line with the median of RS
(dotted line). (e) Distribution of survival status in high- and low-risk groups. (f) Heat map visualizing the mRNA expression of six
candidate variables in high- and low-risk groups. Yellow, upregulation and blue, downregulation. (g) Prognostic analyses of HCC
patients with high and low RS in TCGA-LIHC cohort. (h–o) Comparison of survival outcomes of HCC patients with high and low RS in
each subgroup of age ≥ 65 and age < 65, female and male, G1-2 and G3-4, and stages I-II and stages III-IV.
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Figure 4: The CCP-derived gene signature is a robust prognostic predictor of HCC. (a) Distribution of CCP-derived RS across HCC
patients in the LIRI-JP cohort. The high- and low-risk groups were separated in line with the median of RS (dotted line). (b)
Distribution of survival status in high- and low-risk groups in the LIRI-JP cohort. (c) Heat map visualizing the mRNA expression of six
candidate variables in high- and low-risk groups the LIRI-JP cohort. Yellow, upregulation and blue, downregulation. (d) Prognostic
analyses of HCC patients with high and low RS in the LIRI-JP cohort. (e, f) Uni- and multivariate cox regression models of CCP-derived
RS and clinicopathological parameters in TCGA-LIHC cohort. (g) ROC curves at 1-, 3-, and 5-year survival in TCGA-LIHC cohort. (h)
ROC curves at 1-, 3-, and 5-year survival in the LIRI-JP cohort.
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Biological functions of these 549 CCP-relevant genes were
explored in depth. In Figure 2(c), biological processes of
chromosome segregation, mitotic nuclear division, nuclear
division, organelle fission, and sister chromatid segregation
were distinctly regulated by the 549 CCP-relevant genes.
Furthermore, the genes mainly participated in modulating
the cellular components of chromosomal region,
chromosome, centromeric region, condensed chromosome,
condensed chromosome, centromeric region, and spindle
(Figure 2(d)). They had the molecular functions of 3′-5′
DNA helicase activity, catalytic activity, acting on DNA,
DNA helicase activity, DNA replication origin binding,
and single-stranded DNA binding (Figure 2(e)). In
Figure 2(f), cell cycle, DNA replication, drug metabolism-
cytochrome P450, metabolism of xenobiotics by
cytochrome P450, and retinol metabolism were distinctly
modulated by the CCP-relevant genes.

3.3. Construction of a CCP-Derived Prognostic Gene
Signature in HCC. Through univariate cox regression
models, we identified 374 prognostic CCP-relevant genes

for HCC in TCGA-LIHC cohort (Supplementary table 4).
We adopted glmnet package to establish LASSO Cox
regression model. Figure 3(a) depicted the change in
trajectory of above prognostic CCP-relevant genes,
suggesting that more independent variables possessed
regression coefficients approaching zero as λ gradually
increased. Furthermore, tenfold crossverification was
presented to establish the prognostic model. The
confidence interval corresponding to each was shown in
Figure 3(b). Finally, six candidate genes were included in
the model, and the formula was as follows: RS = KIF20A
expression ∗ 0:0472314086601818 + CDCA8 expression ∗
0:063151035472353 + KPNA2 expression ∗
0:0550979279942481 + G6PD expression ∗
0:0909997485900923 + NDRG1 expression ∗
0:0336641751731575 + EPS8L3 expression ∗
0:00659414276835094. As depicted in Figure 3(c), there
were significantly positive interactions between six
candidate genes. In line with the median value of RS, HCC
patients were stratified into high- and low-risk groups
(Figure 3(d)). More dead patients were found in high-risk
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Figure 5: Establishment of a reliable nomogram for HCC prognosis in TCGA-LIHC cohort. (a) The nomogram that contained CCP-
derived RS and stage for prediction of 1-, 3-, and 5-year survival probabilities of HCC. (b) ROC curves for verifying the predictive
performance of this nomogram. (c) Comparison of nomogram-estimated and actual 1-, 3-, and 5-year survival probabilities of HCC. (d)
Comparison of net benefit among none, all, stage, CCP-derived RS, and nomogram.
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group (Figure 3(e)). With the increase in RS, KIF20A,
CDCA8, KPNA2, G6PD, NDRG1, and EPS8L3 expression
was gradually increased (Figure 3(f)). Survival difference
was evaluated between two groups. In Figure 3(g), we
observed that low-risk patients possessed the distinct
survival advantage. The prognostic significance of RS was
further investigated by subgroup analyses. We stratified
HCC patients into different subgroups in line with
clinicopathological parameters. Our data suggested that
patients with high RS had poorer clinical outcomes in
comparison to those with low RS in each subgroup of age
≥ 65 and age < 65 (Figures 3(h) and 3(i)), female and male
(Figures 3(j) and 3(k)), G1-2 and G3-4 (Figures 3(l) and
3(m)), and stages I-II and stages III-IV (Figures 3(n) and
3(o)).

