
Frontiers in Immunology | www.frontiersin.

Edited by:
Esther Von Stebut,

University of Cologne, Germany

Reviewed by:
Salvador Iborra,

Universidad Complutense de Madrid,
Spain

Marcela Freitas Lopes,
Federal University of Rio de Janeiro,

Brazil

*Correspondence:
Matheus B. Carneiro

matheus.batistaheito@ucalgary.ca

Specialty section:
This article was submitted to

Microbial Immunology,
a section of the journal

Frontiers in Immunology

Received: 22 June 2021
Accepted: 10 August 2021

Published: 07 September 2021

Citation:
Carneiro MB and Peters NC

(2021) The Paradox of a
Phagosomal Lifestyle: How
Innate Host Cell-Leishmania

amazonensis Interactions
Lead to a Progressive

Chronic Disease.
Front. Immunol. 12:728848.

doi: 10.3389/fimmu.2021.728848

REVIEW
published: 07 September 2021

doi: 10.3389/fimmu.2021.728848
The Paradox of a Phagosomal
Lifestyle: How Innate Host
Cell-Leishmania amazonensis
Interactions Lead to a Progressive
Chronic Disease
Matheus B. Carneiro* and Nathan C. Peters

Snyder Institute for Chronic Diseases, Departments of Microbiology, Immunology and Infectious Diseases, Cumming School
of Medicine and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary,
Calgary, AB, Canada

Intracellular phagosomal pathogens represent a formidable challenge for innate immune
cells, as, paradoxically, these phagocytic cells can act as both host cells that support
pathogen replication and, when properly activated, are the critical cells that mediate
pathogen elimination. Infection by parasites of the Leishmania genus provides an excellent
model organism to investigate this complex host-pathogen interaction. In this review we
focus on the dynamics of Leishmania amazonensis infection and the host innate immune
response, including the impact of the adaptive immune response on phagocytic host cell
recruitment and activation. L. amazonensis infection represents an important public health
problem in South America where, distinct from other Leishmania parasites, it has been
associated with all three clinical forms of leishmaniasis in humans: cutaneous, muco-
cutaneous and visceral. Experimental observations demonstrate that most experimental
mouse strains are susceptible to L. amazonensis infection, including the C57BL/6 mouse,
which is resistant to other species such as Leishmania major, Leishmania braziliensis and
Leishmania infantum. In general, the CD4+ T helper (Th)1/Th2 paradigm does not
sufficiently explain the progressive chronic disease established by L. amazonensis, as
strong cell-mediated Th1 immunity, or a lack of Th2 immunity, does not provide protection
as would be predicted. Recent findings in which the balance between Th1/Th2 immunity
was found to influence permissive host cell availability via recruitment of inflammatory
monocytes has also added to the complexity of the Th1/Th2 paradigm. In this review we
discuss the roles played by innate cells starting from parasite recognition through to
priming of the adaptive immune response. We highlight the relative importance of
neutrophils, monocytes, dendritic cells and resident macrophages for the establishment
and progressive nature of disease following L. amazonensis infection.
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INTRODUCTION

Phagocytes and phagocytosis were first described by Elie
Metchnikoff in 1883. At that time phagocytosis was primarily
described in frogs and associated with homeostasis, nutrition and
tissue reabsorption. Later, Metchnikoff described how this process
could also act as a protective mechanism against pathogens (1).
“Infection, a struggle between two organisms”, was the title
Metchnikoff gave to the first of a series of lectures he delivered
in 1891 (2), a title that accurately described the complex
relationship, from an evolutionary perspective, between the host
immune system and infectious pathogens. After 130 years, the
challenge to understand how best to treat infectious diseases
caused by pathogens that employ phagocytes as hosts for
infection, replication and persistence via prophylactic
vaccination, immunotherapy, or antibiotics remains. In the case
of the intracellular parasite Leishmania, the infection poses
significant challenges to treatment and prevention due to
multiple mechanisms of immune evasion that allow the parasite
to infect the very cells that the immune system employs to
eliminate them (3, 4). Since the late 1970s Leishmania parasites
have been described as phagosomal pathogens that reside and
proliferate within phagocytic cells (5–8). We now understand that
even a single Leishmania parasite transmitted by a sand fly bite is
sufficient to establish infection (9, 10), corroborating data
discussed throughout this review that innate mechanisms of
immunity are not sufficient to provide protection and that the
development of an adaptive immune response, mediated largely
by Th1 CD4 cells, is required to activate phagocytic cells (11).
Frontiers in Immunology | www.frontiersin.org 2
Leishmaniasis is a vector-borne disease associated with
different clinical manifestations, determined by the intersection
of the parasite species and the host immune response (12). In this
review, we will discuss the paradoxical relationship between L.
amazonensis (L.a.) parasites and phagocytic cells during cutaneous
Leishmaniasis. Infection with L.a. is intriguing as it has been
associated with a remarkably diverse clinical manifestations
including localized cutaneous leishmaniasis (LCL), borderline
disseminated cutaneous leishmaniasis (BDCL), anergic diffuse
cutaneous leishmaniasis (ADCL) and, less frequently, with
mucosal and visceral leishmaniasis (13, 14). We will focus on
how living in a phagosome represents a challenge to L.a. and how
this parasite has evolved to survive not only against innate
mechanisms of immunity, but also to take advantage of Th1
immunity for the establishment and perpetuation of disease.
NO PLACE LIKE HOME: THE BIOLOGY OF
THE LEISHMANIA PHAGOLYSOSOME

Phagocytosis
Phagocytosis is an important biological function mediated by
monocytes, macrophages, neutrophils and dendritic cells (DCs),
see Figure 1, that plays a role in both inflammation and
homeostasis, where it can mediate both pathogen elimination
and tissue healing (15). Phagocytosis is a complex and well-
regulated process that has been reviewed in detail elsewhere (16).
Briefly, phagocytosis is initiated by the binding of specific
FIGURE 1 | Phenotypes of the most abundant phagocytic cells in the dermis of Leishmania infected mice. Created with BioRender.com.
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molecules expressed by pathogens, or the host, to surface
receptors expressed on phagocytic cells and is therefore a
contact-dependent process. The phagocyte receptors associated
with Leishmania phagocytosis are either opsonic, when host-
particles (opsonins) bind to the pathogen or non-opsonic, when
they bind directly to pathogen-associated molecular patterns
(PAMPs). Opsonic receptors are: FcgRs (CD64, CD32, CD16),
complement receptors (CR1-4, Mac-1) and fibronectin receptors
(a5B1), which bind respectively to antibodies (abs), complement
and fibronectin. Examples of non-opsonic receptors are mannose
receptor (MR or CD206), Dectin-1 and DC-SIGN (17–21).
Specific receptors can also recognize apoptotic cells, such as
TIM-1, TIM-4, which recognized phosphatidyl serine (PS),
exposed on the membrane of dying cells, or MertK (tyrosine-
protein kinase Mer), which binds to GAS6 (growth arrest-
specific 6), a molecule that bridges PS to the membrane (22).
In addition, in vitro, L.a. has been shown to use Toll-like receptor
(TLR) 2 to infect neutrophils (23) and can also subvert
endocytosis during cell plasma membrane repair to invade
non-phagocytic cells, such as fibroblasts (24). As reviewed by
Ueno and Wilson, the receptor involved in parasite entry may
influence parasite fate, as it can influence phagolysosome
maturation, reactive oxygen species (ROS) production and
phagocytic cell activation (25). After binding to the phagocytic
receptors, pseudopods surround Leishmania parasites and form
the phagosome. During phagocytosis of L.a. metacyclic
promastigotes, entrance is often mediated via the cell body
rather than the flagellum, in a process that can take up to 10
minutes in vitro employing bone-marrow derived macrophages
(BMDMs) (26). The engulfment of either promastigotes or
amastigotes is associated with an arrangement of the
cytoskeleton and a transient polymerization of F-actin around
the parasites (26, 27).
Formation and Maturation of the
Parasitophorous Vacuole
This initial phagosome will undergo a maturation process
mediated by fusion with endosomes and lysosomes. After
internalization, the early phagosome, characterized by moderate
pH acidification, will fuse with early endosomes, a process that
relies on the expression of Rab5, a GTPase (guanosine
triphosphatase), that mediates membrane fusion events (16).
The late phagosomes are formed when early phagosomes fuse
with late endosomes. In this stage there is a shift from Rab5 to
Rab7 at the phagosome membrane and the lumen becomes more
acidic, due to an increase in the expression of V-ATPases (which
translocate protons H+ from the cytosol to the phagosome at the
cost of an ATP). The Rab7 mediated fusion of the late phagosome
with lysosomes characterizing the formation of the phagolysosome
or parasitophorous vacuole (PVs). The phagolysosome is
characterized by membrane expression of lysosomal markers
such as lysosomal associated membrane protein 1 and 2
(LAMP-1 and LAMP-2) and the presence of cathepsins,
proteases and lysozymes in the lumen. In addition, L.a. PVs are
considered hybrid compartments as the phagosome also presents
Frontiers in Immunology | www.frontiersin.org 3
molecules associated with the endoplasmic reticulum (ER)
pathways such as calnexin (28).

