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Abstract: Drug repositioning, which involves the identification of new therapeutic indications for
approved drugs, considerably reduces the time and cost of developing new drugs. Recent computa-
tional drug repositioning methods use heterogeneous networks to identify drug–disease associations.
This review reveals existing network-based approaches for predicting drug–disease associations in
three major categories: graph mining, matrix factorization or completion, and deep learning. We
selected eleven methods from the three categories to compare their predictive performances. The
experiment was conducted using two uniform datasets on the drug and disease sides, separately. We
constructed heterogeneous networks using drug–drug similarities based on chemical structures and
ATC codes, ontology-based disease–disease similarities, and drug–disease associations. An improved
evaluation metric was used to reflect data imbalance as positive associations are typically sparse.
The prediction results demonstrated that methods in the graph mining and matrix factorization or
completion categories performed well in the overall assessment. Furthermore, prediction on the
drug side had higher accuracy than on the disease side. Selecting and integrating informative drug
features in drug–drug similarity measurement are crucial for improving disease-side prediction.

Keywords: drug repositioning; drug–disease associations; heterogeneous networks; drug networks;
disease networks

1. Introduction

The development of new drugs is a time-consuming, expensive, and high-risk task.
The drug release process requires extensive effort and investment from drug design to pre-
clinical development, clinical trials, and regulatory approval [1]. The average development
period for new drugs is 13.5 years, costing more than USD 1.8 billion [2]. Although in-
vestments in drug research are steadily increasing, the number of new drugs entering the
market is decreasing. Therefore, increasing the success rate of drug research is crucial in
saving time and cost. Recently, drug repositioning, which involves the identification of new
therapeutic indications for already approved drugs, has gained attention as it considerably
reduces the time and cost of discovering new drugs [3]. In addition, existing drugs have
already been demonstrated to be safe via clinical trials. Several successful instances of drug
repositioning have occurred in the past decades; for example, sildenafil was initially devel-
oped to treat coronary artery disease, but was repositioned to treat erectile dysfunction [4].
During the COVID-19 pandemic, the search for effective therapeutic agents was urgent and
remdesivir was successfully repositioned to treat COVID-19 [5].

Although a majority of drug repositioning efforts have been determined by clinical
observations, computational methods have recently been proposed to predict candidate
drugs for repositioning effectively [6,7]. They are also scalable to genome-wide data for
drugs, diseases, and genes or proteins from multiple aspects. Most computational methods
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leverage networks structured by the relationships among biomedical entities and facilitate
systematic analysis of the networks [8–10]. In this review, we provide a comprehensive
overview of the recent network-based approaches for computational drug repositioning.

In the early stage, computational drug repositioning was primarily focused on the
discovery of interactions between a drug and its molecular targets. Evidence of drug–target
interactions (DTIs) provides significant clues for drug repositioning based on the underlying
assumption that multiple drugs interact with multiple targets [11]. Most previous DTI
prediction methods explored networks, such as a drug–target bipartite network [12,13],
to infer new targets for each drug. Various network-based methods have been proposed for
DTI prediction until recently [14–16]. However, because those methods have already been
surveyed by many previous articles [17–21], we narrowed down the scope in this review to
predicting associations between drugs and diseases only.

Recent studies that aimed to identify genes causing a particular disease revealed an
increasing trend towards network-based analysis. Networks have become essential tools
to prioritize genes for each disease [22]. Numerous network-based methods have been
proposed for disease–gene association prediction [23,24]. They assume that genes causing
the same disease are located close to each other in a network. However, this review does
not include disease–gene association prediction methods. This review aims to provide a
summary of the recent network-based approaches of drug–disease association prediction
for computational drug repositioning and compare their predictive accuracy equitably
using uniform datasets.

Network-based methods for drug–disease association prediction mainly involve het-
erogeneous networks, constructed using diverse features of drugs and diseases. Some of
the methods adopt genetic information, such as protein–protein interactions (PPIs), DTIs,
and disease–gene associations. The integrated dataset is expanded to a drug–disease–
gene heterogeneous network. A homogeneous network consists of a single type of node
and their connections, whereas a heterogeneous network is composed of two or more
types of nodes and their connections. For example, a heterogeneous drug–disease net-
work G = (V, E) can be created by connecting between homogeneous drug and disease
networks, (Vdrug, Edrug−drug) and (Vdisease, Edisease−disease), represented as

V = Vdrug ∪Vdisease

and
E = Edrug−drug ∪ Edisease−disease ∪ Edrug−disease.

Similarly, a heterogeneous drug–disease–gene network G′ = (V′, E′) can be con-
structed by additional links between G and a homogeneous gene network (Vgene, Egene−gene)
as

V′ = Vdrug ∪Vdisease ∪Vgene

and

E′ = Edrug−drug ∪ Edisease−disease ∪ Egene−gene ∪ Edrug−disease ∪ Edrug−gene ∪ Edisease−gene.

Network-based drug–disease association prediction methods are divided into three
major categories: graph mining, matrix factorization or completion, and deep learning.
The methods in the first category apply graph mining algorithms, such as random walk,
network propagation, and path search, to detect putative associations between unlinked
drug–disease pairs in a heterogeneous network. The methods in the second category use
matrix factorization or matrix completion to compute predictive scores for drug–disease
pairs. Homogeneous and heterogeneous networks are represented in the form of matrices.
Matrix factorization is a collaborative filtering technique that converts the entries of sparse
matrices, such as drug–disease associations, into predictive scores. The methods in the third
category adopt deep learning algorithms, such as autoencoders and graph convolutional
networks (GCN), to build a predictive model using network features.
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In this article, we survey existing network-based drug repositioning methods in the
three categories, and experimented with 11 selected methods to compare their predictive
accuracy. Our experiments were conducted using two uniform datasets in two different
approaches, respectively: to predict associations on the drug side (i.e., to predict diseases
associated with each new drug) and predict associations on the disease side (i.e., predict
drugs associated with each new disease). Finally, their performance was analyzed using
several evaluation metrics.

2. Review of Network-Based Drug-Repositioning Approaches

In this section, network-based approaches for drug–disease association prediction
were introduced from the following three categories: graph mining, matrix factorization or
completion, and deep learning. Figure 1 exhibits the general process of the methods in the
three categories. They take drug–drug, disease–disease, and gene–gene similarities as well
as drug–disease, drug–gene, and disease–gene associations as input, and predict new drug–
disease associations as output. Table 1 lists recently proposed network-based methods and
the main techniques that support their algorithms. This list also includes data sources to
construct the drug network (i.e., drug–drug similarities), disease network (i.e., disease–
disease similarities), and gene network (i.e., gene–gene similarities) for each method.