3.4. The CCP-Derived Gene Signature is a Robust Prognostic
Predictor of HCC. The predictive efficacy of the CCP-derived
gene signature was externally verified in the LIRI-JP cohort.
With the median of RS, HCC patients were stratified into
two groups (Figure 4(a)). There were more dead cases in
high-risk group (Figure 4(b)). Consistently, increased
expression of KIF20A, CDCA8, KPNA2, G6PD, NDRG1,

and EPS8L3 was found in high-risk patients (Figure 4(c)).
Prognostic analyses uncovered the prominent survival
advantage of high-risk patients (Figure 4(d)). Univariate
cox regression models showed that stage and CCP-derived
RS were in relation to HCC prognosis in TCGA-LIHC
cohort (Figure 4(e)). As shown in multivariate cox regres-
sion models, stage and CCP-derived RS were both indepen-
dent prognostic indicators of HCC (Figure 4(f)). The AUC
values at 1-, 3-, and 5-year survival were 0.776, 0.697, and
0.619 in TCGA-LIHC cohort (Figure 4(g)). Also, in the
LIRI-JP cohort, the AUC values at 1-, 3-, and 5-year survival
were 0.779, 0.803, and 0.762 (Figure 4(h)). Above findings
were indicative of the well-predictive performance of the
CCP-derived RS in HCC prognosis.

3.5. Establishment of a Reliable Nomogram for HCC
Prognosis. Two independent prognostic factors (CCP-
derived RS and stage) were included for construction of a
nomogram in TCGA-LIHC cohort (Figure 5(a)). Each level
of RS or stage was assigned one score, and the total score
was counted through summing up the scores in each patient.
The 1-, 3-, and 5-year survival probabilities were determined
by the function conversion relationships of total scores. The
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Figure 6: CCP-derived prognostic gene signature is in relation to TME and carcinogenic pathway of HCC in TCGA-LIHC cohort. (a)
Comparison of immune score, stromal score, and tumor purity in high- and low-risk HCC patients with ESTIMATE algorithm. (b)
Comparison of the infiltration levels of tumor-infiltrating immune cells in high- and low-risk HCC patients via ssGSEA method. ∗p <
0:05; ∗∗p < 0:01; ∗∗∗p < 0:001. (c) Heat map visualizing the mRNA expression of HLA genes in each HCC specimen and their
relationships to CCP-derived RS. (d) Heat map showing the mRNA expression of immune checkpoints in each HCC sample as well as
their relationships to CCP-derived RS. (e) Association between CCP-derived RS and known biological pathways.
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AUCs of this nomogram at 1-, 3-, and 5-year survival were
0.718, 0.757, and 0.757, indicative of the excellent predictive
performance (Figure 5(b)). The calibration curves showed
the high consistency between the nomogram-estimated 1-,
3-, and 5-year clinical outcomes and actual observations
(Figure 5(c)). Decisive curves were conducted for evaluation
of the guiding implications of the nomogram for clinical
application. Our data demonstrated that the nomogram
was the best for prediction of clinical outcomes of HCC
(Figure 5(d)).

3.6. CCP-Derived Prognostic Gene Signature is in Relation to
TME and Carcinogenic Pathway of HCC. ESTIMATE com-
putational method was utilized for inferring the overall infil-
tration levels of immune and stromal cells. We observed no
significant difference in immune score or tumor purity
between high- and low-risk HCC patients (Figure 6(a)).

