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Amoeba use phagocytosis to internalize bacteria as a source of nutrients, whereas multicellular
organisms utilize this process as a defense mechanism to kill microbes and, in vertebrates, initiate a
sustained immune response. By using a large-scale approach to identify and compare the proteome
and phosphoproteome of phagosomes isolated from distant organisms, and by comparative analysis
over 39 taxa, we identified an ‘ancient’ core of phagosomal proteins around which the immune
functions of this organelle have likely organized. Our data indicate that a larger proportion of the
phagosome proteome, compared with the whole cell proteome, has been acquired through gene
duplication at a period coinciding with the emergence of innate and adaptive immunity. Our study
also characterizes in detail the acquisition of novel proteins and the significant remodeling of the
phagosome phosphoproteome that contributed to modify the core constituents of this organelle in
evolution. Our work thus provides the first thorough analysis of the changes that enabled the
transformation of the phagosome from a phagotrophic compartment into an organelle fully
competent for antigen presentation.
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Introduction

Phagocytosis is the process by which multiple cell types
internalize large particulate material from the external
milieu. In mammals, this receptor-mediated function has
important functions in embryogenesis and tissue remodeling
(through the clearance of apoptotic cells), as well as in
the elimination of a variety of microbial pathogens causing
important diseases such as salmonellosis, chlamydia
infection, and tuberculosis. The functional properties of
phagosomes are acquired through a complex maturation
process, referred to as phagolysosome biogenesis. This
pathway involves a series of interactions with other intracel-
lular organelles, enabling the delivery of hydrolytic enzymes
and the generation of other molecules, such as nitric oxides
and superoxides, involved in the killing and degradation of the
phagosome content.

Phagocytosis has been maintained during evolution and
was shown to have important functions in organisms such as
amoeba and paramecium. For example, the degradative
environment encountered in the phagosome lumen has
enabled the use of phagocytosis as a predation mechanism
for feeding (phagotrophy) in amoeba (Desjardins et al, 2005;
Jutras and Desjardins, 2005; Gotthardt et al, 2006). The
degradative properties of phagosomes were exploited for the
control of pathogen invasion in multicellular organisms,
through the introduction of molecules involved in the
recognition of microbial determinants such as the Toll-like
receptors (TLRs), with one representative in Caenorhabditis
elegans, and 9 and 10 in Drosophila melanogaster and human,
respectively (Mushegian and Medzhitov, 2001). Killing of
microorganisms in phagosomes is a key feature of innate
immunity, the part of our immune system that defends the host
from infection in a non-specific manner. The emergence of
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genes associated to the MHC locus in mammals that appeared
originally in the genome of jawed fishes, contributed to the
development of complex molecular mechanisms linking
innate and adaptive immunity (the part of the immune system
triggered specifically after antigen recognition) (Kasahara et al,
2004). Several of the genes of this locus encode proteins
known to have important functions in antigen presentation,
such as subunits of the immunoproteasome (LMP2 and
LMP7), MHC class I and class II molecules, as well as tapasin
and the transporter associated with antigen processing (TAP1
and TAP2), involved in the transport and loading of peptides
on MHC class I molecules. Remarkably, all of these proteins
have been identified on phagosomes of different organisms by
various biochemical and morphological approaches (Dermine
et al, 2001; Ackerman et al, 2003; Guermonprez et al, 2003;
Houde et al, 2003; Grotzke et al, 2009), suggesting that
their advent during evolution might have contributed to the
pivotal role played by phagosomes in linking innate and
adaptive immunity. Nevertheless, the molecular mechanisms
that enabled the emergence of novel phagosomal functions
during evolution are poorly understood. Here, we present
the first large-scale comparative proteomics/phosphoproteo-
mics study characterizing some of the key steps that
contributed to the remodeling of phagosomes that occurred
during evolution.

Results

Proteomics analyses of phagosomes

To study how the phagosome has been remodeled during
evolution, we isolated this organelle from three distant
organisms that use phagocytosis for different purposes, and
performed detailed proteomics and phosphoproteomics ana-
lyses. These original data were analyzed and compared with a
wide variety of organisms using comparative genomics to
characterize the nature of the modifications that enabled
phagosomes to have an important function in innate and
adaptive immunity during evolution. This approach proved to
be efficient for the comparative study of complex cellular
structures like synapses (Emes et al, 2008). Tandem mass
spectrometry (MS/MS) analyses led to the identification of 818
Dictyostelium, 1132 Drosophila and 1391 mouse phagosome
proteins (Supplementary Datasets 1–3). Compared with
previous studies (Garin et al, 2001; Gotthardt et al, 2006;
Rogers and Foster, 2007; Stuart et al, 2007; Jutras et al, 2008),
we obtained a two- to four-fold enhancement in the number of
proteins identified, with unparallel protein coverage for this
organelle. Based on the proteome of each organism, we

identified orthologs present in the genome of the two other
organisms using the established Ensembl (to compare mouse
with Drosophila) and Inparanoid (to compare mouse and
Drosophila with Dictyostelium) databases (Supplementary
Datasets 4–6), and mapped them accordingly to their BLAST E-
value (Figure 1A). These analyses identified proteins unique to
a given organism (point of origin in purple), proteins sharing
orthologs with one of the two other organisms (data points on
x and y axes in green or red), or proteins sharing orthologs with
the two other organisms (data points out of the axes in blue).
The proportion for each group of proteins is highlighted in the
bar graph under each scatter plot with respective colors. As
expected, the mouse and Drosophila phagosomes are more
related to each other than to Dictyostelium phagosomes.
Nevertheless, a large proportion of proteins are maintained in
phagosomes from Dictyostelium to mouse, highlighting a
subset of molecules likely to have been present in the
phagosome core of their common ancestors.