Chemical Structure

ATC Code

DDI

Side Effect

Drug-Drug Similarities

MimMiner

Disease Ontology

Disease-Disease Similarities

Protein Sequences

PPI

Gene Ontology
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Associations
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Figure 1. Schematic view of the general process of network-based approaches to predict drug–disease
associations. They take a heterogeneous network including drug–drug, disease–disease, and gene–
gene similarities as well as known drug–disease, drug–gene, and disease–gene associations as input.
They apply graph mining algorithms, or matrix factorization and completion techniques, or deep
learning algorithms to return predicted drug–disease associations as output.
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Table 1. List of network-based methods for predicting drug–disease associations in three categories.
This list also shows the main algorithms and the features (or tools) to construct drug–drug, disease–
disease, and gene–gene similarity networks for each method.

Category Method Algorithms
Features (or Tools) Used for Network Construction

Drug Network Disease Network Gene Network

Graph Mining

Wu et al. [25] graph clustering biological processes,
pathways, pheno-
types

biological processes,
pathways, pheno-
types

-

TL_HGBI [26] propagation chemical structures,
DTIs

MimMiner protein sequences

DrugNet [27] propagation ATC codes semantic sim.(DO) PPIs

MBiRW [28] bi-random walk chemical structures,
drug-disease assoc.

MimMiner, drug-
disease assoc.

-

TP-NRWRH [29] random walk chemical structures,
drug-disease assoc.

MimMiner, drug-
disease assoc.

-

DR-IBRW [30] bi-random walk chemical structures,
drug-disease assoc.

symptoms, drug-
disease assoc.

-

EMP-SVD [31] meta-path search chemical structures MimMiner protein sequences

BGMSDDA [32] graph diffusion chemical structures MimMiner -

Matrix
Factorization /
Matrix
Completion

DRRS [33] nuclear norm mini-
mization

chemical structures MimMiner -

OMC [34] nuclear norm mini-
mization

chemical structures,
DTIs

MimMiner, disease-
gene assoc.

-

DRIMC [35] logistic matrix fac-
torization

chemical structures,
target domain, target
annotation

MimMiner -

MSBMF [36] bilinear matrix fac-
torization

chemical structures,
ATC codes, side ef-
fects, DDIs, target pro-
files

MimMiner, semantic
sim.(DO)

-

NTD-DR [37] tensor decomposi-
tion

chemical structures,
ATC codes, target
sequences, semantic
sim.(GO), pathways

drug-disease assoc.,
disease-gene assoc.,
semantic sim.(GO),
PPIs

protein sequences,
semantic sim.(GO),
PPIs

Deep Learning

deepDR [38] MDA, cVAE DDIs, DTIs, chemi-
cal structures, target
sequences, semantic
sim.(GO), side effects,
etc.

- -

ANMF [39] autoencoder chemical structures MimMiner -

NEDD [40] HIN2vec chemical structures MimMiner -

SNF-NN [41] SNF, neural net-
works

chemical structures,
DTIs, side effects

disease-gene assoc.,
disease-miRNA
assoc., phenotypes

-

SAEROF [42] autoencoder, rota-
tion forest

chemical structures semantic sim.(MeSH) -

LAGCN [43] GCN target features, chem-
ical structures, DDIs,
pathways, etc.

semantic sim.(MeSH) -
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2.1. Graph Mining Algorithms
2.1.1. Heterogeneous Network Clustering

As the earliest study of drug-disease association prediction, Wu et al. [25] proposed to
apply graph clustering to a heterogeneous network including drugs and diseases. Drugs
and diseases were extracted from the KEGG Medicus database [44] and drug–disease
associations were scored by the Jaccard coefficient of commonly associated genes. Drug–
drug and disease–disease similarities were also measured by the Jaccard coefficients of
shared features such as biological processes, pathways, and phenotypes. Finally, they
applied a clustering algorithm, ClusterONE [45], to the weighted heterogeneous network
for predicting new drug–disease associations.

2.1.2. TL_HGBI

Most drug–disease association prediction methods only use drug and disease data.
However, Wang et al. [26] further used genetic relationships because the therapeutic effect
on a disease is achieved through a combination involving disease–related molecular targets.
The proposed model, triple-layer heterogeneous graph-based inference (TL_HGBI), merges
network-based drug repositioning and DTI prediction into a unified framework. Drug,
disease, and gene networks are constructed based on drug–drug, disease–disease, and gene–
gene similarities, and integrated into a three-layer heterogeneous network by drug–disease
associations and DTIs. The information propagation algorithm iteratively updates the
weights of drug–disease, drug–gene, and disease–gene pairs on the heterogeneous network
to infer new drug–disease associations.

2.1.3. DrugNet

DrugNet [27] executes an information propagation algorithm on drug, disease, and pro-
tein similarity networks using ProphNet [46], a general network-based prioritization tool.
This method searches for paths from the drug network to the disease network and exe-
cutes propagation within a network and between networks alternately through such paths.
A random walk with restart (RWR) algorithm is adopted for propagation within a network.
The two propagation processes are repeated until the walker reaches an adjacent node of
the disease network. Finally, the predictive score of each drug–disease pair is computed
based on the propagated quantities.

2.1.4. MBiRW

Luo et al. [28] suggested the measurement of drug–drug and disease–disease similari-
ties using the features of drugs and diseases as well as known drug–disease associations.
The proposed method, similarity measures and bi-random walk (MBiRW), updates drug
and disease networks based on drug–disease associations in two steps. First, the method
identifies informative pairs of drugs that are associated with common diseases and adopts
a logistic function to shrink the similarities between non-informative pairs to zero and en-
large the similarities between informative pairs. Second, the method creates a drug-sharing
network that is weighted by the number of common diseases and applies clustering to the
network assuming that two drugs are similar if they share common diseases or if other
drugs that share diseases with them exist simultaneously. The drug network is updated by
increasing the similarities between drugs belonging to the same cluster. The disease net-
work is updated likewise. Using the resultant networks, this method performs bi-random
walks based on the following equations:

Xl
t = α× R× Xt−1 + (1− α)×M (1)

Xr
t = α× Xt−1 × D + (1− α)×M (2)

where Xl
t and Xr

t represent the predicted drug-disease associations walking on the drug
and disease networks, respectively, at time t. R and D are the drug and disease networks,
respectively, M indicates the drug–disease association matrix, and α represents a parameter
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that regulates the importance between networks. Random walk is performed separately on
the drug and disease networks. The final predictive scores are computed using the average
of the two probabilities.