Leishmania Survival in the Phagolysosome
Phagolysosomes are highly acidic, oxidative, contain
antimicrobial peptides, proteases and restrict nutrient access,
representing a highly hostile environment for an intracellular
pathogen (16, 29). However, many intracellular pathogens have
evolved different mechanisms to either avoid phagocytosis,
escape from the phagolysosome or to resist phagolysosomal
effector mechanisms (29). In contrast, Leishmania parasites are
adapted to survive and replicate within phagolysosomes and
different species of Leishmania have developed different
strategies to do so. Survival primarily appears to be facilitated
by allowing time for the parasite to differentiate into an
amastigote before the hostile mature phagolysosome is formed.
For instance, during in vitro infection of macrophages,
promastigotes of L. donovani and L. major (L.m.) can delay
phagolysosome maturation by preventing acidification (30),
phagosome-endosome fusion (31) or NADPH (nicotinamide
adenine dinucleotide phosphate) oxidase assembly (32).
Curiously, L.a. parasites do not seem to interfere with
phagolysosome maturation, an observation that is somewhat
counterintuitive. Rather, several studies show that acidification,
fusion between the phagosome and endosomes/lysosomes,
lysosomal enzymes and protease activities and the expression
of lysosome markers (Rab7, LAMP1, V-ATPase) are all present
on L.a. containing phagolysosomes (26, 33–37). In fact, the
formation of the L.a. phagolysosome is relatively rapid,
occurring within 30 minutes post infection, when the
phagolysosomes of most infected macrophages have already
acquired lysosomal features in the lumen and membrane. This
process occurs faster when the infection is initiated by the
amastigote form of the parasite but is otherwise quite similar
compared to promastigotes and it is not influenced by previous
exposure to IFN-g activation (26). Altogether, Leishmania
amastigotes are extremely well-adapted to survive and
proliferate inside mature phagolysosomes and L.a., in
particular, does this without significantly interfering with this
host defense mechanism compared with other species.

The structure of phagolysosomes differs when containing
different Leishmania species. During L. major and L. donovani
infection, the PVs are tight and harbor a single amastigote, while
infections with species from the L. mexicana complex, such as
L.a., generate large communal PVs that contain several
amastigotes attached to the vacuole membrane (36). It has
been suggested that the increased size of L.a.-containing
vacuoles would dilute the effect of antimicrobial molecules,
compromising parasite killing and favoring growth (38, 39),
which could explain why killing L.a. amastigotes is harder to
achieve then other species such as L.m (40, 41). The development
of large PVs depends on the accumulation of CD36 at the sites
where amastigotes attach to the phagosome membrane,
suggesting that this process could occur either during or after
amastigote differentiation. CD36-/- BMDMs infected with L.a.
developed tight PVs that restricted L.a. growth but had no
September 2021 | Volume 12 | Article 728848
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impact on L.m. growth (39). In vitro, the PV enlargement process
is rapid and seen 8 h post-infection with promastigotes, reaching
their maximum volume by 24 h (26, 39). CD36 likely induces PV
enlargement by enhancing the fusion with late endocytic vesicles,
more specifically with lysosomes (39). As fusion with ER vesicles
has also been shown to participate discretely in the enlargement
of L.a. PVs (42), it is possible that CD36 enhance this fusion
pathway as well. Likely as a mechanism of defense, in vitro
infected macrophages respond to L.a. infection by enhancing the
lysosomal trafficking regulator (LYST)/Beige expression, a
protein complex that limits the size of lysosomes, therefore
reducing the size of the PVs and restricting parasite replication
(38). However, it is unlikely that during in vivo infection the
levels of LYST/Beige expression by host infected cells is enough
to impact parasite growth, as chronic disease is associated with
large PVs containing several amastigotes within mononuclear
cells (43, 44). In addition, the engagement of CD36 driving PV
enlargement is not associated with changes on LYST/Beige
expression (39). Importantly, while the PV size is associated
with L.a. growth restriction in tight PVs (39, 45), it did not
impact parasite killing mediated by IFN-g+ LPS on in vitro
activated BMDM, arguing against the idea that large PVs would
dilute microbicidal molecules, providing a shield to the parasites.
However, direct in-vitro activation by IFN-g + LPS might induce
a stronger activation phenotype on host cells compared to in vivo
infection and therefore it remains a possibility that the large PVs
in L.a. infection provide a niche in host phagocytic cells that
don’t get sufficiently activated.

Differences in the properties of phagolysosomes have also
been reported between different phagocytic cells and this is
relevant to Leishmania infection. Neutrophils are known for
being able to produce up to 20 times more ROS than
macrophages, which in combination with a lower expression of
V-ATPase, due to the high activity of NADPH oxidase,
characterize an early alkaline environment in the PVs (46–48).
In addition, due to a lack of the endosomal pathway in
neutrophils, the phagosome mostly fuses with the preformed
granules found in these cells, which also contain NADPH
oxidase in their membrane, contributing to higher ROS
production (47). Fusion of phagosomes with azurophilic
granules containing myeloperoxidase (MPO) has been
described during infection of human neutrophils in vitro with
L. major and L. donovani (49), however, little is known about the
phagolysosome biology of neutrophils during Leishmania
infection and an important question that remains to be
elucidated is if the differences in phagolysosome maturation
influences promastigote-amastigote differentiation in different
phagocytic cells and how this might impact the development
of disease.