Next, we annotated each of the mouse proteins (based on
literature searches and the curated Uniprot database) to
determine the distribution of orthologs among established
phagosome structural and functional properties. Our data
indicate that cytoskeletal elements, proteins associated with
cellular trafficking, and small GTPases were highly maintained
in the three organisms (Figure 1B, Supplementary Dataset 7).
The presence of these elements could be explained by their
involvement in the advent of phagocytosis in pre-eukaryotic
cells (Cavalier-Smith, 2009; Yutin et al, 2009). Conversely,
functional groups such as membrane receptors, signaling, and
immunity are predominantly represented in the mouse
phagosomes, or in both the mouse and Drosophila, high-
lighting the emergence of novel phagosomal properties in
multicellular organisms (Figure 1B).

So far, our data indicate that a large proportion of the
mouse phagosomal proteins have orthologs in the Drosophila
and/or Dictyostelium genome. Thus, a related question is
whether these proteins are also present on the phagosome of
these organisms, or expressed elsewhere in the cell. Compar-
ison of the mouse phagosome proteome with the proteomics
analyses of phagosomes isolated from Drosophila and
Dictyostelium performed in this study, as well as compiled
data published by our groups previously (Gotthardt et al, 2006;
Stuart et al, 2007) indicate that 61.7 and 51.2% of the mouse
orthologs were identified by MS/MS in Drosophila and
Dictyostelium phagosomes, respectively (41.7% of the mouse
phagosome proteome is shared by the three species) (Supple-
mentary Figure S1A). Although a certain proportion of these
differences might be due to the fact that some of the proteins
present in Drosophila and Dictyostelium phagosomes were not

Figure 1 Shared components define the ‘ancient’ phagosome. (A) Predicted orthologs of phagosome proteins of Dictyostelium, Drosophila, and mouse were analyzed
by BLAST against the two other species and mapped according to �Log10(e-value), where 0 indicates the absence of an ortholog and 181 a perfect alignment. Four
distinct groups of proteins are highlighted for each organism: (1) a set of orthologs shared by the three organisms defining the ‘ancient’ phagosome (blue data points
outside the x and y axes), (2 and 3) groups of conserved proteins shared only between the plotted organism and one of the two others found on the x or y axis (green or
red data points), and (4) a set of proteins unique to the plotted organism (purple data points at the origin of the graph). As several data points may overlay in the scatter
plot, a histogram below each plot reports the relative distribution of proteins among the four distinct groups of proteins. (B) Annotation of a function to each protein of the
mouse proteome highlights the level of conservation of relevant phagosome functions among the three organisms. Although a large proportion of the proteins associated
with functions such as ‘membrane trafficking,’ ‘small GTPases,’ and ‘cytoskeleton’ are majorly shared by the three organisms, some like ‘membrane receptors’ and
‘immunity’ are more specific to mouse and Drosophila phagosomes. See also Supplementary Figure S1 and Supplementary Datasets 4–6.
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sampled during the mass spectrometer analyses (sampling
limitation), it is also arguable that a path to the complex-
ification of the phagosome proteome arose, for example, from
the possibility that proteins localized in the cytoplasm of basal
organisms would be eventually recruited to phagosomes
during evolution (co-option). We argue that a sampling
limitation would potentially affect most of the proteins,
irrespective of their functional properties. On the other hand,
differences related to biological diversification during evolu-
tion is more likely to be related to changes for proteins of
specific functional properties. Our data support the proposal
that proteins associated with specific functional properties
have accumulated on phagosomes during evolution. Indeed,
significant differences were observed in the functional proper-
ties of the mouse orthologs that were effectively identified on
Drosophila and Dictyostelium phagosomes. For example, we
observe that predicted orthologs of proteins such as GTPases
and cellular trafficking components were highly represented
on the Drosophila and Dictyostelium phagosomes, compared
with proteins such as transporters and membrane receptors
(Supplementary Figure S1B and C). Further quantitative
studies would be required to confirm that certain proteins
present on the mouse phagosome are expressed in the other
organisms (present in the cell) but not recruited to the
phagosome.

Origin of the mouse phagosome proteome

We performed comparative analyses among 39 taxa to identify
the origin of 1385 mouse phagosome proteins, by using gene
phylogeny web databases (PhylomeDB (phylomeDB.org) and
Treefam (treefam.org)) (Figure 2A, Supplementary Dataset 7).
Interestingly, 73.1% of this proteome consists of proteins
already present in phagotrophic single-celled eukaryotes and
in Amoebozoa and Fungi that had lost phagotrophy. Around
16.7% of the phagosome proteins appeared in organisms that
use phagocytosis for innate immunity (Bilateria to Chordata),
whereas 10.2% appeared in Euteleostomi or Tetrapoda where
phagosomes have an important function in linking innate and
adaptive immunity. The phagosome is an organelle formed
following the internalization of large particles. Hence, it is
made of molecules taken from a variety of sources within the
cell, including the cytoplasm, the cytoskeleton and membrane
organelles. Despite the evolution and diversification of these
various cellular systems (Erickson, 2007; Dacks et al, 2008;
Fritz-Laylin et al, 2010; Wickstead et al, 2010), the mammalian
phagosome proteome is made preferentially of ancient
proteins (Figure 2B). Functional annotation highlighted the
emergence of specific phagosomal properties at various steps
during evolution (Figure 2C). Some of these proteins and their
point of origin during evolution are highlighted in Figure 2D.
Strikingly, we identified in Tetrapods a set of 50 proteins that
arose around 450 million years (Hedges, 2009) after the
emergence of adaptive immunity, including IRG47/Irgm1 (a
strong resistance factor induced by interferons (IFNs)), CD5
(a scavenger receptor that has an important function in B- and
T-cell selection as well as generation and maintenance of
tolerance) (Raman, 2002), CD14 (a co-receptor along with
TLR-4 and MD-2 for the detection of bacterial LPS) (Sepulcre
et al, 2009), CD47 (a protein that interacts for ‘self’-