2.1.5. TP-NRWRH

Liu et al. [29] proposed a two-pass network-based RWR on the heterogeneous network
(TP-NRWRH) which is an advanced version of the NRWRH proposed by Chen et al. [47].
In TP-NRWRH, a random walk is performed in two phases, namely a drug-centric random
walk and disease-centric random walk, to detect candidate associations. The two results are
combined using the mean value to compute the final predictive score for each association.
During the random walk, this method applies the jump probability and restart probability
for the walker to move to a different type of node and the start node, respectively.

2.1.6. DR-IBRW

Wang et al. [30] proposed drug repositioning based on individual bi-random walk
(DR-IBRW). Unlike MBiRW [28], which uses a fixed walk length, this algorithm uses an
individual walk length as all nodes contribute differently to transferring information in the
heterogeneous network. DR-IBRW measures drug–drug and disease–disease similarities
based on their chemical fingerprints and symptoms, respectively. Similar to MBiRW,
this method applies a logistic function and graph clustering algorithm. DR-IBRW also
adopts the Gaussian interaction profile (GIP) kernel to extract more similarities that are
combined with existing similarities. Moreover, it calculates the modified Jaccard index
on the bipartite network to weight drug–disease associations. A bi-random walk with
restart is then performed on the heterogeneous network. A random walker takes a drug
as the starting node and traverses other disease nodes. Similarly, a random walker takes
a disease as the starting node and traverses other drug nodes. This method eventually
integrates the association confidence from the perspective of the disease similarity and
drug similarity networks.

2.1.7. EMP-SVD

Wu et al. [31] proposed a path-based model on a heterogeneous network, named
ensemble meta paths and singular value decomposition (EMP-SVD). Unlike other network-
based approaches, this method does not use drug–drug or disease–disease similarities
because the similarity scores for the same item may be significantly different according to
the features used. This model handles the associations of drug–disease, disease–protein,
and drug–protein only. After integrating these associations into a single heterogeneous
network, the method searches for five meta-paths as features.

• Drug→ (treats)→ Disease
• Drug→ (binds to)→ Protein→ (causes)→ Disease
• Drug→ (binds to)→ Protein→ (binds to)→ Drug→ (treats)→ Disease
• Drug→ (treats)→ Disease→ (treated by)→ Drug→ (treats)→ Disease
• Drug→ (treats)→ Disease→ (caused by)→ Protein→ (causes)→ Disease

This model constructs a commuting matrix for each meta-path, and obtains latent
features using SVD, which are trained by a Random Forest classifier, an ensemble model
that avoids overfitting by creating multiple decision trees. Because current association
datasets contain positive and unknown data, not negative, this model selects negative
samples with a lower chance of associations from unknown pairs. If a drug and a disease
are linked to common proteins, this pair is excluded from the negative data.

2.1.8. BGMSDDA

Xie et al. [32] proposed bipartite graph diffusion with multiple similarity integration for
drug–disease association prediction (BGMSDDA). This method reconstructs a drug–disease
association matrix using the weighted k-nearest known neighbors algorithm. Similar to
DR-IBRW [30], this method measures similarities by combining the GIP kernel with those
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processed by the linear neighborhood similarity algorithm. Thereafter, bipartite graph
diffusion is performed. Each node is assigned a weight according to the degree of drugs
and pre-processed matrices, and the initial resource spreads to its associated disease nodes
through the degree of each drug. Similarly, the initial resource spreads to associated drug
nodes through the degree of each disease. Finally, the associations are predicted based on
the resultant scores from graph diffusion.

2.2. Matrix Factorization or Matrix Completion
2.2.1. DRRS

Luo et al. [33] proposed a drug repositioning recommender system (DRRS) that
completes the matrix representing the drug–disease heterogeneous network through rank
minimization as follows:

min rank(X) s.t. PΩ(X) = PΩ(M) (3)

where M and X denote the original and predicted matrices, respectively, and PΩ(M) is
the set of indices for all known associations in M. This method used a single matrix as a
heterogeneous network by combining drug–disease associations, drug-drug similarities,
and disease–disease similarities. As minimizing the rank of the matrix, which is known as
an NP-hard problem, is difficult to solve, the problem was changed to minimize the sum
of its singular values, which is also known as its nuclear norm. To determine the optimal
matrix rank r, this algorithm runs on a random sample, 10% of drug–disease associations,
and observes the area under the ROC curve (AUC) with increasing r. Finally, this algorithm
runs on the entire dataset with selected values of r to predict drug-disease associations.

2.2.2. OMC

Exploring a large heterogeneous network for drug–disease association prediction is
computationally complex. Yang et al. [34] proposed a matrix completion method, named
overlap matrix completion (OMC), to handle two networks for drugs and diseases sepa-
rately, instead of building a single heterogeneous network. OMC is divided into OMC2
and OMC3 according to the number of knowledge types used.

In OMC2, the drug network consists of drug–drug similarities and drug–disease asso-
ciations. As a pre-processing step, KNN is performed on the association matrix to reduce
sparsity. The updated association matrix is combined with the drug–drug similarity matrix
to obtain a block adjacency matrix. The same process is applied to the disease network.
The BNNR algorithm [48] is then applied to the drug- and disease-side block adjacency ma-
trices, separately. BNNR performs matrix completion through nuclear norm minimization.

min
X
||X||∗ +

α

2
||PΩ(X)− PΩ(M)||2F (4)

where M is the heterogeneous network as input, X is the predicted network, and ||X||∗ is
the nuclear norm of X. As shown in the equation, this model minimizes the nuclear norm
for drug–disease association prediction. The regularization term guarantees predictive
scores in the range of 0 to 1. Drug-disease associations are eventually predicted based on
the mean of the two results.

OMC3 is an extension of OMC2, that uses additional information regarding drug–
protein and disease–protein associations. In OMC3, the drug-side block adjacency matrix
is constructed using not only drug–disease associations, but also drug-protein associations.
The disease-side block adjacency matrix is constructed likewise.