Low-risk patients displayed significantly increased stromal
score in comparison to high-risk patients. In Figure 6(b),
activated CD4+ T cell, central memory CD4+ T cell, mem-
ory B cell, type 17 helper cell, type 2 helper cell, and acti-
vated dendritic cell had increased infiltration levels in
high-risk than low-risk HCC specimens. Reduced infiltra-
tion levels of effector memory CD8+ T cell, CD56 bright
natural killer cell, eosinophil, and mast cell were found in
high-risk compared to low-risk HCC samples. Furthermore,
high RS was in relation to increased mRNA expression of
HLA family, including HLA-DOB, HLA-DMA, HLA-
DPB1, HLA-DRA, HLA-DOA, HLA-DQA2, HLA-DQA1,
HLA-DMB, HLA-DPB2, and HLA-DQB2 (Figure 6(c)).
We also compared the mRNA expression of immune check-
points between high- and low-risk HCC specimens. We
observed that CD200, VSIR, CD27, LAG3, CD70,
TNFRSF25, CD28, NRP1, CD200R1, TIGIT, VTCN1,
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Figure 7: Prediction of potential therapeutic compounds as well as assessment of chemosensitivity based on CCP-derived gene signature in
TCGA-LIHC cohort. (a) Spearman correlation between CTRP-derived compounds and CCP-derived RS as well as comparison of estimated
AUC value between high- and low-risk HCC samples. ∗∗∗p < 0:001. (b) Shared mechanisms of action of small molecular compounds derived
from CMap database. (c) Comparison of the estimated IC50 value of doxorubicin, cisplatin, gemcitabine, and sorafenib in high- and low-
risk HCC samples.
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TNFSF18, TNFRSF18, ICOS, TNFRSF14, TNFSF9, PDCD1,
TNFRSF9, CTLA4, CD86, LGALS9, TNFRSF18, HAVCR2,
LAIR1, TNFRSF4, TNFSF15, HHLA2, CD80, TNFSF4, and
CD276 expression was gradually increased with the increase
of RS (Figure 6(d)). Association between RS and known bio-
logical pathways was evaluated across HCC samples. In
Figure 6(e), RS displayed positive correlation to carcinogenic
pathway activation including IFN-γ signature, APM signal,
base excision repair, cell cycle, DNA replication, Fanconi
anemia pathway, homologous recombination, microRNAs
in cancer, mismatch repair, nucleotide excision repair,
oocyte meiosis, p53 signaling pathway, progesterone-
mediated oocyte maturation, proteasome, pyrimidine
metabolism, spliceosome, systemic lupus erythematosus,
and viral carcinogenesis.

3.7. Prediction of Potential Therapeutic Compounds against
HCC Based on CCP-Derived Gene Signature. This study fur-
ther discovered promising therapeutic agents against HCC
based on the CCP-derived gene signature in TCGA-LIHC
cohort. In Figure 7(a), 12 CTRP-derived compounds were
identified, including paclitaxel (r = −0:48), BI-2536
(r = −0:45), triazolothiadiazine (r = −0:48), ABT-737
(r = −0:44), nakiterpiosin (r = −0:51), mitomycin (r = −0:50
), barasertib (r = −0:43), ceranib-2 (r = −0:54), SB-743921
(r = −0:52), clofarabine (r = −0:42), fluvastatin (r = −0:62),
and KX2-391 (r = −0:40). AUC values of above compounds
were compared between high- and low-risk HCC patients.
We observed that high-risk patients had prominently
reduced AUC values of each compound. This indicated that
high-risk patients were more likely to respond to above

Table 1: Identification of small molecular compounds against HCC by CMap database.