recognition) (Hatherley et al, 2009) and several proteins of
unknown functions. Therefore, we used the term ‘late adaptive
immunity’ to highlight the fact that these 50 phagosome
proteins emerged when adaptive immunity was already well
established.

Refinement of the phagosome functions occurred
during two major periods of gene duplication

Gene duplication and the expansion of gene families produced
organelle complexity by functional gain during evolution
(Cavalier-Smith, 2002; Dacks et al, 2008). To determine
whether this process had a significant impact on phagosomal
properties, we identified paralogs present in the mouse
phagosome proteome and determined the origin of their
duplication during evolution by using the Ensembl database.
Our analyses indicate that 74.5% of the mouse phagosome
proteins could be paired with one or more paralogs. Of these,
50.0% have been identified by MS/MS on the mouse
phagosome, accounting for a total of 952 paralogs pairs.
Comparative analyses reveal that the majority of these
paralogs (79.1%) originated from proteins present in a
phagotrophic ancestor (Figure 3A). The duplication of a large
proportion of these proteins occurred in Bilateria (39.6%) and
Euteleostomi (44.1%), coinciding with periods that saw the
emergence of innate and adaptive immunity (Figure 3B,
Supplementary Dataset 8). This rate of duplication differs
markedly from that observed for the whole mouse genome.
Interestingly, much less difference was observed when we
compared the rate of duplication of the proteins constituting
the proteome of the smooth or rough endoplasmic reticulum
(sER and rER) (Gilchrist et al, 2006) with that of the
corresponding rat genome (Supplementary Figure S3A).
Duplication in the mouse phagosomal proteome has influ-
enced proteins such as GTPases and SNAREs, regulating
membrane fusion events, as well as hydrolases involved in the
acquisition of phagosomal lytic properties (Figure 3C). Analysis
of the Drosophila phagosome proteome indicated that gene
duplication also contributed to the complexification of this
organelle in Bilateria (Supplementary Figure S3B). Altogether,
these results highlight the importance of gene duplication in the
emergence of functional phagosome properties.

Evolution of the phagosome phosphoproteome

Phosphorylation has important roles in the regulation of
phagosome functions (Trost et al, 2009). To determine the
extent to which the phagosome phosphoproteome has been
modified during evolution, we performed comparative ana-
lyses to determine the level of phosphosite conservation
among a group of 10 organisms ranging from Drosophila to
mouse. To do so, we used the mouse phagosome phospho-
proteome data published recently, where 2949 phosphosites
were precisely identified and mapped on 1166 proteins (Trost
et al, 2009). The alignment of these proteins with their
respective orthologs in the 10 chosen organisms allowed us to
align 534 phosphosites from 238 phosphoproteins (Figure 4A).
These alignments reveal that a small proportion of the
phosphosites were conserved prior to the emergence of
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Figure 2 Origin of the mouse phagosome proteome. Comparative analyses of the mouse phagosome proteome among 39 taxa identified the origin of each protein.
(A) Proportions (in %) of the evolutionary origin of the mouse phagosome proteome are reported through four major evolutionary groups of proteins: phagotrophy
(Eukaryota, Amoebozoa, and Fungi), innate immunity (Bilateria, Coelomata, and Chordata), early (Euteleostomi), and late adaptive immunity (Tetrapoda and beyond).
(B) Comparison between the evolutionary origin of the mouse phagosome proteins and the entire mouse proteome (reported by their relative proteome proportion in %)
through a cladistic distribution (x axis) reveals that phagosomes are of ancient origin. The inbound graph shows the same proteome proportion in % through a cladistic
distribution under the four major evolutionary groups of proteins reported in a: phagotrophy (Ph.), innate immunity (In.), early adaptive (E.A.), and late adaptive immunity
(L.A.). (C) Comparative functional analysis of the mouse phagosome proteins reveals that specific phagosomal functions originated from different stages of evolution.
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originating at the four major evolutionary groups are found in dash boxes. See also Supplementary Dataset 7.
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Tetrapods. This feature was especially observed for phosphosites
present in disordered regions of proteins, as described
previously (Dafforn and Smith, 2004; Landry et al, 2009).
These results indicate that the phagosomal phosphoproteome
has been extensively modified between coelomates and
mammals. We showed recently that treatment of macrophages
with IFN-g induces significant changes in the level of
expression of various proteins and the state of phosphoryla-
tion of several of their potential phosphosites (Jutras et al,
2008; Trost et al, 2009). This cytokine affects the relative
abundance of at least 386 mouse phagosomal proteins. Our
analyses reveal that 81.9 % (316) of these proteins originated
before the emergence of IFN-g in teleosts, indicating that the
introduction of this cytokine during evolution enabled the
modulation of ancient phagosome proteins in ways not
possible before its emergence (Supplementary Figure S4B).
We observe a higher level of conservation of the IFN-g-
modulated phosphosites among all vertebrates, compared
with tunicates and coelomates (Drosophila) (Figure 4B).
Interestingly, this difference coincides with the emergence of
IFN-g at the vertebrates-tunicates split (Savan et al, 2009),

suggesting that this cytokine might have introduced functional
gains, creating selective pressure to stabilize a part of the
phagosomal phosphoproteome in vertebrates.