2.2.3. DRIMC

Zhang et al. [35] proposed drug repositioning by Bayesian inductive matrix completion
(DRIMC), which utilizes the features of drugs and diseases as side information for matrix
factorization. To construct a drug similarity network, this method integrates chemical
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structure, target domain, and target annotation similarities and GIP kernel. To construct a
disease similarity, this method integrates the disease semantic similarity, and GIP kernel.
For the integration of similarities, the method adopts the similarity network fusion (SNF)
technique [49]. The drug and disease feature vectors are filled with the similarity values
of their k-nearest neighbors on their indices. Logistic matrix factorization is performed to
update the latent factor matrices of drugs and diseases. The two latent factor matrices are
finally multiplied to generate predictive scores for candidate drug–disease associations.

2.2.4. MSBMF

Yang et al. [36] proposed multi-similarities bi-linear matrix factorization (MSBMF) to
predict new indications by incorporating multiple similarity matrices. This method applies
drug–drug and disease–disease similarities to feature matrices instead of the latent feature
vectors of drugs and diseases on matrix factorization as follows:

min
U,V

1
2
||PΩ(UVT −M)||2F +

α1

2
(||U||2F + ||V||2F) +

α2

2
(||D−UUT ||2F + ||R−VVT ||2F) (5)

where U and V are the feature matrices and D and R are the similarity matrices for diseases
and drugs, respectively. M represents the drug–disease association matrix. In this method,
multiple similarities can be used in a concatenated form. For example, a disease similarity
matrix D is substituted by Dm as the phenotypic similarity Dph concatenated with onto-
logical similarity Ddo, which can be described by Dm = [Dph, Ddo]. This method optimizes
the feature matrix of drugs and diseases, matrices with latent features representing the
disease and drug similarity, and an auxiliary matrix to predict drug–disease associations.
The alternating direction method of multipliers (ADMM) framework [50], which optimizes
each variable while fixing the other variables, is applied to this method.

2.2.5. NTD-DR

Jamali et al. [37] proposed non-negative tensor decomposition for drug repositioning
(NTD-DR), which uses pairwise associations of drug–disease, drug–target, and target–
disease to construct a three-dimensional association tensor and decompose it into three-
factor matrices. The objective function of tensor decomposition is as follows:

min
A,B,C

L(A, B, C) = min
A,B,C

(LT(A, B, C) + LS(A, B, C) + LA(A, B, C)) (6)

where A, B, and C are non-negative factor matrices; L is the least square criterion; LT is
the function for third-order tensor decomposition; LS is the function for similarities of
drug–drug, target–target, and disease–disease; andLA is the function for drug–target, drug–
disease, and target–disease pairwise associations. When the factor matrices A, B, and C
converge, the tensor is reconstructed by integrating the drug, target, and disease similarity
information. Accordingly, this method predicts drug–target–disease triplet associations
and their pairwise associations.

2.3. Deep Learning
2.3.1. deepDR

Zeng et al. [38] developed a network-based deep-learning algorithm, deepDR, for com-
putational drug repositioning. This method captures the complex and nonlinear structures
of multiple similarity networks. Briefly, the RWR algorithm is applied to each drug-related
similarity network to convert the topology structure into a probabilistic matrix, which is
transformed into a positive point-wise mutual information (PPMI) matrix [51]. Multiple
PPMI networks are provided as the input of a multi-modal deep autoencoder (MDA) to
fuse into common features of multiple networks. These low-dimensional drug features are
extracted from the middle layer of MDA. In deepDR, these common features are used to
solve the sparsity problem in the association matrix. Both the common features and drug–
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disease associations are encoded and decoded into the inference network and generation
network of the collective variable autoencoder (cVAE) [52] to infer new indications.

2.3.2. ANMF

Yang et al. [39] proposed additional neural matrix factorization (ANMF), an approach
combining the techniques of matrix factorization and autoencoders. Inspired by the addi-
tional denoising autoencoder model, the hidden features of drugs and diseases are extracted
using the following procedure. First, the method adds Gaussian noise to the similarity and
association matrices and denoises the noisy similarity and association matrices using an
autoencoder. Thereafter, the hidden layer of the autoencoder is used as the hidden features.
Finally, the hidden features of drugs and diseases are multiplied and the predicted values
are generated as follows:

r̂i,j = Fout
(
hT(Ui �Vj)

)
(7)

where Ui and Vj represent the hidden features of drug i and disease j, respectively, ex-
tracted by this model, � is the element-wise product, h represents the weight parameter,
Fout represents an arbitrary activation function, and r̂i,j denotes the predicted values. Dur-
ing back-propagation, the mean square error is employed as the loss function of the
autoencoder and binary-entropy is employed as the loss function of prediction. The loss
functions are then combined and multiplied by the hyperparameters.

2.3.3. NEDD

Zhou et al. [40] proposed a neural network-based method for learning network repre-
sentation vectors (NEDD). This method adopts a network embedding technique, called
HIN2vec [53], to create vectors. HIN2vec is similar to node2vec [54] but considers the
meta-paths representing the sequences of node types and/or edge types. Because the length
of the meta-paths is greater than or equal to 1, this method can extract more information
regarding network features. HIN2vec learns whether two nodes are linked, as follows:

P(r|x, y) = sigmoid
(

∑ W ′X~x�W ′Y~y� f01(W ′R~r)
)

(8)

where x and y are nodes, r is the path between x and y; ~x, ~y, and~r denote one-hot vectors
for x, y, and r; f01 represents a regularization function; W′X~x, W′Y~y, and f01(W′R~r) are the
latent vectors for x, y, and r; and � is the element-wise product. Finally, NEDD conducts a
Random Forest classifier to predict drug–disease associations.

2.3.4. SNF-NN

Jarada et al. [41] proposed a model applying the SNF and neural networks (SNF-NN),
which integrates similarities by SNF and applies neural networks to drug–disease associa-
tion prediction. First, this method quantifies the similarity of each drug pair or disease pair
using shared characteristics and the GIP kernel. Thereafter, the similarities are integrated
by SNF like DRIMC. Finally, the method constructs a neural network that takes the inte-
grated similarities as input and outputs the predicted associations. The neural network is
structured by a fully connected feed-forward multi-layer perceptron network containing
an input layer, one or more hidden layers, and an output layer. The hyperparameters of the
neural network model are tuned by nested cross-validation. This model is initialized by
the He initialization algorithm and trained by the Adam optimization algorithm.