CMap name Mean n Enrichment p Specificity Percent nonnull

DL-thiorphan -0.847 2 -0.933 0.00926 0.0227 100

Sanguinarine -0.864 2 -0.929 0.01036 0.0188 100

Apigenin -0.833 4 -0.884 0.00042 0.0163 100

Quinostatin -0.768 2 -0.882 0.02827 0.1985 100

Menadione -0.788 2 -0.871 0.03314 0.046 100

Blebbistatin -0.753 2 -0.862 0.03825 0.0608 100

8-Azaguanine -0.907 4 -0.853 0.00092 0.014 100

Luteolin -0.773 4 -0.849 0.00095 0.0114 100

Alsterpaullone -0.771 3 -0.843 0.00773 0.1143 100

Thioguanosine -0.785 4 -0.837 0.00125 0.0141 100

0297417-0002B -0.759 3 -0.816 0.0124 0.0738 100

Bisacodyl -0.736 4 -0.814 0.00221 0.0242 100

Lasalocid 0.663 4 0.801 0.00298 0.0245 100

Cefamandole 0.617 4 0.805 0.00269 0.0104 100

Ikarugamycin 0.65 3 0.817 0.0121 0.0389 100

Gly-His-Lys 0.738 3 0.822 0.0112 0.0449 100

Prestwick-691 0.711 3 0.831 0.00957 0.025 100

Heptaminol 0.745 5 0.842 0.00022 0.0121 100

Atracurium besilate 0.712 3 0.845 0.00723 0.0173 100

3-Acetamidocoumarin 0.728 4 0.853 0.0007 0 100

Thiamphenicol 0.746 5 0.855 0.00014 0.0124 100

Penbutolol 0.736 3 0.863 0.00481 0.017 100

Thapsigargin 0.674 3 0.871 0.00397 0.1401 100

Nadolol 0.737 4 0.872 0.00036 0.0055 100

Felbinac 0.733 4 0.875 0.00034 0.0117 100

Prestwick-1103 0.693 4 0.875 0.00034 0 100

Gentamicin 0.678 4 0.878 0.0003 0.0063 100

Biperiden 0.736 5 0.882 0.00006 0.0061 100

Prestwick-1082 0.713 3 0.883 0.00322 0.0158 100

Prestwick-692 0.769 4 0.913 0.00004 0.0061 100

Isoflupredone 0.874 3 0.94 0.0003 0.0052 100

Viomycin 0.861 4 0.948 0 0 100

Adiphenine 0.905 5 0.956 0 0 100
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Figure 8: CCP-derived gene signature acts as a reliable prognostic indicator independent of genetic mutation. (a) Landscape of somatic
mutation of HCC specimens. (b–i) Survival analysis of high- and low-risk HCC patients in each subgroup (TP53 mutation and
nonmutation subgroups; CTNNB1 mutation and nonmutation subgroups, TTN mutation and nonmutation subgroups, and MUC16
mutation and nonmutation subgroups).
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compounds. Small molecular compounds were also pre-
dicted by CMap project. In total, 33 small molecular com-
pounds with ∣enrichment score ∣ >0:8 and p < 0:05 were
identified (Table 1). Shared mechanisms of action of above
compounds were shown in Figure 7(b). We observed that
digitoxigenin, digoxin, helveticoside, ouabain, and proscil-
laridin shared the ATPase inhibitor; apigenin and ricinine
shared casein kinase inhibitor; 4, 5-dianilinophthalimide
and butein shared EGFR inhibitor; scriptaid and vorinostat
shared HDAC inhibitor; fluvastatin and simvastatin shared
HMGCR inhibitor; and LY-294002 and sirolimus shared
mTOR inhibitor. Fluvastatin was predicted both in CTRP
and CMap projects, indicative of the potential as a therapeu-
tic agent against HCC.

3.8. CCP-Derived Gene Signature Predicts Chemotherapeutic
Response. The response to chemotherapeutic agents includ-
ing doxorubicin, cisplatin, gemcitabine, and sorafenib in
each HCC sample was evaluated in TCGA-LIHC cohort.
We compared the IC50 value of above agents in high- and
low-risk HCC patients. As a result, high-risk patients had
markedly reduced IC50 values of doxorubicin and gemcita-
bine than those with low-risk, suggesting that high RS was
indicative of increased sensitivity to doxorubicin and gemci-
tabine (Figure 7(c)). However, no significant difference was
investigated between high- and low-risk HCC patients.
Thus, CCP-derived prognostic gene signature might be
applied for predicting the response to doxorubicin and
gemcitabine.

3.9. CCP-Derived Gene Signature Acts as a Reliable
Prognostic Indicator Independent of Genetic Mutation. Fur-
ther analysis revealed that 84.62% occurred somatic muta-
tion across 364 HCC samples (Figure 8(a)). TP53 was the
most frequent mutation (30%), followed by CTNNB1
(25%), TTN (24%), and MUC16 (14%). Missense mutation
was the main type of mutation. HCC samples were stratified
into different subgroups according to whether above genes
occurred mutation. We observed that high-RS patients dis-
played poorer clinical outcomes in comparison to low-RS
patients regardless of whether TP53, CTNNB1, TTN, and
MUC16 were mutated (Figures 8(b)–8(i)). This indicated
that CCP-derived gene signature acted as a reliable prognos-
tic indicator independent of genetic mutation.

4. Discussion

Nowadays, bioinformatics analysis has become an important
tool for cancer research. Herein, our study suggested that
CCP acted as a dominant risk factor for HCC prognosis
among hallmarks of cancer. The LASSO computational
method is a shrinkage estimate, which may be utilized for
constructing a penalty function as well as obtaining a rela-
tively refined model, where several coefficients may be
shrunk, and several are set to zero. Hence, this model pos-
sesses the advantage of subset shrinkage and represents a
biased estimate, which may process multiple collinear data.
It is capable of estimating parameters and selecting variables,
thereby solving the problem of multiple collinearities in

regression analyses. Thus, we adopted LASSO method to
construct a robust CCP-derived gene signature for HCC
prognosis.