To evaluate more directly the extent of the reorganization of
the phagosome phosphoproteome during evolution, we
characterized the phosphoproteome of phagosomes isolated
from Drosophila and Dictyostelium. Our analyses led to the
identification of 968 phosphosites in 420 Dictyostelium
phagosome phosphoproteins, and 2919 phosphosites in 910
Drosophila phagosome phosphoproteins, with a false-discov-
ery rate (FDR) below 1% (Supplementary Datasets 9 and 10).
Although the alignment of these phosphoproteins with the
mouse orthologs predicted that a similar proportion (B33%)
of the murine phosphosites aligned with phosphorylatable
residues in Drosophila or Dictyostelium, a relative small
proportion of these sites was, in fact, effectively phosphory-
lated. Indeed, our phosphoproteomics data show that 12.8%
(n¼88) and 5.0% (n¼20) of the mouse phosphosites are also
phosphorylated in Drosophila and Dictyostelium phagosome
proteins, respectively. It should be emphasized that although
these numbers appear to be low, they are, in fact, 8- and 12-fold
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throughout evolution. (C) Functional analysis of phagosomal proteins duplicated originally in bilaterians and euteleosts reveals a preference for small GTPases,
signaling, and proteins involved in cellular trafficking. The function ‘Others’ contains the merging of remaining functions. See also Supplementary Figure S3 and Supplementary
Dataset 8.
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higher than what would be expected if an equivalent ratio of
phosphorylatable residues sampled randomly among S/T/Yof
the same set of mouse phosphoproteins would align by chance
with the phosphorylated residues of Drosophila and Dictyos-
telium (Figure 4C; Supplementary Figure S4C). Altogether, our
results indicate that although the phagosome phosphopro-
teome has been extensively modified during evolution, some
phosphosites have been maintained for 41.2 billion years
(Bhattacharya et al, 2009), highlighting their particular
significance in the regulation of key phagosomal functions.

Evolution of phagosomal protein networks

Thus far, our results indicate that the emergence of novel
proteins, series of duplication events, and an extensive
remodeling of the phosphoproteome are elements that
contributed to the acquisition of new phagosome functions
during evolution. How emerging proteins have been integrated
into existing cellular pathways throughout evolution is poorly
understood. It has been proposed that the integration of novel
components into protein networks tends to occur through
association with ‘hub,’ proteins that are already interacting
with a high number of partners. This feature of complex
networks is favored by gene duplication (Barabasi and Oltvai,
2004). As duplication had a profound effect on the actual
phagosome proteome, we studied how phagosome compo-

nents of various evolutionary origins interact to assemble the
molecular machines enabling the functional properties of this
organelle in mammals. To circumvent the fact that a limited set
of experimental interactions have been reported for mouse
proteins, we used our mouse phagosome data to retrieve
orthologous human protein–protein interaction data from the
Intact (Kerrien et al, 2007) and UniProt databases (Consor-
tium, 2009). This approach led to the characterization of 2637
interactions (edges) involving 1258 proteins (nodes) of the
three main evolutionary groups (phagotrophy 864; innate
immunity 243; and adaptive immunity 151 nodes). Although
proteins of each groups have a similar average number of
interactions (interactions/protein: phagotrophy, 2.8; innate
immunity, 3.0; adaptive immunity, 2.8), proteins acquired
later in evolution interact considerably more often with
proteins of ancient origin (Table I), consistent with the
evolutive architecture of a scale-free network (Eisenberg and
Levanon, 2003). From the total network, we generated two
subnetworks highlighting proteins involved in vesicle traffick-
ing, and interaction with the cytoskeleton (Figure 5A) and
immunity (Figure 5B).

Remarkably, most of the functional modules present on
phagosomes are constituted of proteins that have appeared at
various stages of evolution, often through a duplication
process, indicating a high degree of integration and a
diversification of pre-existing functional units (e.g. Cdc42
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Figure 4 Evolution of the phagosome phosphoproteome. (A) Alignment of mouse phagosomal phosphoproteins revealed strong conservation of phosphosites within
mammals, but fewer phosphosites are conserved across vertebrates, chordates, and tetrapods. In proportion, a larger fraction of conserved phosphosites (in red) is
observed in ordered regions compared with disordered regions. (B) Phosphosites modulated by IFN-g are on average as conserved as other phosphorylated residues in
vertebrates but not in tunicates or Drosophila. (C) Comparative alignment of conserved mouse, Drosophila, and Dictyostelium phagosomal phosphoproteins identified by
MS revealed that the majority (near 66%—doughnut plot) of phosphosites are not conserved (blue), indicating that the mouse phagosome phosphoproteome is globally
recent in evolution. Still, around 33% of mouse phosphosites are phosphorylatable (red) in Drosophila or Dictyostelium. Of these, 12.8 and 5.0% phosphosites were
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and Rabs and their effectors in Figure 5A). However,
certain functional modules such as the Ena/Vasp complex,
receptor signaling, the NADPH oxidase complex, as well as
the antigen presentation machinery appeared later during
evolution, promoting the direct emergence of novel func-
tional properties. Particularly, a complex process like antigen
processing and presentation requires the concerted action of
a number of molecular machines. A model of the various
steps performed in the phagosome to enable the processing
of proteins into peptides, and their loading on MHC mole-
cules is presented (Figure 6). This model highlights the
fact that although this process is unique to evolutionarily
recent phagosomes (starting in jawed fishes, about 450 million
years ago) (Hedges, 2009), it uses and integrates molecular
machines composed of proteins that emerged throughout
evolution.