2.3.5. SAEROF

Jiang et al. [42] proposed a model that adopts a sparse autoencoder (SAE) to extract
valid features from sparse data and applies the Rotation Forest to drug–disease association
prediction (SAEROF). First, this model computes the GIP kernel for drug–drug and disease–
disease similarities if the GIP kernel produces non-zero values. If the association between a
disease and a drug is unknown, the GIP kernel produces a zero. In this case, the structural
similarity of drugs or the semantic similarity of diseases is computed. Thereafter, SAE
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is applied to extract the features. This technique introduces a penalty for learning the
sparse functions. Finally, the Rotation Forest classifier [55], an ensemble model that trains
the rotating feature-sets extracted by Principal Component Analysis, is applied to learn
features and predict associations.

2.3.6. LAGCN

Yu et al. [43] proposed a layer attention graph convolutional network (LAGCN), which
adopts GCN layers for drug–disease association prediction. The input adjacency matrix G
is set as

G =

[
µ ∼ R M

MT µ ∼ D

]
(9)

where µ is a penalty factor to control the similarity contribution in the GCN, R denotes the
normalized drug similarity matrix, D denotes the normalized disease similarity matrix,
and M is the drug–disease association matrix. The GCN iteratively updates embeddings
through the layers. Owing to the inconsistency with the contributions of embeddings at
different layers, this model applies an attention mechanism that combines the embeddings
to obtain final embeddings of drugs and diseases. Decoder A′ eventually reconstructs the
drug-disease association matrix as

A′ = sigmoid(HRW ′HT
D) (10)

where HR and HD are the final embeddings of drugs and diseases, respectively, and W ′ is a
trainable matrix. Because the number of known associations is markedly smaller than the
number of unknown data, this model also adopts weighted cross-entropy as a loss function
to reduce the impact of data imbalance.

3. Experiments

For performance evaluation and comparison, 11 drug-disease association prediction
methods were selected across three categories: MBiRW, TP-NRWRH, DR-IBRW, and BGMS-
DDA as graph-mining algorithms; DRRS, OMC, DRIMC, and MSBMF as matrix factoriza-
tion or completion; and deepDR, ANMF and LAGCN as deep learning algorithms. We
attempted to choose evenly from underlying methods to state-of-the-art methods for each
category. The selected methods were executed using the uniform datasets under the same
experimental conditions for an equitable comparison of their prediction results. In this
section, we introduce the datasets used in our experiments and discuss the experimen-
tal settings.

3.1. Experimental Data

To construct a drug–gene–disease heterogeneous network, the following steps were
employed. First, drug–drug, disease–disease, and gene–gene similarities were computed.
For our experiment, we used two different drug–drug similarity measures; one was based
on their chemical structures (named network-CS) and the other was based on the ATC codes
(named network-ATC). Disease–disease and gene–gene similarities were measured by a
semantic similarity metric using Human Phenotype Ontology (HPO) [56] and Gene Ontol-
ogy (GO) [57] annotation datasets, respectively. Next, a tripartite graph was constructed
using drug–disease, drug–gene and disease–gene associations. Table 2 shows the numbers
of drugs, diseases, genes, and edges (i.e., associations) between them in the tripartite graph
that was used in our experiment. Finally, the tripartite graph was merged with the drug–
drug, disease–disease, and gene–gene similarities to create a single weighted heterogeneous
network. The details of the datasets are discussed in the following subsections.
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Table 2. Number of distinct drugs, diseases, genes, and edges in the tripartite graph created based on
the associations between different types of nodes in the experiment.

Associations Number of Drugs Number of Diseases Number of Genes Number of Edges

Network-CS
Drug–Disease 615 285 - 1728

Drug–Gene 450 - 14,430 170,652
Disease–Gene - 180 323 390

Network-ATC
Drug–Disease 593 282 - 1681

Drug–Gene 437 - 14,430 167,535
Disease–Gene - 180 323 390

3.1.1. Drug Network

The drug dataset was extracted from DrugBank5.0 [58]. DrugBank is a comprehensive
online database including not only FDA approved drugs but also experimental drugs
undergoing approval procedures. We measured similarities for both approved drugs and
experimental drugs because drug repositioning involves not only finding new applications
of the drugs being used, but also finding new medicinal effects of failed drugs due to lack
of clinical efficacy. This database contains diverse features of drugs, such as their chemical
structures and pharmaceutical information, and drug targets, such as their sequences,
structures, and pathways. In our experiment, drug–drug similarities were measured using
two different features: chemical structures and ATC codes.

First, similarities between drug structures were measured using simplified molecular-
input line-entry specification (SMILES) [59]. SMILES is a line notation system that describes
the structures of chemical compounds using short ASCII strings. For example, the pyruvic
acid of DrugBank ID DB00119 is expressed as CC(=O)C(O)=O in the SMILES format.
The network comprised 11,219 drugs that had SMILES structure information, among those
from DrugBank. We used CDK [60] to obtain fingerprints of the drugs in the SMILES
format, and finally computed Tanimoto similarity scores for all drug pairs.

Next, similarities between drugs were measured based on their ATC codes from
DrugBank. The Anatomic Therapeutic Chemical (ATC) classification system [61] is a
system to classify drugs in a hierarchy of five levels: the anatomical and pharmacological
group at the 1st level, the main therapeutic group at the 2nd level, the therapeutic and
pharmaceutical subgroup at the 3rd level, the chemical, therapeutic, and pharmacological
group at the 4th level, and the chemical substances at the 5th level. Assuming that two drugs
have similar features if they are classified with the same code at each level, the similarity is
quantified as follows:

simatc(di, dj) =
S(ATCdi

) ∩ S(ATCdj
)

S(ATCdi
) ∪ S(ATCdj

)
(11)

where ATCdi
indicates the ATC code of drug di and S(ATCdi

) represents a set of codes
from all levels of ATCdi

. It is noted that a drug may have multiple ATC codes; for example,
the alteplase of DrugBank ID DB00009 has two ATC codes, B01AD02 and S01XA13. Thus,
the similarity between drugs di and dj was computed as the average similarity of all ATC
code pairs from di and dj.