Nutrient Acquisition in the Phagolysosome
The life experience of phagolysosome exposed amastigotes,
including changes in temperature, pH, O2, and restricted
access to nutrients, is significantly different compared to
promastigotes, which are largely restricted to the sand fly
vector midgut. In fact, some of these changes have been
associated with the differentiation process from promastigotes
Frontiers in Immunology | www.frontiersin.org 4
to amastigotes, including the requirement for higher temperature
and lower pH for the propagation of axenic amastigotes in-vitro
(50). Interestingly, for L.a., ROS production and the acquisition
of iron play critical roles in this process. The phagolysosome
restricts the iron access to the parasites. Iron is a key cofactor to
many enzymes and regulates important physiological pathways
in different organisms. Iron deprivation induces an up-regulation
of Leishmania iron transporter 1 (LIT1), that maintains internal
iron content while reducing parasite proliferation. Parasites
lacking LIT1 continue to proliferate until they show a robust
cell death rate (51). In addition, Leishmania require iron as a co-
factor for the activity of iron superoxide dismutase (FeSOD), a
key enzyme that converts superoxide, mostly derived from
parasite mitochondria, into hydrogen peroxide (H2O2), which
drives amastigote differentiation (51, 52). In addition to iron,
amastigotes need to uptake other nutrients from the
phagolysosome lumen or cytoplasm including several essential
amino acids, lipids, vitamins and purines, which are essential for
parasite survival and growth (53). This uptake relies on
phagosome-endosome fusion, on transporters present at the
PVs membrane and on transporters expressed by the parasites
themselves (53–56). A critical auxotrophic micronutrient for
amastigotes is L-arginine. This amino acid is the only source
for polyamines production, essential for parasite survival (57). L.
amazonensis express their own arginase enzyme that hydrolyses
L-arginine into L-ornithine and urea. Then ornithine
decarboxylase (ODC), catalyzes the enzymatic decarboxylation
of L-ornithine into polyamines (58). Amastigotes can also access
polyamines generated by host cytoplasmatic arginase -1 (Arg1)
activity (59). During infection, host cells increase the
consumption of L-arginine as this amino acid is required for
the activity of both arginase and inducible nitric oxide synthase
(iNOS) enzymes. The up regulation of the receptor cationic
amino acid transporter 2b (CAT-2B), modulated by IFN-g,
allows the necessary upregulation of L-arginine uptake.
Interestingly, Leishmania parasites can sense the availability of
L-arginine in their environment and change the expression of
their own amino acid transporters (60–64).
Induction of Respiratory Burst and Nitric
Oxide Production
Pathogen engulfment triggers the assembly and activation of the
enzyme complex NADPH oxidase in phagocytic cells. This
enzyme reduces O2 into superoxide that can mediate damage
to the parasite (47). Both in vitro infection of macrophages and
neutrophils with either L.a. promastigotes or amastigotes
induces this respiratory burst process (65, 66). However, the
absence of a functional NADPH oxidase in mice lacking the
membrane catalytic unit gp91 (Nox2) does not impact parasite
survival significantly to have an impact on the establishment of
disease or parasite loads over the course of infection (65, 67, 68).
The production of nitric oxide (NO) requires the activity of
iNOS, whose expression is induced by TNF, IFN-g, IL-1b, and
TLR ligands such as LPS (43, 69–71). L-arginine is the substrate
for iNOS, therefore robust uptake of this amino acid is required
when phagocytic cells are activated to ensure sustained and
September 2021 | Volume 12 | Article 728848
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robust NO production (47, 72). iNOS expression can be found at
the phagosome but its primary expressed on other vesicles in the
cytosol (73, 74). As NO is a relatively stable uncharged molecule
it can cross membranes such as the PV and the plasma
membrane (75). NO mediates its cytotoxic effect by: a) reacting
with heme-cytochrome C oxidase in pathogen mitochondria to
initiate ROS production; b) compromising DNA synthesis by
inhibition of ribonucleotide reductase activity; c) causing direct
DNA damage (47, 76); d) reacting with ROS forming
peroxynitrite anion (ONOO-), which is a stronger oxidant that
promotes pathogen killing by compromising mitochondrial
respiration and mediating tyrosine nitration that impacts
proteins structure and function (77). Finally, NO can inhibit
overall metabolism activity in Leishmania parasites restricting
their growth (78). While ROS production does not provide
protection against L.a, absence of NO is associated with
enhanced parasite growth and pathology (44, 71, 79). L.a. can
interfere with iNOS/NO production in different ways: by
expression of ectonucleotidases, such as ecto-nucleoside
triphosphate diphosphohydrolase (E-NTPDase), an enzyme
that provides AMP for adenosine production, which then
binds to adenosine A2B receptors on macrophages decreasing
NO production and inhibiting TNF and IL-12 production (80);
by activating NF-kB repressors (81, 82) or by inhibiting iNOS
activity (83).
THE INITIAL EVENTS: LEISHMANIA-
PHAGOCYTE INTERACTIONS

Parasite Antigens and Innate Recognition
Innate cells detect pathogens, including Leishmania parasites, by
recognizing PAMPs through the expression of pattern
recognition receptors (PRRs). PRRs are expressed on the cell
surface, in the cytoplasm, or are secreted into the blood stream or
tissue fluids (84).

Leishmania metacyclic promastigotes are the infective stage
of the parasite predominantly transmitted into the dermis of
mammalian hosts by infected sandflies during acquisition of a
blood meal (10, 85, 86). Metacyclic promastigotes are
characterized by the presence of a thick glycocalyx on the cell
surface where different proteins are expressed, representing a
source for PAMPs. The most common components expressed on
promastigotes are glycophosphatidylinositol lipids (GIPLs),
lipophosphoglycan (LPG), proteophosphoglycan (PPG) and
the GP63 zync-metalloprotease. Most of these molecules are
attached to the parasite surface by glycosylphosphatidylinositol
(GPIs) anchors (87). The amount of their expression can vary
between the different parasite life-cycle stages and the structure
of these components is different between different species of
Leishmania, thereby explaining variations in the role played by
these glycoconjugates following infection with different
species (88).

Because of the pool feeding feature of sand flies, the first
innate immune mechanism that challenges Leishmania survival
is the exposure to complement components in the serum (89).
Frontiers in Immunology | www.frontiersin.org 5
L.a. metacyclic promastigotes are resistant to complement
through at least two different mechanisms: cleavage of C3b
into iC3b by GP63 or by interfering with correct C9
attachment to the parasite surface, in both cases avoiding the
formation of the membrane attack complex (MAC), enabling
parasite survival (90–92). After evading complement, L.a. must
be phagocytosed by phagocytic cells to establish a niche for
survival/replication. Interestingly, the presence of iC3b on the
parasite surface is not only important to escape lysis mediated by
the MAC, but also facilitates parasite phagocytosis by CR1/
CD11b (93). It is possible that receptors such as CR3 bind
simultaneously to both opsonin (iC3b) and the promastigote
(LPG) in different binding sites enhancing phagocytosis (94). In
addition, GP63 secretion can digest collagen type IV and
fibronectin in an in vitro extracellular matrix, which might
facilitate parasite-phagocyte encounters in the skin (95).
The Role of Pattern Recognition Receptors During
Leishmania Infection
When phagocytic cells bind to and internalize Leishmania
parasites host PRRs can be activated by PAMPs. The impact of
TLR activation on leishmaniasis depends on parasite species,
host genetic background, cell subset and has been linked to both
anti and pro-inflammatory responses (96). Purified L.a.-LPG
activates TLR2, triggering the production of type I interferon
leading to activation of the IL27/IL-10 axis and inducing
superoxide dismutase (SOD) expression, which impairs
macrophage activation and favors parasite replication both in
vitro and in murine infections (97–101). The production of type I
interferon and IL-27/IL-10 axis is mediated by activation of ds-
RNA dependent kinase (PKR), a PRR, which in this scenario is
activated by type I interferon and IL-27 (99, 100). Importantly, in
a model of co-infection of L.a. with an Amazonian Phlebovirus,
which can infect sandflies, an exacerbation of lesion size and
parasite load also correlated with an increase on IFN-b/IL-10
production associated with PKR activation (102). In addition,
TLR2-deficient DCs infected in vitro showed higher IL-12p40
levels and induced stronger activation of naïve CD4 T cells as
measured by higher replication rate and IFN-g production
compared to Wt DCs (103). Lastly, skin biopsies from patients
infected with L.a. showed a higher expression of IFN-b/PKR for
the more severe form of the disease, anergic diffuse cutaneous
leishmaniasis (ADCL) compared to localized cutaneous
leishmaniasis (LCL) (99). Thus, the TLR2/Interferon type I/
PKR pathway plays a significant role in parasite evasion.
Despite the pathogenic role played by TLR2 during L.a.
infection, Myd88 deficiency is associated with higher
susceptibility to disease, thus suggesting additional roles
mediated by different TLRs that also signal via Myd88 (71,
104). In this context, TLR4, which can also be activated by
LPG, is associated with both NO and TNF production following
in-vitro macrophage infection (104, 105). The role played by
TLR9 is controversial, L.a. amastigotes can release DNA on
micro-vesicles, activating endosomal TLR9, which required
both Myd88 and TRIF to induce CD200, which blocks iNOS
expression, resulting in a transient higher resistance in TLR9-/-
September 2021 | Volume 12 | Article 728848
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mice compared toWt mice, in early but not chronic phases of the
disease (106, 107). Lastly, the expression of TLR2, TLR4 and
TLR9 is different during different clinical manifestations of L.a.
infection in humans. Specifically, LCL showed a higher density of
TLR2 expression compared to TLR4 and TLR9 by CD68+

macrophages from skin biopsies. On the other hand, for ADCL
and BDCL forms, the density of TLR9 expression is higher
comparing to TLR2 and TLR4. Importantly, no correlation
between the expression pattern of TLRs and production of
TNF, IL-10 or TGF-b by T cells were found (108).