Discussion

Over more than a billion years, the phagosome has evolved
from a digesting organelle, where bacteria are degraded as a
source of nutrients, into a complex compartment involved in
the killing of pathogens and the regulated processing of their
proteins for antigen presentation. In the present study, we
performed the first comparative analysis of an organelle
isolated from distant organisms using a protocol allowing high
levels of purification. Previous characterization of isolated
latex bead-containing phagosomes demonstrated the low
levels of contamination of these preparations due to the
isolation procedure (Gotthardt et al, 2002; Stuart et al, 2007).
The recent finding that phagosomes interact with autophago-
somes (Sanjuan et al, 2007) would certainly provide a possible
explanation for the presence of proteins in phagosomes that
could be considered as contaminants. A good example of this
is the identification of ribosomal proteins in our samples.
Interestingly, phagosome–autophagosome interaction during
mycobacterial infection has been shown to enable the delivery
and degradation of ribosomal proteins in the lumen of these
organelles, a process generating bactericidal molecules (Pon-
puak et al, 2010). The three ribosomal subunits involved, L30,
S19, and S30 have been identified in the mouse phagosome
preparations. This led us to consider all the proteins identified
in our preparations as ‘potential’ phagosomal proteins; these
being either structural proteins or proteins present in the
phagosome lumen as cargo.

Our data indicate that a large proportion of the phagosome
proteome is of ancient origin (73.1% of the proteome is
conserved in the genome of most eukaryotic organisms). This
number is somehow misleading as one has to consider that
analyses of whole genomes will include large groups of

proteins that are parts of well-conserved machineries involved
in basic cellular functions. Nevertheless, this stresses the fact
that phagocytosis is a very ancient process, as shown by its
possible involvement in the emergence of eukaryotic cells
(eukaryogenesis) (Cavalier-Smith, 2002). Of the 1391 proteins
found on the mouse phagosome, 290 were effectively
identified by MS/MS in phagosomes of the two other studied
organisms, defining a protein core from which the immune
functions of phagosomes likely evolved. A clearer image of the
ancient phagosome core and the early steps in the evolution
of this organelle is likely to emerge once more free-living
amoebozoan genomes will be sequenced.

Our study highlights the fact that the functional properties
of phagosomes emerged by the remodeling of ancient
molecules, the addition of novel components, and the
duplication of existing proteins leading to the formation
of molecular machines of mixed origin. Gene duplication is
a process that contributed continuously to the complexi-
fication of the mouse proteome during evolution. In sharp
contrast, the phagosome proteome was mainly reorganized
through two periods of gene duplication, in Bilateria and
Euteleostomi, coinciding with the emergence of adaptive
immunity (in jawed fish), and what might have been the
emergence of innate immunity. These results strongly suggest
that selective constraints may have favored the maintenance
of the phagosome paralogs to ensure the establishment of
the novel functional gain associated with this organelle.
For instance, the duplication of TLRs, hydrolases, and sets
of novel SNARE and Rab proteins have contributed to the
specialization of cell lineages and the establishment of innate
immunity (Stuart and Ezekowitz, 2008).

The emergence of novel proteins is not the only way by
which phagosomal functions have been modified during
evolution. Several of the phagosome proteins shared among
distant organisms have been modified by a significant
remodeling of their phosphosites, indicating that phagosome
proteins of ancient origin are far from being fixed entities. The
reorganization of phosphosites, occurring at a much faster
pace than the introduction of novel proteins, is likely to have
endowed proteins with additional functional properties, and/
or introduced finer ways to regulate their activity and/or the
nature of their interacting partners. This is particularly the case
in disordered regions of proteins, known to be fast evolving
sequences that are often involved in protein interactions
(Brown et al, 2002; Dafforn and Smith, 2004; Tompa, 2005).
The impact of the phosphoproteome plasticity on phagosome
functional properties is currently unknown. We have shown
previously that IFN-g alters the expression and the level of
phosphorylation of a large number of proteins on phagosomes
of activated macrophages (Jutras et al, 2008; Trost et al, 2009).
Remarkably, several of these proteins were present in the

Table I Interaction levels of the phagosome network within different phagocytosis purpose