3.1.2. Disease Network

Disease–disease similarities were measured by a semantic similarity metric using
annotation data from HPO [56], a comprehensive phenotype ontology. HPO consists of
terms in the context of phenotypic abnormalities. It is structured by linking term pairs in a
parent-child relationship with a directed edge and is represented as a directed acyclic graph.
The HPO includes extensive clinical annotations of human diseases that are provided by
OMIM [62], OrphaNet [63], and DECIPHER [64] databases. In our experiments, diseases
were extracted from the HPO annotations provided by OMIM. This dataset contained 6465
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diseases after those with the evidence code IEA were excluded. To calculate similarities
between diseases, a semantic similarity metric integrating annotation- and term-based
algorithms was applied, as proposed in [65]. The semantic similarity between two HPO
terms is calculated as follows:

simT(C1, C2) =
∑Ci∈At(C1)∩At(C2)

log P(Ci)

∑Cj∈At(C1)∪At(C2)
log P(Cj)

(12)

where C1 and C2 are HPO terms, At(C) denotes the set of ancestor terms of C in HPO,
P(Ci) indicates the ratio of the number of annotations to term Ci over the number of
annotations to all terms in the ontology, and − log P(Ci) refers to the information content
of Ci. Accordingly, the semantic similarities of the term pairs annotating two diseases d1
and d2 are aggregated to the similarity between d1 and d2 by best-match averaging, which
returns the average of the best matching semantic similarity scores for each term as follows:

sim(d1, d2) =
∑Ci∈T(d1) maxCj∈T(d2) simT(Ci, Cj) + ∑Cj∈T(d2) maxCi∈T(d1) simT(Ci, Cj)

|T(d1)|+ |T(d2)|
(13)

where T(d) is the set of terms to which the disease d is annotated. Similarities for all disease
pairs were computed by Equation (13).

3.1.3. Gene Network

Protein-protein interactions (PPIs) from BioGrid [66] were employed for gene-gene
similarities in our experiment. After removing duplicate interactions and self-loops in the
PPI data set, we measured similarities for all interacting protein pairs using annotation data
from GO [57] which is the most widely referenced ontology database for functional genomic
studies. This database consists of terms as the unified representation of the features of genes
and gene products spanning three sub-ontologies: biological processes, molecular functions,
and cellular components. Similar to HPO, GO is structured by parent-child relationships for
linked term pairs and provides comprehensive annotations of genes and gene products to
the terms. To measure the similarity of each PPI, we applied Equations (12) and (13) to the
terms in the sub-ontologies of biological processes and molecular functions. We removed
annotations with the evidence code IEA to ensure quality of the resultant similarity scores.
Finally, a gene network weighted by semantic similarity was obtained.

3.1.4. Associations

The most widely used drug–disease association datasets in previous drug reposition-
ing studies include Fdataset as a gold standard from [67], and Cdataset [28], which is an
expanded version of Fdataset by adding clinically validated drug–disease associations
from [27]. In our experiment, drug–disease associations in Cdataset were used to create
heterogeneous networks. As depicted in Table 2, network-CS, which was formed by drug–
drug similarities based on chemical structures, contained 1728 drug–disease associations
between 615 drugs and 285 diseases, whereas network-ATC based on ATC codes contained
1681 drug–disease associations between 593 drugs and 282 diseases. Since network-CS and
network-ATC included different numbers of distinct drugs, the number of drug-disease
associations in the two networks also changed.

Drug–gene associations were extracted from the Comparative Toxicogenomics Database
(CTD) [68] using CAS numbers and gene symbols. As a result, network-CS contained
170,652 drug–gene associations between 450 drugs and 14,430 genes whereas network-ATC
contained 167,535 drug–gene associations between 437 drugs and 14,430 genes.

Finally, disease–gene associations were extracted from OMIM, which provides in-
formation regarding the relationship between phenotypes and genotypes. Excluding the
associations with diseases and genes that do not exist in the disease and gene networks,
a total of 390 disease–gene associations between 180 diseases and 323 genes were obtained.
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3.2. Experimental Settings

Drug–disease association prediction results on the drug and disease sides were sep-
arately evaluated. Association prediction on the drug side indicated the prediction of
additional diseases to be treated by each drug, whereas association prediction on the dis-
ease side indicated the prediction of drugs with the potential to treat each disease. We
attempted 10-fold cross-validation for each side. For a balanced assessment, we evenly
divided the folds according to the number of drugs, diseases, and their associations.

Prediction accuracy was compared using the most widely employed evaluation met-
rics: the AUC and the area under the precision-recall curve (AUPR). The AUC is generally
considered the most effective metric for quantifying predictive power. ROC curves were
generated by tracing the true positive rate (TPR), which indicates the ratio of correct predic-
tions to real positive cases, and the false positive rate (FPR), which indicates the ratio of
incorrect predictions to real negative cases. The AUPR, as a significant measure for classifi-
cation accuracy, represents the area under the precision-recall curve, which demonstrates
the precision changes as recall increases. Recall is the same as TPR, whereas precision is the
ratio of correct predictions to positively predicted samples.

Precision =
TP

TP + FP
(14)

where TP and FP indicate the numbers of true positives and false positives, respectively.
However, because drug–disease associations are very sparse, this special condition gener-
ally yields a markedly greater FP than TP, resulting in extremely low precision. Therefore,
we upgraded precision to resolve the data imbalance issue. The new metric of precision
uses TPR and FPR instead of TP and FP as follows:

Precision* =
TPR

TPR + FPR
(15)

where TPR = TP/(TP+FN) and FPR = FP/(FP+TN). Because TPR and FPR have the same
range, the prediction results are assessed properly regardless of data imbalances using this
metric. Thus, we employed the modified AUPR, named AUPR*, using this new metric of
precision for the comparison of prediction accuracy.

4. Results

The drug–disease association prediction performance of the 11 selected methods was
assessed using two heterogeneous networks: network-CS and network-ATC. Predictions
were tested on the drug and disease sides separately, as previously described. In this
section, we compared the predictive accuracy of the 11 selected methods using AUC,
AUPR, and AUPR*, which is a modified version of AUPR.

4.1. Accuracy Comparison with Network-CS

First, we compared the predictive accuracy when network-CS was used. As discussed
in the previous section, 10-fold cross-validation was applied to obtain an entire list of
predicted associations. Based on the predicted associations in descending order of their
predictive scores, ROC and AUPR curves were plotted by alternating the threshold from
the highest predictive score to the lowest. AUC, AUPR, and AUPR* were calculated until
all associations were predicted to be positive, i.e., the threshold was the lowest.