Another important family of PRRs are the NOD-like
receptors (NLRs), which work as a sensor for intracellular
molecules. NLRs are important components in the inflammasome
complex. In general, activation of the inflammasome multiprotein
complex in the cytosol leads to activation of caspase-1 that
cleaves the inactive proinflammatory cytokines (pro-IL-1b and
pro-IL-18) into their respective active forms (109). The
activation of the inflammasome through NRLP3 depends on
ATP, released by dying cells at the site of infection, and ROS
production by NADPH oxidase, released during parasite
phagocytosis. In addition, L.a. LPG triggers a non-canonical
pathway of inflammasome activation mediated by caspase-11,
although it is not yet known how LPG from the parasites gains
access to the host cell cytoplasm to activate the inflammasome
complex (110–112). In general, IL-1b production during
Leishmania infection has been associated with different disease
outcomes: pathology in the case of L. major and L. braziliensis
infection, dissemination following L. infantum infection, and a
protective role against L.a (71, 113–115). BMDMs, previously
primed with LPS, and infected by L.a. promastigotes induce
IL-1b production, mediated by inflammasome activation. IL-1b
was then shown to induce iNOS production, having a long-
term impact on disease, as assessed by higher susceptibility
of mice deficient for NLRP3, CASP1 and CASP11 (71, 110).
IL-18 production, on the other hand, is associated with
higher pathology and parasite loads during L.a. infection by
an unknown mechanism (116). Interestingly, activation of
the inflammasome seems to depend on the parasite stage.
Different from promastigotes, infection by amastigote forms
of L.a. inhibit several components of inflammasome activation
including NRLP3, NLRP4 and AIM2 by modulating epigenetic
changes at H3 (hypoacetylation) in macrophages (117).
In addition, infection of DCs in vitro with L.a. amastigotes
also inhibited inflammasome activation resulting in less
IL-1b and IL-18 production (118). Considering the differences
between how promastigotes and amastigotes modulate
inflammasome activation it is not clear how inflammasome
activation by promastigotes during the early stages of the
infection would impact long-term disease by inducing iNOS
expression, especially in the context of subsequent Th1-mediated
iNOS production in response to IFN-g. Currently, it is not
known if inflammasome activation has an impact on
infiltrating phagocytic cells during L.a. infection, thereby
influencing permissive host cell availability. Another
outstanding question is the impact of inflammasome activation
on neutrophils, which represent important host cells infected by
Frontiers in Immunology | www.frontiersin.org 6
promastigote forms of the parasite, predominantly at acute stages
of infection (10).

Neutrophil-Leishmania Interactions
in the Skin
Neutrophils are generated in the bone marrow in adult mammals
and represent the most abundant leukocyte population in the
bloodstream, allowing for rapid recruitment into damaged tissue
sites. Neutrophil recruitment to damaged tissues, following
sterile or infection-associated injury, is a hallmark of early
innate immunity (119). Neutrophil migration from bone-
marrow to the circulation relies on the balance between
retention/mobilizing signaling mediated by the expression of
CXCR4/CXCR2, respectively (120). Blood neutrophils are short-
lived (half-life of around 10 h), which can increase up to 24 h
following tissue infiltration under homeostasis, or even up to 7
days in the context of inflammation (119). Recently, by
employing both parabiosis and a tamoxifen-inducible Cre
recombinase at the ly6g locus, allowing for tracking neutrophil
fates in different tissues, it was observed that neutrophil half-life
depends on the tissue, and, interestingly, the skin, amongst the
tissues analyzed, is the organ where neutrophils have the longest
half-life (around 18 h) (121). In addition, transcriptome analyses
from skin neutrophil suggest that these cells might regulate
epithelial growth in the skin under steady state (121). During
systemic infections, a 10x increase in neutrophil production can
be observed, a process called emergency granulopoiesis, which
can be triggered by the increase in serum levels of the growth
factors granulocyte and macrophage colony-stimulating factors
(G-CSF/M-CSF, respectively) and cytokines (IL-6, type I
interferons), which regulate hematopoietic stem cells (HSCs) in
the bone-marrow (122). Neutrophil recruitment is also enhanced
during inflammation. Neutrophil chemotaxis is mediated by
different receptors: I) chemokine receptors such as CXCR2,
CXCR4 and CXCR1 (123). The inflammatory chemokine
receptors CCR1, CCR2, CCR3 and CCR5, can also be
expressed by neutrophils but do not play a role on neutrophil
recruitment during either homeostasis or inflammation, and
instead, appear to be more relevant for monocyte and
eosinophil recruitment (124); II) lipid mediator receptor, such
as leukotriene B4 receptor (LTB4R), which binds to leukotriene
B4 and III) complement receptors, as C5aR, CR3 and C3aR
(123). The acute neutrophil recruitment to wounded skin can
also be impaired in the absence of a microbiome (125).

Neutrophil Behavior at the Dermal Site of
Leishmania Deposition
The employment of multiphoton intravital microscopy to image
leukocyte migration into different tissues has made a great
impact on the understanding of neutrophil behavior after
transmigration, for instance, into wounded skin. Tissue
damage following sand fly bite or needle inoculation is enough
to induce a robust neutrophil infiltrate to the dermis in the
minutes to hours post-infection with L.m (10, 126, 127). Needle
inoculation of L.a. parasites also induce early neutrophil
recruitment to the skin (128, 129), see Figure 2. In addition to
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tissue damage, neutrophil recruitment is also associated with
vector associated components, such as the sand fly gut
microbiota, sand fly saliva, and promastigote secretory gel
(PSG), rich in proteophosphoglycans and secreted by the
parasites in the vector midgut, as well as factors released by the
host immune response to the bite, including CXCL1, CXCL2 and
C3 cleavage (114, 130–132). Importantly, while the presence of
Leishmania is not required to induce neutrophil recruitment, the
presence of parasites or sand fly derived factors is likely required
for persistent neutrophil swarming and maintenance of the
‘neutrophil plug’ that forms where the sand fly proboscis has
penetrated through the skin. In contrast, sterile wounds are
associated with a mostly transient presence of neutrophils (10,
126, 133). All of these factors are likely to contribute to the
intense neutrophil cluster formation at sites of sand fly bite and,
up to 24 h post infection, neutrophils represent a majority of the
inflammatory host cells for most Leishmania species following
transmission by sand fly bite or needle inoculation (10, 43, 134).
Recently, sand fly transmitted parasites of a non-healing L.
major-RYN strain that were distributed to dermal sites distal
to the site of vascular damage and neutrophil cluster formation
resulting from sand fly probing were shown to be phagocytosed
by a more diverse population of phagocytes, including resident
dermal macrophages (135), suggesting the localization of
parasite deposition can influence host cell phenotype. The
Frontiers in Immunology | www.frontiersin.org 7
biological relevance of neutrophil swarming and cluster
formation during the early phase of Leishmania infection may
be to restrict parasite dissemination, as neutrophils tend to
concentrate at sites of tissue damage where Leishmania are
also found and may limit their subsequent spread following
phagocytosis even if they are unable to kill the parasite. Second,
the co-localization between neutrophil clusters and parasites
might restrict tissue pathology induced by neutrophil-derived
inflammatory factors to the wound associated with sand fly bite
versus a more generalized distribution in the skin. In fact, the
robust acute neutrophil recruitment after either sand fly or
needle injection does not correlate with the persistent tissue
pathology associated with cutaneous disease, as clinically
relevant lesions typically only appear after the induction of
adaptive immunity (10, 43, 128, 134).