Nodes Edges (degree) Versus phagotrophy Versus innate Versus adaptive

Phagotrophy 864 2387 (2.76) 1589 (1.84) 511 (0.59) 287 (0.33)
Innate immunity 243 723 (2.98) 511 (2.10) 118 (0.49) 94 (0.39)
Adaptive immunity 151 419 (2.77) 287 (1.90) 104 (0.62) 38 (0.25)
Total network 1258 2637 (2.10)
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common eukaryotic ancestor, 41.2 billion years prior to the
emergence of IFN-g in teleosts (Savan et al, 2009; Bhattacharya
et al, 2009). Thus, the emergence of a variety of cytokines
appears to have been an important event that conferred novel
functional properties to vertebrate phagosomes by fine-tuning
the expression and/or phosphorylation of several proteins of

this organelle, including proteins of ancient origin. Furthermore,
our data indicate that despite its overall recent origin, the
mouse phagosome phosphoproteome also contains ancestral
phosphosites, maintained for more than a billion years,
highlighting their potential importance in the functional
properties of this organelle.
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In addition to their ability to present peptides on MHC class
II molecules, phagosomes of vertebrates have been shown to
be competent for the presentation of exogenous peptides on
MHC class I molecules, a process referred to as cross-
presentation (Desjardins et al, 2005). From a functional point
of view, the involvement of phagosomes in antigen cross-
presentation is the outcome of the successful integration of a
wide range of multimolecular components that emerged
throughout evolution. The digestion of exogenous proteins
into small peptides that can be loaded onto MHC class I
molecules is inherited from the phagotrophic properties of
unicellular organisms, where internalized bacteria are de-
graded into basic molecules and used as a source of nutrients.
Ancient processes have therefore been co-opted for new
functionalities. The complete degradation of proteins in higher
organisms is, however, restricted to favor the generation of
antigenic peptides, notably through the action of IFN-g on
phagosome acidification and protease activity (Yates et al,
2007; Jutras et al, 2008; Trost et al, 2009). Cross-presentation
in phagosomes is believed to be facilitated by the presence of
molecular machines acquired through interactions with the ER
(Ackerman et al, 2003; Guermonprez et al, 2003; Houde et al,
2003; Grotzke et al, 2009). Interestingly, the presence of ER
components has been shown in proteomics and morphological
analyses of phagosomes from distant organisms, including
Dictyostelium (Gotthardt et al, 2006; Dieckmann et al, 2008),
Drosophila (Stuart et al, 2007), mouse (Garin et al, 2001; Trost
et al, 2009), and human (Burlak et al, 2006). These studies
clearly indicated that ER components were present on
phagosomes before the advent of innate and adaptive
immunity. In basal organisms, the ER could serve as an
alternative source of membrane providing part of the material
needed for the formation of a large number of phagosomes, or
trigger spikes of localized Ca2þ concentration needed for
phagocytosis (Cuttell et al, 2008). This concept is supported by
the finding that downregulation of two ER proteins, calnexin
and calreticulin, strongly inhibited phagocytosis in Dictyoste-
lium (Muller-Taubenberger et al, 2001). Arguably, the presence
of ER on phagosomes found a novel usage in ‘jawed’
vertebrates with the advent of the MHC locus, where several
proteins involved in antigen presentation are encoded. Thus,
peptides generated in the phagosome lumen potentially gained
direct access to MHC class I molecules and the loading
complex expressed in the ER, a process maximizing the ability
to present exogenous peptides and stimulate CD8þ T cells
(Bertholet et al, 2006). This alternative usage of molecular
machines is often observed during evolution (True and Carroll,
2002). Another example of co-option is the contribution of the
proteasome in antigen cross-presentation in mammals (Acker-
man et al, 2003; Guermonprez et al, 2003; Houde et al, 2003).
Indeed, this complex, which we identified on phagosomes of
all three species, was proposed to have a function in the
degradation of endogenous proteins for phagotrophy in the
ancestral eukaryotes (Cavalier-Smith, 2009), and contributes
to the recycling of self-components from apoptotic cells
internalized by phagocytosis in Drosophila (Silva et al,
2007). Interestingly, remodeling of the phagosome proteome
has continued to occur after the establishment of adaptive
immunity in teleosts, with the integration of at least 50
proteins in tetrapods, including several transmembrane

proteins of unknown function. Detailed analyses of these
proteins should provide further understanding of the molecular
mechanisms conferring specialized functions to mammalian
phagosomes linking innate and adaptive immunity.

Materials and methods

Phagosomes preparation

Phagosomes from J774 mouse macrophages, S2 Drosophila cells and
Ax2 Dictyostelium cells were prepared according to previous methods
(Desjardins et al, 1994; Stuart et al, 2007; Dieckmann et al, 2008). In
order to maximize the proteomic identification coverage, early and late
phagosomes were isolated for each organism. For Dictyostelium, three
different preparations (50/00, 150/00, and 150/150) were mixed for early
phagosomes, and late phagosomes (150/450, 150/1050, and 150/1650).
For Drosophila and mouse, one early (300/00) and one late phagosome
(300/1200) preparation were analyzed. These samples were selected on
the basis that they were sufficient for the identification of proteins
largely exceeding the number identified on these organelles in
previous studies.

Phagosomal protein identification by SDS–PAGE
and MS

A sample of 20mg of phagosomal proteins from Dictyostelium
discoideum, D. melanogaster, and Mus musculus were reduced with
tris(2-carboxyethyl)phosphine (Pierce), alkylated with iodoacetamide
(Sigma-Aldrich) and separated on a 4–12% pre-cast NuPAGE gel
(Invitrogen). The gel was stained by colloidal Coomassie, and lanes
were cut into 12 equal pieces using an in-house cutting device. The gel
pieces were digested by trypsin (Promega, Madison, WI) and peptides
extracted three times with 90% acetonitrile (ACN)/0.5 M urea.
Combined extracts were dried and re-suspended in 5% ACN, 0.1%
trifluoro acetic acid (TFA) prior to MS analyses. Peptides were
separated on a 150-mm ID, 10 cm reversed phase nano-LC column
(Jupiter C18, 3mm, 300 Å, Phenomex) with a loading buffer of 0.2%
formic acid (FA). Peptide elution was achieved by a gradient of 5–40%
ACN in 70 min on an Eksigent 2D-nanoLC (Dublin, CA) operating at a
flow rate of 600 nl/min. The nano-LC was coupled to an LTQ-Orbitrap
mass spectrometer (Thermo-Electron, Bremen, Germany), and sam-
ples were injected in an interleaved manner. The mass spectrometer
was operated in a data-dependent acquisition mode with a 1-s survey
scan at 60 000 resolution, followed by three product ion scans (MS/
MS) of the most abundant precursors above a threshold of 10 000
counts in the LTQ part of the instrument.