This signature contained KIF20A, CDCA8, KPNA2,
G6PD, NDRG1, and EPS8L3. KIF20A dysregulation may
be independently predictive of unfavorable clinical outcomes
and recurrence of HCC patients [31]. KIF20A downregula-
tion may decrease the proliferation and induce the G1 arrest
of HCC cells [32]. CDCA8 is in relation to unfavorable stage
and survival outcomes of HCC [33]. CDCA8 inhibition
weakens HCC growth and stemness through restoring
ATF3 and inactivating AKT/β-catenin axis [34]. KPNA2
upregulation accelerates HCC progression via enhancement
of migration [35] and proliferation and is indicative of unde-
sirable prognosis [36]. KPNA2 dysregulation is also in rela-
tion to early recurrence for patients with small HCC
following hepatectomy [37]. G6PD upregulation leads to
migration and invasion of HCC cells through enhancing
EMT [38]. It can inhibit ferroptosis in HCC through reduc-
ing cytochrome P450 oxidoreductase [39]. Hypoxia-
mediated NDRG1 upregulation modulates apoptotic levels
via driving mitochondrial fission in HCC [40]. NDRG1 acts
as a predictor of metastases, relapse, and undesirable prog-
nosis in HCC [41]. EPS8L3 upregulation enhances HCC
proliferation through inhibition of the transactivity of
FOXO1 [42]. It can also induce HCC proliferation and
metastases through modulation of EGFR dimerization and
internalization [43]. Also, we observed that the CCP-
derived gene signature exhibited positive correlation to car-
cinogenic pathway activation. Hence, each variable in the
CCP-derived gene signature acts as an oncogene during
HCC progression.

Our prognostic analysis uncovered that the CCP-derived
gene signature can be independently predictive of HCC
patients’ clinical outcomes. Patients with high RS indicated
unfavorable prognosis. ROC curves at 1-, 3-, and 5-year sur-
vival confirmed the well predictive efficacy. The external ver-
ification demonstrated the clinical applicability of this CCP-
derived gene signature. A recent study has proposed a novel
cell cycle-relevant prognostic model for endometrial cancer
[44]. This study is the first to construct the CCP-derived
gene signature in HCC prognosis. Through integration of
stage and CCP-derived signature, we developed a nomo-
gram. Following verification of ROC, calibration, and deci-
sive curves, this nomogram possessed the potential as a
clinical tool for predicting HCC prognosis.

Recently, immune checkpoint inhibitors like PD-1, PD-
L1, and CTLA-4 antibodies display favorable therapeutic
effects against advanced HCC [45]. But current immune-
based therapies induce durable response in a minority of
HCC subjects. Due to the indispensable role of TME in
HCC pathogenesis, it is of significance to uncover the under-
lying mechanism shaping the unique TME of HCC [46].
Our findings suggested that high-risk HCC possessed the
increased infiltration levels of activated CD4+ T cell, central
memory CD4+ T cell, memory B cell, type 17 helper cell,
type 2 helper cell, and activated dendritic cell as well as
had the reduced infiltration levels of effector memory CD8
+ T cell, CD56 bright natural killer cell, eosinophil, and mast
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cell. Furthermore, most of HLA genes and immune check-
points displayed the significant upregulation in high-risk
patients. Hence, the CCP-derived gene signature was in rela-
tion to TME reshaping.

Combining CTRP and CMap analyses, we finally identi-
fied fluvastatin as a promising therapeutic agent. Evidence
suggests that fluvastatin suppresses apoptosis of HCC cells
[47]. High RS had increased sensitivity to doxorubicin and
gemcitabine for HCC patients. This indicated that CCP-
derived gene signature might be utilized for prediction of
response to doxorubicin and gemcitabine. Furthermore, we
conducted the genetic mutation landscape of HCC. Our data
suggested that the CCP-derived gene signature acted as a
reliable prognostic predictor independent of genetic muta-
tion. However, several limitations of this study should be
pointed out. Although the CCP-derived gene signature has
been verified externally, the predictive performance should
be observed in a prospective cohort. Moreover, each gene
in the CCP-derived gene signature will be validated through
in vivo or in vitro experiments.

5. Conclusion

Collectively, our study proposed the CCP-derived gene sig-
nature for HCC prognosis. Following verification, this signa-
ture acted as a robust prognostic predictor for HCC. Also, a
reliable nomogram including the CCP-derived gene signa-
ture and stage was developed as a promising clinical tool.
Further analysis uncovered that the CCP-derived gene sig-
nature was in relation to TME reshaping and response to
doxorubicin and gemcitabine. Based on the CCP-derived
gene signature, fluvastatin was confirmed as a therapeutic
agent against HCC. Despite this, the therapeutic effects of
fluvastatin required to be verified in more experiments.
Moreover, the predictive efficacy of the CCP-derived gene
signature in HCC clinical outcomes will be verified in pro-
spective cohorts.
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