Impact of Neutrophil Death on Leishmania Infection
In addition to sand fly bite associated factors, neutrophil cell
death can also initiate or amplify neutrophil swarming and
cluster formation (133). This observation is important in the
context of Leishmania infection as parasite phagocytosis has
been associated with the induction of neutrophil death. How fast
Leishmania parasites induce neutrophil cell-death depends on
parasite species and experimental settings (in vitro versus in vivo;
and the source of neutrophils). L. major parasites can delay
FIGURE 2 | Dynamic of phagocytic cells during the acute phase of the immune response against L. amazonensis infection. (A) Recruitment of neutrophils is
triggered by tissue damage, sand fly associated factors, chemokine production by keratinocytes and C3 cleavage. After recruitment to the dermis neutrophils can
release NETs (B), phagocytose (C) and degranulate (D) in response to L.a. infection. Other infected phagocytic cells during early infection include embryonic dermal
macrophages, resident DCs and monocytes (E). In response to metacyclic promastigote phagocytosis, neutrophils undergo respiratory burst and ROS mediated
apoptosis (F). In response to changes in the innate chemokine production profile, a wave of inflammatory monocytes is recruited to the dermis skin (G) and become
infected by phagocyting infected neutrophils, apoptotic bodies, a process known as the “Trojan Horse” model of infection (H) or parasites freed by apoptotic
neutrophils. Created with BioRender.com.
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apoptosis during in vitro infected blood neutrophils or in vivo
infected peritoneal neutrophils (136–138), but exposure of
phosphatidylserine, often employed as a surrogate marker of
apoptosis, has been reported within a few hours after infection of
either bone-marrow derived (135) or dermal neutrophils (139),
suggesting parasite-induced induction of apoptosis. After 18 h of
infection by L. braziliensis peritoneal neutrophils also showed
higher levels of PS exposure in the membrane (138). In addition,
a few hours after the phagocytosis of L.a. neutrophils become
annexin V positive, in a process that is driven by NADPH-
dependent ROS production (67). It is important to highlight that
neutrophil death may be induced by Leishmania phagocytosis, as
shown by studies employing Leishmania-RFP expressing
parasites, which allow for comparison of infected versus
uninfected cells in the same environment, either in vitro or in
vivo. This is relevant because variations in the infection rate can
significantly impact the degree to which the total population will
exhibit an infection related phenotype.

The engulfment of infected apoptotic neutrophils or
phagocytosis of parasites by other phagocytic cells that are
concurrently involved in uptake of apoptotic blebs, a process
referred to as efferocytosis, can enhance the chances of parasite
survival. In the Leishmania literature, this process is commonly
referred to as the “Trojan horse” model of infection (140). The
neutrophil engulfment by dermal macrophages is mediated by
the expression of tyrosinase kinases receptors, such as Axl and
MertK, and has been recently shown during in vivo infection with
L. major, where an up-regulation of wound-healing phenotype
markers, such as resistin-like molecule alpha (Relma) and Arg1
was reported (135). In vitro, the uptake of L.m. and L.a. infected
apoptotic neutrophils by macrophages enhances transforming
growth factor beta (TGF-b) and prostaglandin E2 (PGE2)
production (140, 141). Meanwhile, when dermal DCs acquire
L.m. via infected neutrophils, an impairment on antigen
presentation and T cell priming is observed and is associated
with decreased levels of MHC II, CD40 and CD86 expression by
DCs (139). Therefore, it appears that Leishmania can take
advantage of the anti-inflammatory bias that macrophages or
DCs acquire after phagocyting apoptotic neutrophils at the site
of infection (135, 139). The importance of neutrophil apoptosis in
regulating tissue pathology during infection is highlighted in the
studies of L.a. infection of ROS/NADPH-deficient gp91-/- mice
mentioned above. In these studies, parasite loads are unaffected
but NADPH-mediated progression of neutrophils to an apoptotic
phenotype is abrogated, resulting in the accumulation of necrotic
neutrophils and severe tissue pathology (67).

Impact of Neutrophil Deficiency on Leishmania
Infection
Interestingly, L.m can survive but do not appear to replicate
within neutrophils during the acute innate phase of the disease
(9, 10, 142). The subsequent host protective versus pathogenic
roles played by neutrophils during Leishmania infection remains
somewhat controversial. For instance, depletion of neutrophils in
C57BL/6 mice just prior to exposure to the bites of L. major
infected sand flies resulted in both a reduction in the number of
Frontiers in Immunology | www.frontiersin.org 8
productive transmission events and lower parasite loads (10).
Similar observations were reported in neutrophil-deficient
C57BL/6 mice infected with L. mexicana (143) and, more
recently, enhanced neutrophil recruitment mediated by sand
fly salivary proteins was also found to facilitate L.m. infection
(132). On the other hand, depletion of neutrophils prior to a
footpad infection in C57BL/6 mice with L. major was associated
with an enhanced number of parasites in the draining lymph
nodes (dLNs), suggesting a protective role for the neutrophils in
this context, while the opposite was observed for BALB/c mice
(144). In contrast, dermal needle inoculation of neutrophil-
depleted BALB/c mice with L.a. resulted in increased lesions
and parasite loads at the site of infection, while it did not affect
the disease outcome in C57BL/6 mice (128, 131). It should be
noted that interpretation of mouse studies can be complicated by
the use of different Leishmania species and the site of infection
employed, where intradermal inoculation in the ear is associated
with robust neutrophil recruitment and a high proportion of
infected cells being neutrophils, similar to sand fly transmission,
versus sub-cutaneous inoculation in the footpad that is associated
with limited neutrophil recruitment and infection (134, 145). In
addition, some studies have employed the draining lymph node to
determine parasite load without taking into account the impact of
neutrophil depletion on dissemination from the skin or site-
specific parasite loads.

Neutrophil Antimicrobial Mechanisms
Neutrophils have several antimicrobial mechanisms, such as:
phagocytosis, degranulation, ROS production and release of
neutrophil extracellular trap (NET), in a process known as
NETosis (Figure 2) (146), and evidence is still being generated
as to the relative importance of each of these mechanisms and the
degree to which they can prevent Leishmania infection.
Specifically, ROS is produced by murine neutrophils after
uptake of promastigote or amastigote forms of L.a. (66).
However, it is unlikely that ROS plays a major role mediating
L.a. killing as genetic deficiency in the NADPH oxidase gp91
subunit, required for NOX2 ROS production, does not
significantly impact parasite load during either the innate or
adaptive phases of the disease (65, 67). Neutrophil degranulation
during L.a. infection has also been reported in both human and
murine settings (23, 97). Upon activation by skin extracellular
matrix components (MEC), such as fibronectin, during
transmigration, neutrophils degranulate releasing MPO, matrix
metallopeptidase 9 (MMP9) and neutrophil elastase (NE), all of
which can mediate parasite killing by infected macrophages in
vitro (147). The degranulation of MPO and MMP9 by infected
human neutrophils can mediate L.a. killing in vitro via an LTB4
dependent mechanism (23). In murine settings, increased MPO
and NE has been associated with lower L.a. numbers in IFNAR-/-

mice (97). NETs, primarily containing chromatin and coated by
nuclear, cytosolic, and granular proteins as well as microRNAs
are released into the extracellular milieu upon stimulation from
either naïve or PMA-activated neutrophils (148–150). NETs can
be found in cutaneous leishmaniasis biopsies, and their release
can be induced by either promastigotes, amastigotes or L.a.
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purified LPG (150, 151). Other species such as L. infantum, L.
major and L. mexicana can also induce NETs release by naïve
neutrophils (143, 150). Histone dependent NETosis mediated L.a.
killing within 10 minutes of parasite-neutrophil interactions, in a
process that is depended on NE activity. Promastigotes induced
higher amounts of NETs released and are also more susceptible to
NETosis comparing to amastigotes forms of L.a (150–152). Lastly,
NETs can impair, in vitro, monocyte maturation to a fully
differentiated DC phenotype by downregulating IL-4R
expression, instead inducing differentiation into macrophages
(153). An intriguing open question in the field is how
neutrophils “choose” between NETosis or phagocytosis, as
currently the understanding is that the two processes are
mechanistically mutually exclusive and irreversible. For NET
release the enzymes NE and MPO must reach the nucleus to
mediate chromatin decondensation, requiring their release from
the granules into the cytosol. Meanwhile, during phagocytosis
both enzymes are found in the vesicles associated with the
endocytic pathway (154). Despite all the effector mechanisms
triggered by neutrophils after L.a. infection, most parasites
survive and are able to initiate the disease. L.a. parasites can
evade NET mediate killing by LPG, gp63 and 3’nucleotidase/
nuclease enzyme expression, which can cleave the NETs, releasing
the promastigotes (151, 155). In addition, by expressing
peroxidases, L.a. amastigotes are highly resistant against ROS
production (66, 156).