Phosphopeptide enrichment and MS

Phosphopeptide sample of 1.2 mg/replicate of early phagosomal proteins
of Drosophila (four replicates) and Dictyostelium (two replicates) were
reduced, cysteines blocked by carbamidomethylation and digested
with trypsin. Subsequently, phosphopeptides were enriched on house-
made TiO2 microcolumns (GL Science, Japan) as published before
(Thingholm et al, 2006; Trost et al, 2009) and eluted with 30ml 1%
NH4OH. Eluates were acidified by adding TFA to a final concentration
of 3%, dried down, re-suspended in 5% ACN, 0.1% TFA and subjected
to mass spectrometric analysis. Peptides were separated on a self-
packed 45 mm� 300mm Polysulfoethyl column (Nest Group, South-
borough, MA) and online eluted in six fractions with 0 mM, 50 mM,
75 mM, 100 mM, 500 mM, and 2M ammonium formate, 2% ACN, 0.2%
FA, pH 3.0 on a 150 mm ID, 10 cm reversed phase nano-LC column
(Jupiter C18, 3mm, 300 Å, Phenomex) coupled to an LTQ-Orbitrap
mass spectrometer using the same settings as described above.

Peptide identification

Peak detection of raw MS2 spectra was performed using Mascot
Distiller v2.2.2 (Matrix Science, UK) using the default Orbitrap
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parameters. The centroided data were merged into single peak-list files
and searched with the Mascot search engine v2.20 (Matrix Science,
UK) against the combined forward and reversed mouse IPI protein
database v3.37 (Kersey et al, 2004), the Uniprot Drosophila database
v11.3, and the Dictybase database (Eichinger et al, 2005) v(22.12.2008)
containing 52 326, 13 522, and respective 13 391 forward protein
sequences. Search conditions included trypsin set as enzyme, one
missed cleavage site, carbamidomethylation (C) as fixed modification
and deamidation (N, Q), oxidation (M), phosphorylation (S, T, Y) as
variable modifications. Precursor and fragment ion tolerances were set
to 10 p.p.m. and 0.5 Da, respectively. For protein identification, all
assigned peptides with a MOWSE score415 were considered. Proteins
identification required at least two different peptides with combined
score for unique peptide identification exceeding the score of the first
reversed-database hit reaching 1%. This resulted in an FDR of o1% at
the protein level. For the identification of phosphopeptides, all
assigned peptides with a MOWSE score 417 were considered. This
resulted in an FDR of o1% on the peptide level.

Bioinformatics

All proteomics data, bioinformatics analyses, and cited databases of
this paper were imported in a local MySQL database, and queried
accordingly for specific requests. Custom Python scripts were written
in order to parse and analyze the data and databases. To remove
proteomics redundancy, identified proteins in early and late time
points of each organism were merged together and clustered by gene
names where the longest sequence of clustered proteins was kept as a
cluster representative. Mouse proteins were annotated manually with
a set of predefined 22 functions using Uniprot annotations and
searching the literature. In order to perform proteomics cross-species
comparison, the predicted orthologs for Dictyostelium (versus
Drosophila and mouse) were extracted from the InParanoid database
version 6.0 (Berglund et al, 2008), whereas predicted orthologs for
Drosophila (versus mouse) and mouse (versus Drosophila) were
extracted from the Ensembl database version 52.0 (Hubbard et al,
2009). Proteomics cross-species comparison of mouse phagosome
proteins was performed against Drosophila and Dictyostelium’s
phagosome proteins identified in this paper, but also against a second
set of Drosophila and Dictyostelium phagosomes proteins already
published (Gotthardt et al, 2006; Stuart et al, 2007). E-values of mouse
orthologs (versus Drosophila and Dictyostelium) were determined by
performing BLAST alignment (default parameters) using mouse
sequences from the Uniprot mouse version 14.5. (Altschul et al,
1997) against the two other organisms sequence databases (Dictybase
version 22.12.2008 and Flybase version 5.13) (Tweedie et al, 2009).
Predicted mouse orthologs versus Drosophila and Dictyostelium (from
InParanoid and Ensembl) were retrieved among the BLAST hits and the
best relative E-value was retained. To plot E-values, we applied �Log10

(e-value) and assigned an e-value of 1 (�Log10(e-value)¼0, point of
origin) if proteins were devoid of any ortholog, and an e-value of 181 to
the proteins that displayed a perfect alignment (the highest e-value).