Table 3 presents the AUC, AUPR, and AUPR* results for each method. Overall,
the methods in the graph mining and matrix factorization or completion categories achieved
higher accuracy than those in deep learning. Among the graph mining algorithms, TP-
NRWRH performed best on the disease side (i.e., prediction of drug-disease associations
for new diseases), and MBiRW and DR-IBRW performed well relatively. Among the matrix
factorization or completion methods, OMC and MSBMF performed best, particularly on the
drug side (i.e., prediction of drug-disease associations for new drugs). When predictions
on the drug and disease sides were compared, most methods had slightly higher AUC
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and AUPR* on the drug side than the disease side, except MBiRW and TP-NRWRH. This
indicates that predicting drug–disease associations for each new drug is more accurate than
that for each new disease.

Table 3. AUC, AUPR, and AUPR* of drug–disease association prediction results using network-CS.
Values close to the highest are expressed in bold.

Method
Prediction on the Drug Side Prediction of the Disease Side

AUC AUPR AUPR* AUC AUPR AUPR*

Graph Mining

MBiRW 0.753 0.046 0.762 0.692 0.195 0.769
TP-NRWRH 0.746 0.043 0.753 0.751 0.084 0.795

DR-IBRW 0.747 0.046 0.758 0.704 0.162 0.776
BGMSDDA 0.790 0.078 0.804 0.694 0.089 0.760

Matrix Factorization/
Matrix Completion

DRRS 0.761 0.048 0.768 0.731 0.081 0.763
OMC 0.813 0.076 0.820 0.751 0.029 0.715

DRIMC 0.749 0.051 0.764 0.700 0.051 0.732
MSBMF 0.805 0.176 0.842 0.669 0.048 0.708

Deep Learning
deepDR 0.685 0.024 0.686 0.606 0.016 0.613
ANMF 0.646 0.030 0.678 0.673 0.037 0.692

LAGCN 0.751 0.042 0.756 0.643 0.031 0.677

Figures 2 and 3 show the ROC and precision*-recall curves for predicting associations
on the drug and disease sides, respectively. As MSBMF and OMC showed the best predic-
tive performance on the drug side in Table 3, their TPR increased rapidly (Figure 2a) and
precision* decreased slowly as recall increased (Figure 2b). On the other hand, TP-NRWRH
and OMC, which had the best performance on the disease side as mentioned in Table 3,
showed a rapid increase in TPR (Figure 3a).
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Figure 2. ROC curve (a) and precision*-recall curve (b) of drug-disease association prediction results
for new drugs with network-CS.
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Figure 3. ROC curve (a) and precision*-recall curve (b) of drug-disease association prediction results
for new diseases with network-CS.

4.2. Accuracy Comparison with Network-ATC

Next, we compared predictive accuracy when network-ATC was used. AUC, AUPR,
and AUPR* results for each method are listed in Table 4. Similar to the results with network-
CS in Table 3, the methods in the graph mining and matrix factorization or completion
categories achieved higher accuracy than those in deep learning. Among the graph mining
algorithms, MBiRW outperformed on the drug side. Among the matrix factorization or
completion methods, OMC outperformed on the disease side, whereas DRRS performed
well on the drug side. In addition, similar to the results with network-CS, most methods
displayed higher AUC and AUPR* on the drug side than the disease side. Finally, when the
results in Tables 3 and 4 were compared, prediction using network-ATC achieved higher
accuracy than using network-CS across all selected methods. This indicates that ATC codes
might be a better feature than chemical structures to measure drug–drug similarities for
drug repositioning.

Table 4. AUC, AUPR, and AUPR* of drug–disease association prediction results using network-ATC.
Values close to the highest are expressed in bold.

Method
Prediction on the Drug Side Prediction of the Disease Side

AUC AUPR AUPR* AUC AUPR AUPR*

Graph Mining

MBiRW 0.893 0.390 0.917 0.768 0.207 0.819
TP-NRWRH 0.840 0.140 0.855 0.775 0.090 0.809

DR-IBRW 0.853 0.309 0.887 0.720 0.174 0.786
BGMSDDA 0.881 0.340 0.701 0.705 0.139 0.765

Matrix Factorization/
Matrix Completion

DRRS 0.890 0.291 0.909 0.755 0.117 0.796
OMC 0.852 0.343 0.883 0.813 0.214 0.845

DRIMC 0.807 0.080 0.820 0.699 0.043 0.726
MSBMF 0.872 0.300 0.902 0.702 0.053 0.735

Deep Learning
deepDR 0.730 0.028 0.714 0.614 0.017 0.620
ANMF 0.845 0.199 0.868 0.739 0.050 0.743

LAGCN 0.842 0.079 0.843 0.742 0.044 0.753

Figures 4 and 5 reveal the ROC and precision*-recall curves for predicting associations
on the drug and disease sides, respectively. MBiRW, which had the best predictive per-
formance on the disease side as mentioned in Table 4, showed slightly rapider increase of
TPR (Figure 4a) and slightly slower decrease of precision* (Figure 4b) although all the other
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methods, except deepDR, exhibited relatively good performance in both curves. As OMC
showed the best performance on the disease side in Table 4, its TPR increased rapidly
(Figure 5a) and precision* decreased slowly as recall increased (Figure 5b).
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Figure 4. ROC curve (a) and precision*-recall curve (b) of drug-disease association prediction results
for new drugs with network-ATC.
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Figure 5. ROC curve (a) and precision*-recall curve (b) of drug-disease association prediction results
for new diseases with network-ATC.

4.3. Robustness Comparison

Drug repositioning algorithms should perform well on incomplete data or noisy data.
We assessed the robustness of the selected algorithms by predictive accuracy changes when
a certain number of edges were removed from or added to the drug-disease association
dataset. For this evaluation, we randomly selected 90% of drug–disease associations in
the gold standard Fdataset [67] for training, and predicted the other associations. Next,
we added 10% and 20% of random drug–disease pairs to the training dataset. We also
removed 10% and 20% of random drug–disease associations from the training dataset.

Predictive accuracy changes by removing and adding drug–disease associations are
compared in Table 5. This table shows AUC results on drug–disease association prediction
using the gold standard dataset, and the increasing or decreasing rates of the AUC by 10%
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and 20% of edge removal and addition, respectively. As a result, OMC achieved excellent
performance showing the highest accuracy and were robust with incomplete and noisy
data. Its predictive accuracy was even increased by removing a certain amount of the
drug–disease associations. Overall, the methods in the matrix factorization or completion
category were more robust than those in the other groups.