While little is known about the role of neutrophils during
chronic stages of Leishmaniasis, one study has shown that, at
least in the case of L. mexicana, amastigotes can replicate inside
neutrophil phagolysosomes, which expand in volume as
described for macrophages (157). Neutrophils were also found
to be the predominant infected population at dermal sites of
early L. amazonensis infection in settings of monocyte deficiency,
suggesting they can support a degree of ongoing infection (43).
At sites of secondary challenge with L. major, where the majority
of parasites are eliminated by IFN-g activated inflammatory
monocytes, a significant proportion of the parasites that are
remaining, are found in neutrophils. Infection at secondary sites
under conditions of monocyte deficiency is also associated with
infection of neutrophils, suggesting that even in settings of robust
pre-existing Th1 immunity, neutrophils remain a safe haven for
infection (142). While these observations suggest neutrophils can
maintain infection and even proliferation, studies implicating the
mononuclear infiltrate as the host population that maintains
parasite replication during the highly regulated late stages of the
disease suggest neutrophils play a minor role in the ongoing
maintenance of the parasite load under normal conditions (43,
134, 142, 157). In addition to directly providing a permissive host
cell for parasites, neutrophils can also modulate the immune
response by releasing several chemokines that promote
monocyte, DCs, and T cells recruitment to sites of inflammation
(158, 159).

Ultimately, any protective mechanism that does not achieve
sterilizing immunity is, in fact, non-protective if infection can be
initiated by a single parasite, as previously shown (9), and
progress to the same peak parasite load and lesion size, albeit
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with different kinetics. Under this premise, the key biological
events to take place in neutrophils, despite all the associated
effector mechanisms, would be the differentiation from
promastigotes to amastigotes, the stage adapted to survive
within phagosomes, in addition to the modulation of cytokine/
chemokine production and by potentially facilitating the silent
entry of amastigotes into other phagocytic cells.
RESIDENT AND MONOCYTE-DERIVED
DENDRITIC CELLS

Dendritic cells were firstly described in the late 1970s (160) and
are often referred to as the cells that “bridge” the innate and
adaptive immune responses. DCs are a heterogenous population
and different subsets have been described according primarily to
their ontogeny and function. In the skin dermis conventional
DCs (cDC1 and cDC2), minor populations of CD11b- DCs, such
as plasmacytoid DCs (pDCs), and monocyte-derived DCs (mon-
DCs) have been described (161). As professional antigen
presenting cells (APCs), DCs can migrate from peripherical
tissues to present antigen and activate naïve CD4 T cells in
secondary lymphoid organs such as dLNs (Figure 3). Amongst
the APCs active during infection with Leishmania, DCs
represent the major source of IL-12 production and are critical
for the development of Th1 immunity (162). After pathogen
phagocytosis and during the migratory process, DCs undergo a
process of further maturation, upregulating the expression of co-
stimulatory molecules (CD86, CD80, CD40) and MHC II, which
are essential for T cell priming (Figure 3B). The duration of this
process presents an opportunity for pathogens to interfere with
DCmaturation and impair subsequent T cell priming (163). This
is especially true for monocyte derived DCs that originate as
CD11c-MHCII- cells in the blood and are permissive to L.a.
replication (43). The specific role played by each DC subset
during Leishmania infection is still not completely understood.
Important questions such as if different DC subsets play a
different role during (a) early versus late phases of the disease,
(b) at the site of infection versus dLNs and (c) if and how they
interact with each other remain to be elucidated.
cDC1, cDC2, and pDCs
cDC1s are a minor population in the skin dermis of both humans
and mice while cDC2s are the most abundant (161). cDC1s are
usually associated with the cross-presentation of exogenous
antigens and priming of CD8+ T cells and with the
development of Th1 CD4 immunity. The role of cDC1s during
Leishmania infection has been assessed using Baft3 (Basic
leucine zipper transcriptional factor ATF-like 3) deficient mice,
as cDC1 development is reliant on the expression of this
transcriptional factor. During infection with L. major, Baft3-/-

mice presented with a deficit in Th1 immunity and enhanced
frequencies of Foxp3+ T regulatory cells in the skin that was
associated with non-healing lesions and higher parasite loads
versus Wt mice (164, 165). This occurred despite the fact that the
September 2021 | Volume 12 | Article 728848

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Carneiro and Peters The Paradox of a Phagosomal Lifestyle
priming of CD4+ or CD8+ T-cell responses was driven primarily
by Baft3-independent DCs. Because Baft3 dependent DCs
represent an important source of IL-12 in the skin, they likely
impact Th1 CD4+ cells and CD8+ T cells activation at the site of
infection despite their low numbers (164). We can also speculate
that, as Baft3 dependent DCs represent a source of the
chemokines CXCL9, CXCL10 and CXCL11 during bacterial
infection, they may also participate in the recruitment and
retention of CXCR3+ Th1 effector cells to the site of infection
(166). Thus, it is not clear if the reduced numbers of Th1 cells in
the dermis after L.m. infection is due to a deficit on T cell
recruitment or/and in-situ activation mediated by IL-12
produced by cDC1s. Baft3 dependent DCs also play a
protective role during L. infantum infection, as higher numbers
of parasites were observed in the liver, but not spleen or bone-
marrow, during the late stages of disease (7 weeks post-infection)
in Baft3-/- versus Wt mice (167).

A few caveats associated with the use of Baft3 deficient mice to
study the role of cDC1s or cross-presentation should be taken
into account. cDC1 development may be restored in certain
tissues under inflammatory conditions, probably due to the
redundant role played by other BAFT proteins. In addition,
while cDC1s are absent in the skin and spleen of Baft3-/- mice,
these APCs or a very similar population are still present in lymph
nodes (161, 168). In addition, other APCs, such as monocytes-
derived DCs can cross-prime CD8+ T cells. In this case,
monocytes rely on the expression of interferon regulatory factor
4 (IRF4), but not Baft3, to differentiate into DCs that mediate this
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process (169). It is important to mention that Baft3 deficient mice
also show an impairment in monocyte maturation towards a DC
phenotype. At early stages after L.m. infection (2-3 weeks), most
Baft3 deficient monocytes remained Ly6C+MHCII-, indicating
additional roles for Batf3 in different dermal APCs that could
have significant secondary impacts during Leishmania infection
(164). In regards to cross-presentation, it is known that L. major
can impair the canonical endoplasmic reticulum transporter
associated with antigen processing (TAP)/proteasome-
dependent pathway, delaying CD8+ T cell priming (170). It is
still not well described how peptides are processed for Leishmania
cross-presentation but gp63 from L.m can cleave the SNARE
VAMP8, present on late endosomes, preventing NADPH oxidase
complex assembly, which impacts the phagosome pH and
proteolytic activity, inhibiting cross-presentation (32). The role
of cDC1s or cross-presentation specifically during L.a. infection is
unknown, but macrophages can prime CD8+ T cells by
presenting endogenous Leishmania antigen via the classical
proteasome-dependent pathway (171).