To identify the origin of the mouse phagosome proteins, compara-
tive analyses of 1324 phagosomal proteins were performed among 39
taxa (Rattus norvegicus, Cryptococcus neoformans, Monodelphis
domestica, Giberella zeae, Neurospora crassa, Bos taurus, Arabidopsis
thaliana, Leishmania major, Plasmodium falciparum, Schizosaccharo-
myces pombe, Yarrowia lipolytica, Tetraodon nigroviridis, Xenopus
tropicalis, Plasmodium yoelii, Caenorhabditis briggsae, Saccharomyces
cerevisiae, Chlamydomonas reinhardtii, Ashbya gossyppii, D. discoi-
deum, Candida glabrata, Candida albicans, Fugu rubripes, C. elegans,
Paramecium tetraurelia, Pan troglodytes, Gallus gallus, Debaryomyces
hansenii, Gillardia theta, Homo sapiens, Ciona intestinalis,
Encephalitozoon cuniculi, D. melanogaster, Danio rerio, Kluyveromyces
lactis, Anopheles gambiae, Canis familiaris, M. musculus, Macaca
mulatta, Apis mellifera), by using the human phylome of PhylomeDB
(PhylomeDB.org), a complete database of gene phylogenies (phy-
lomes) (Huerta-Cepas et al, 2007, 2008). A set of 61 proteins from the
mouse phagosome proteome that were not found in PhylomeDB
were analyzed using Treefam, a second gene phylogeny database
(Treefam.org) (Ruan et al, 2008). For each mouse proteins, orthologs
were retrieved from their respective phylogenetic tree in order to
identify the most basal species to assign a cladistic origin.

The extent of the effect of gene duplication in the remodeling of
phagosomes during evolution was also addressed by identifying all the
paralogs linked to the proteins constituting the mouse phagosome
proteome, and their cladistic origin, using BioMart Ensembl version
56.0. Among all of these mouse paralogs, only the pairs for which both
proteins were identified by MS/MS were retained in order to focus on
the proteins that were effectively observed in our phagosome
preparations. The same paralog analysis was performed from the
Drosophila phagosome proteome and from rough and smooth
reticulum endoplasmic proteomics data (Gilchrist et al, 2006).

Phosphorylation site localization

The nature of the MS/MS experiments does not always allow the
identification of the exact site of phosphorylation within a phospho-
peptide. We used a probability-based approach to identify the exact
location using post-translational modification (PTM) scores by Mascot
(Trost et al, 2009). In brief, the PTM score is�10� log10(P), where P is
the probability. The inverted probabilities of all possible phosphoryla-
tions are summed up and set equal to one. Then, a proportional
probability is assigned to each site and all probabilities for each site are
summed up. Probabilities of sites are separated into three classes with
class 1 (P40.75) being high-confidence identifications, class 2
(0.75oPo0.50) medium-confidence and class 3 (Po0.50) low-
confidence site identifications. However, it should be noted that even
if the confidence level for a specific site is low, the peptides presented
in Supplementary Datasets 7 and 8 are with a certainty of 499%
phosphopeptides.

Conservation of phosphosites in dictyostelium,
drosophila, and mouse phagosomal
phosphoproteins

Orthology relationships among these three organisms were settled by
InParanoid v6.0 (Berglund et al, 2008) (for Dictyostelium) and
Ensembl v52.0 (Hubbard et al, 2009) (for Drosophila and mouse)
databases. Orthologous groups were aligned using MUSCLE with
default settings (Edgar, 2004). In these comparisons, a conserved
phosphosite corresponded to a phosphorylated site in Mm that has a
phosphorylatable residue (S/T/Y) at the homologous alignment
position in the Dm or Dd protein. These alignments are available in
HTML format in the Supplementary information. Finally, disordered
regions of proteins were predicted using Disopred (Ward et al, 2004).

Conservation of phosphosites among chordates

In order to compare the evolution of phosphosites among chordates,
we obtained orthologs of mouse phagosomal phosphoproteins from
rat (R. norvegicus), human (H. sapiens), dog (C. familiaris), opposum
(M. domestica), chicken (G. gallus), xenopus (X. tropicalis), zebrafish
(D. rerio), sea squirt (C. intestinalis), and drosophila (D. melanogaster)
from Ensembl (ensembl.org). Mouse phosphoproteins that have an
ortholog in each of these species were aligned (MUSCLE, as above),
resulting in a total of 230 orthologous groups (620 phosphosites).
Conservation of mouse phosphosites was then analyzed by examining
the conservation of the phosphorylatable residues at the orthologous
positions of the other species. Finally, we compared the extent of
conservation of the phosphosites regulated by IFN-g to that of non-
IFN-g-regulated phosphosites. We measured the extent of conservation
of a phosphosite by the number of species sharing a serine or threonine
at that position in the multiple alignments. We then calculated an
average conservation for all IFN-g-regulated sites, and compared it to
that of a hundred samples of non-IFN-g-regulated phosphosites. All
statistical analyses were performed in R (r-project.org).

Network analyses

Proteins from this and former (Trost et al, 2009) experiments were
mapped against the Uniprot v15.6 to obtain human orthologs.
This was necessary as there are very few mouse protein–protein
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interactions in the Intact database (Kerrien et al, 2007). Experimental
protein–protein interaction data were extracted from the Intact
database v(31.07.2009). We then added manually and through
automated parsing known interactions from the curated ‘subunit’
comment field of UniProt v15.6. The network was loaded into
Cytoscape v.2.51 (cytoscape.org) for visualization. Subnetworks of
proteins involved in immunity and the cytoskeleton were generated
using a GO-term analysis described elsewhere (Trost et al, 2009) and
manually arranged in Cytoscape.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (http://www.nature.com/msb).
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