Table 5. AUC of drug–disease association prediction results using a gold standard dataset, and the
increasing or decreasing rates of the AUC by removing and adding 10% and 20% of drug–disease
associations, respectively.

Method
Edge Removal

AUC
Edge Addition

−20% −10% 10% 20%

Graph Mining

MBiRW −1.47% 0.16% 0.884 −0.41% −2.48%
TP−NRWRH −3.39% −1.90% 0.923 −2.24% −4.34%

DR−IBRW −4.93% −0.26% 0.871 −1.52% −5.06%
BGMSDDA −4.45% −3.28% 0.832 0.10% −1.55%

Matrix Factorization/
Matrix Completion

DRRS −2.93% −0.37% 0.913 −1.19% −2.27%
OMC −3.61% 4.86% 0.941 −1.18% −2.67%

DRIMC −2.78% −0.91% 0.878 −0.44% −2.80%
MSBMF −3.31% −1.20% 0.901 −0.59% −2.56%

Deep Learning
deepDR −4.80% −3.44% 0.850 −2.53% −4.21%
ANMF −4.81% −0.75% 0.935 −1.64% −1.82%

LAGCN −1.00% −1.00% 0.718 −0.21% −1.00%

4.4. Efficiency Comparison

Because known drug–disease association datasets are constantly updated, drug repo-
sitioning experiments may be repeated for every disease newly developed. We evaluated
efficiency of the selected algorithms using a genome-scale large heterogeneous network
including 3245 drugs from DrugBank, 6322 diseases from HPO annotations, and 98,745
drug-disease associations from CTD. The algorithms were implemented under the spec-
ifications of Core i9, DDR4 128GB, and RTX 2080. The elapsed time was measured from
reading the input data to storing the prediction results into an output file.

Figure 6 shows a comparison of runtime on the genome-scale dataset versus predictive
accuracy with network-ATC on the drug side shown in Table 4. DR-IBRW in the graph min-
ing category required the longest time to predict associations for all diseases. TP-NRWRH
in graph mining, DRRS in matrix completion, and ANMF in deep learning also demanded
a long time for prediction, more than 90 h. As a result, DR-IBRW remarkably loses computa-
tional efficiency in prediction with a large dataset or a dense network. The time complexity
of DR-IBRW is known as O(n4) in the worst case.
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Figure 6. Comparison of efficiency versus accuracy of the selected methods for drug-disease asso-
ciation prediction. Runtime was measured when the selected algorithms were implemented on a
genome-scale heterogeneous network.

5. Discussion and Conclusions

Drug repositioning, which involves the identification of new indications for existing
drugs, delivers substantial benefits to drug development as it is safe and reduces time
and cost. In particular, computational drug repositioning methods using networks are
promising in that they can efficiently generate candidates. Various computational drug
repositioning approaches have recently been introduced. Among network-based methods
in the three categories of graph mining algorithms, matrix factorization or completion,
and deep learning algorithms, 11 were selected for an unbiased comparison of their predic-
tive accuracy.

In our experiments, drug–drug similarities were measured based on chemical struc-
tures and ATC codes, and disease–disease similarities were computed by a semantic
similarity metric in an ontology. Moreover, clinically validated drug–disease associations
as an extended gold standard dataset, drug–gene associations from CTD, and disease–gene
associations from OMIM were integrated with the similarity networks to construct two
types of heterogeneous networks. The selected methods predicted drug–disease associa-
tions for each drug and each disease, separately. ROC and precision*-recall curves were
used to assess the prediction performance of each method. The precision*-recall curve is a
modified version of the precision-recall curve, which reflects data imbalance as positive
drug-disease associations are sparse in the entire heterogeneous network.

Our experimental results demonstrated that the methods in the categories of graph
mining and matrix factorization or completion performed better than those in deep learning.
Furthermore, matrix factorization or completion methods, such as OMC, are robust on
incompleteness or noise of data. Among the methods based on matrix factorization or
completion, OMC exhibited the best predictive performance on both drug and disease
sides, and DRRS and MSBMF performed well on the drug side. Among the graph mining
algorithms, MBiRW displayed competitive performance on the drug side, whereas TP-
NRWRH showed relatively good performance on the disease side. MBiRW and TP-NRWRH
have a common process of upgrading the drug and disease similarity networks using
known drug–disease associations. Accordingly, prior information involving associations
can improve drug–drug and disease–disease similarity scores and result in higher predictive
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accuracy. Furthermore, OMC, MSBMF, and MBiRW were implemented with very short
runtimes. These methods are thus highly pertinent to genome-scale prediction of drug–
disease associations.

Next, the selected methods had higher predictive accuracy on the drug side than
the disease side. This implies that identifying additional diseases to be treated by a new
drug could be more accurate than discovering drugs with the potential to treat a new
disease. The higher accuracy on the drug side might be caused because disease–disease
similarities are more precise than drug–drug similarities for drug repositioning. We used a
comprehensive ontology database HPO and an advanced semantic similarity metric, which
has been well-studied with GO, to measure disease–disease similarities. On the other hand,
drug–drug similarities were measured by chemical structures (network-CS) and ATC codes
(network-ATC) in our experiment. The selected methods had higher predictive accuracy
on network-ATC than network-CS. This indicates that ATC codes could be a better feature
than chemical structures for drug–drug similarity measurement. However, additional and
integrated features are demanded to improve disease-side prediction.

Finally, deep learning algorithms showed lower predictive accuracy than methods
from the other groups in the overall assessment. However, when we tested drug–disease
association prediction using the genome-scale heterogeneous network which was applied
to our efficiency evaluation, accuracy of ANMF and LAGCN increased considerably al-
though this experiment was not relevant to drug repositioning because the dataset included
all possible drug–disease associations from CTD. As a result, deep learning algorithms
revealed substantially different predictive accuracy depending on the dataset used. Seven
hyperparameters were employed for LAGCN as default, and its prediction results changed
by a large margin as the hyperparameters changed. Adjusting and optimizing hyperpa-
rameters according to the input data would represent key issues in deep learning methods
for maintaining consistent accuracy. In diverse domains of bioinformatics, deep learning
approaches have already been validated as the most powerful and efficient way to deal
with massive amounts of data [69,70].
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