cDC2s are usually associated with the development of a Th2
immune response, which requires IL-4 and alarmin (thymic
stromal lymphopoietin (TSLP), IL-25 and IL-33) signaling
(161). While cDC1s migrate towards the T cell zone of the
lymph nodes, cDC2s localize at the subcapsular sinus space
(172). Thus, in addition to expressing CCR7 to migrate into
dLNs, CD301b+ cDC2 cells rely on CCR8 expression, during
allergic immune response, to reach the LN parenchyma to trigger
Th2 immunity (173). Thus, the anatomical location of different
FIGURE 3 | Monocyte differentiation and activation during L.a. infection. (A) Infected inflammatory monocytes acutely recruited to the site of infection become an
important source of chemokines (CCL2, CCL7, CXCL9 and CXCL10) when activated by CD4 T cell derived IFN-g. Infection triggers IL-6ra expression and signaling,
which is important for the differentiation towards a macrophage phenotype. Mon-Macs are seen 2-4 days after monocyte recruitment to the site of infection. When
activated by Th1 and Th2 cytokines both monocytes and mon-Macs upregulate the expression of MHC II, PDL2 and CD206. Inflammatory monocytes can also
differentiate into DCs, a longer process that takes approximately 7-14 days. mon-DCs upregulate MHCII, but not PDL2 or CD206, and are critical for the priming and
induction of Th1 immunity (B). The phenotype of both monocytes and mon-Macs exposed to different cytokines produced by different CD4 T cell subsets, leading
to, in a single cell, activation of STAT1, STAT3 and STAT6, allowing the co-expression of both iNOS and Arg1 (C). Created with BioRender.com.
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DCs subsets at dLNs play a significant role to determine the
phenotype of adaptive immunity (174). To date, the exact role
played by cDC2s on the establishment of the Th2 response
during Leishmania, including L.a., infection is not clear.

Plasmacytoid DCs (pDCs) are found in the circulation in
steady state but can be recruited to the skin during inflammation.
These APCs are CD11b- CD11c+and represent an important
source of type I IFNs (IFN-a/IFN-b), thus are critical for
protective immunity during viral infections (161, 175). pDCS,
when infected in vitro with L. infantum, can also induce type I
IFNs, in a TLR9 dependent manner, in addition to IL-12 (176).
During L. major infection pDCs can be found at skin dermis and
dLNs, can be infected by the parasite and do not seem to produce
significant amount of NO, which suggest these cells do not play a
role in parasite killing (177). Compared to CD11b+ DCs, pDCs
produce higher levels of IFN-a/b and lower levels of IL-12 in
response to L. major infection (178). Type I IFNs have been
associated with early iNOS expression at the site of infection
during L. major infection (179) but a lack of type I IFN signaling
does not impact the self-healing phenotype after L. major
infection of C57BL/6 mice suggesting this function of pDCs
might be dispensable (178), but more studies are still required.

Monocyte-Derived Dendritic Cells
While cDC1s might have an important role on eliciting Th1
effector cell activation in the skin, monocyte derived DCs seem to
play the major role in priming the Th1 immune response in
dLNs and mediate parasite elimination. Monocytes are recruited
to the dermis after infection, differentiate into mon-DCs, and
after migrating into dLNs prime Th1 immunity by producing IL-
12 (180). In different experimental models, CCR2 deficient mice
have been associated with a profound Th1 deficit and skewing
towards Th2 immunity. Monocytes rely on CCR2 expression to
leave the bone-marrow and reach the circulation, thus without
this chemokine receptor monocytes are not available to enter
peripherical tissues (181). The shift towards a Th2 immune
response in CCR2-/- mice has been reported for infection by L.
major (182) and L.a (43). During L. mexicana infection, the
observed decrease in monocyte recruitment, versus L. major
infected mice, may also be responsible for decreased Th1 priming
(183). In addition, mon-DCs can express iNOS and represent an
important cell that mediates parasite killing during L.m.
infection (184). In contrast to Baft3-/- mice that have non-
healing but stable lesions, monocyte-deficient ccr2-/- mice have
highly significant deficiencies in iNOS+ cells and succumb to
progressive disease at the late stages of infection in otherwise
resistant C57BL/6 mice (164, 182, 184).

Mon-DCs are likely infected with amastigotes, rather than
promastigotes. In-vitro infection of DCs by amastigotes has
an important impact on activation and is associated with an
overall anti-inflammatory response, associated with poor
inflammasome activation, IL-12 production and CD4 T cell
proliferation. How L.a. amastigotes compromise DC activation
is not fully understood, but it does affect several important
transcription factors signaling pathways, including: (a) reduces
expression of IRF1, IRF8 and STAT1; (b) degrades STAT2 by
proteases, (c) inhibits the NF-kB pathway by enhancing
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optineurin (OPTN) expression (118, 185). A caveat to the
interpretation of these studies is that mon-DCs are likely to be
infected when they are immature monocytes (43, 142, 180, 184),
and therefore the relevant impact of infection may be the
modulation of maturation towards a DC phenotype rather
than the down-regulation of a cell that is already mature, such
as is the case with bone-marrow derived DCs typically employed
for these types of in-vitro experiments. These two processes are
biologically distinct.

Parasite Acquisition by DCs
L.a. (both promastigotes and amastigotes) can infect and
proliferate in both murine and human differentiated DCs
through different receptors such as FcgR, complement, and
proteoglycan receptors (186–189). Monocyte differentiation
into DC is impacted by L.a. infection in vitro, as lower levels
of CD80 and CD1a expression and IL-6 production were
reported. However, the infection did not impact the expression
of MHC II and increased CD86 levels, showing that this
modulation does not occur equally across all maturation
markers (189). How L.a. impacts DC activation varies between
different studies because of differences on parasite stage,
opsonization or not, genetic background and maturation status
at the time of infection. In summary, parasite opsonization,
either amastigotes or promastigotes, by antibodies, but not
complement, plays a major role on DC activation. For DCs
generated from BALB/c mice ab-opsonization of metacyclic
promastigotes or amastigotes is associated with higher
expression of CD40, CD86, CD54 and OX40L. In addition, ab-
opsonization not only enhanced MHC II expression but it also
accelerated its distribution on the cell surface, impacting antigen
presentation (186). On the other hand, infection by non-
opsonized metacyclics did not alter DC activation (186).
Meanwhile, DCs infected with non-opsonized stationary
promastigotes were able to weakly up-regulated MHC II,
CD40, CD80 and CD86 expression (185, 187, 190). In DCs
derived from C57BL/6 mice the use of non-opsonized metacyclic
inhibited the expression of molecules such as MHC II, CD40,
CD86 and IL-12p70. Particularly, the expression of CD40 is
inhibited by the enhanced expression of DCs ectonucleotidases
(CD39 and CD73) induced by L.a. infection, which is IL-4/IL-10
independent but ERK1/2 pathway dependent (191–194). These
discrepant results reinforce the fact that the use of purified
metacyclics has a big impact on infection, similar to
opsonization. By inhibiting CD40 expression on DCs, L.a.
might impair the development of a protective adaptive
immune response as CD40 expression is relevant for IL-12
production and subsequent Th1 priming (195), including
during L.a. infection (191, 196). In fact, L.a. parasites do
impair both CD40 and IL-12 production on APCs to a higher
degree then what is observed for self-healing parasite strains of L.
major and L. braziliensis (190, 191). In summary, the infection of
DCs by either metacyclic promastigotes or amastigotes have
relevant impact on promoting anti-inflammatory response that
may delay Th1 priming.

Other important questions related to DCs and still to be
elucidated are: 1) if cDC1s represent an important source of
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IL-12 during early stages of the disease, before the recruitment of
monocytes to the site of infection; 2) if continuous local
activation of cDC1s, after the priming of Th1 immunity by
mon-DCs in dLNs is required for ongoing protection; and
3) why the dermal resident cDC1s, which are already at the
site of infection are not required for Th1 priming. This is a
relevant point because cDC1s have higher migratory capacity
and can induce stronger T cell activation, for both CD4+ and
CD8+ T cells in vitro (197), compared to mon-DCs. However, as
cDC1s might become immobile after, at least, the first hours
post-infection, due to initial infection and inflammation at the
dermis (198), we can speculate that, in addition to the fact that
these are rare cells at the dermis, this immobilization might
impact their priming capacity.
MONOCYTES AND MACROPHAGES

Macrophage Ontogeny Matters
Embryonic-derived macrophages, Monocytes and Monocyte
derived Macrophages (mon-Mac), are mononuclear phagocytic
cells that play an essential role during homeostasis and
inflammation in different organs, including a critical role
mediating killing of intracellular pathogens and promoting
wound healing [reviewed in (199, 200)]. During Leishmania
infection these cells can play paradoxical roles, providing both
a niche for parasite survival and replication or mediate parasite
killing depending upon the activation state of the tissue
environment they occupy (43, 142, 184, 201–203). It is
important to highlight that for this review we are considering
the current literature for macrophage ontogeny in the context of
Leishmania infection in the skin. The reason why macrophage
ontogeny matters is that in recent years, it has become clear that
the ontogeny of macrophages has an impact on macrophage
function, including differences on phagocytosis, cluster
interaction with other immune cells and production of
cytokines and chemokines. Differences on epigenetic and
transcriptomic networks may explain these differences, but this
is a field currently under intense investigation (197, 204, 205). It
is well established that different tissues contain a heterogenous
resident macrophage population, based on their origin, which
can vary depending upon life history, including age and
experience with inflammation. Resident tissue macrophages
(RTMs) can originate from embryonic hematopoiesis and are
self-maintained by replication or originate from the recruitment
and differentiation of circulating CCR2hiLy6Chi monocytes after
birth (197, 199). In vascularized tissue-barrier organs such the
skin dermis, the replacement of embryonic derived macrophages
by monocyte-derived cells is observed after birth and occurs
more quickly compared to tissues such as the epidermis, brain
and liver. After 36 months of age, around 80% of RTMs are
monocyte-derived in the skin dermis (206, 207). It is relevant to
mention that during cutaneous leishmaniasis two waves of
monocyte recruitment can be observed. The first wave starts
around 48 h post-infection and last up to around 72 h. Then,
another monocyte wave is seen during adaptive immunity,
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starting around day 10 post-infection, and will persist for as
long as it takes for parasite clearance (43, 139). The impact of this
is that recently recruited immature monocytes, monocytes
undergoing different stages of maturation toward a
macrophage or DC phenotype, and fully differentiated
monocyte-derived macrophages and DCs will co-exist at the
site of infection. There are two main challenges when trying to
define the role played by embryonic-derived macrophages,
monocytes and mon-Macs: 1) studies relying on markers such
as MHC II, F4/80 and CD11c to distinguish between these cells,
and sometimes DCs, which we now know are not definitive, in
addition to the fact that several studies do not take into account
ontogeny when referring to macrophages (197). The most
current markers to define innate cells at the skin can be seen
in Figure 1, 2) much of what we know about macrophage
function came from BMDMs, where monocytes are first fully
differentiate towards a macrophage phenotype in vitro, and then
infected by the parasite. The caveat here is that in most models of
Leishmania infection, including L.a., recruited monocytes appear
to be the cell type associated with ongoing parasite replication,
though further work is required (43, 142, 208–211). Lastly, in
addition to mon-Macs, a recently defined relevant macrophage
population in a context of cutaneous leishmaniasis are the self-
renewing embryonic-derived RTMs, which are maintained in an
IL-4 dependent manner, which impacts the ability of these cells
to get activated in a context of Th1 immunity (212). These cells
in the dermis are characterized by high levels of MR expression
and represent one of the first host cells for the L. major-RYN
strain after sand fly transmission, which, at least in C57BL/6
mice, has a non-healing phenotype, and the L. major Seidman
strain after needle inoculation, which exhibits a non-healing
phenotype in both C57BL/6 mice and the patient from which it
was derived (135, 201).

Finally, to best understand whether these cells provide a safe
or a hostile environment for Leishmania parasites we cannot
simply rely only on analyzing their activation status. Rather, we
propose that to understand the big picture of the role of
mononuclear phagocytic cells a balance between three equally
important factors must be taken in consideration: 1) activation,
2) recruitment, and 3) spatial organization in the tissue.

Monocyte/Macrophage Activation
Monocytes and Macrophages show high plasticity and
heterogeneity in regard to their activation phenotype, which is
determined by environmental cues. Depending on the cytokines,
PAMPs and damage associated molecular patterns (DAMPs) in
their environment, they can acquire different functions driven by
both innate and adaptive immune responses. When exposed to
cytokines such as IFN-g and TNF these cells acquire a pro-
inflammatory phenotype (or “M1-like”) and are able to produce
high levels of iNOS, ROS, and cytokine and chemokine
production such as TNF, CXCL9 and CXCL10. When
activated by IL-4 and/or IL-13 they are associated with a
wound-healing function (or “M2-like”). In this case these cells
express molecules such as Relma, Ym1, CCL24 and Arg1. If
activated by immunocomplex or PGE2 these cells can play a
suppressive function by producing high levels of anti-
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inflammatory cytokines such as IL-10 (200, 213, 214). Therefore,
in the context of Th1 immunity these mononuclear cells,
activated by IFN-g to produce NO can control Leishmania
growth (70, 78, 215, 216). Higher iNOS expression from skin
biopsies from patients with American cutaneous disease has been
associated with LCL and smaller number of parasites comparing
to patients with DCL and higher parasite burden in the lesions
(217). On the other hand, the expression of host cell Arg1 in
highly Th2 polarized immune responses, such as infection of
BALB/c mice, has been associated with parasite replication
and susceptibility (59, 218, 219). Importantly, in a context of
cutaneous leishmaniasis embryonic-derived macrophages, due to
close cluster interaction with eosinophils, and discussed in more
detail below, show a wound-healing phenotype despite the
overall polarized Th1 immune response in the dermis (212).

In the context of Leishmania infection, monocytes, and both
embryonic and monocyte-derived macrophages can also be
suppressed by IL-10, which compromises the induction of
effector mechanism, such as TNF, ROS and NO production,
facilitating parasite growth or persistence (43, 201, 220–222).
Most of the anti-inflammatory functions associated with IL-10 is
associated with STAT3 signaling. STAT3 can induce the
production of proteins that suppress the expression of several
pro-inflammatory genes such as the suppressor of cytokine
signaling 3 (SOCS3) and can inhibit NF-kB translocation by
inducing IL-10 production (223), In addition, STAT3 can cross-
regulate STAT1 signaling, the key transcription factor associated
with IFN-g activation. Depending on the experimental model,
STAT3 can interfere with STAT1 tyrosine phosphorylation or
can promote STAT1 sequestration, by binding to STAT1
forming STAT1-STAT3 heterodimers, which inhibits the DNA
binding of STAT1 homodimers (224). The production of IL-10
by phagocytic cells during Leishmania infection is associated
with ab-opsonized amastigotes, through binding to FcgR,
inducing ERK1/2 activation, leading to IL-10 production (221,
225, 226). In addition, both Tregs (CD4+CD25+FoxP3+) as well as
Th1 (CD4+CD25-FoxP3-T-bet+IFN-g+) cells have been described
as important sources of IL-10 during L. major and L. donovani
infections (227, 228). Importantly, the lack of IL-10, however, is
not enough to revert the susceptibility phenotype seen in C57BL/6
mice infected with L.a., despite the stronger Th1 immune response
(43, 221, 229).

During in vivo infections by L.a. parasites, a mix of different
CD4 T cell responses is observed (Th1, Th2), in addition to the
presence of other cell types such as NK cells and ILC2, which can
produce IFN-g or IL-4 for instance (212, 230, 231). Thus, in
addition to mononuclear phagocytic cells presenting highly
differentiated M1-like or M2-like phenotypes in the skin
lesions, the same cells, often simultaneously, express iNOS and
Arg1, indicating that they are activated by diverse stimuli (Figure
3C) (43, 232). In fact, during L.a. infection most iNOS+ cells are
also Arg1+ cells, even in a context of a Th1 prone environment
(43), which could potentially prevent, in a single cell-manner,
robust NO production by these cells, as previously described for
L.m. infection (232). Our group also showed that infection of
STAT6 deficient mice on the C57BL/6 background was
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associated with an almost complete abrogation of Arg1
expression by phagocytic cells, but this did not restrict parasite
growth. Rather, by upregulating genes associated with L-arginine
uptake and its own arginase versus WT infected mice, L.a. do not
rely on host arginase to acquire polyamines, which is probably
also true for other parasite species (43). For instance, in contrast
to BALB/c infected mice, L. major growth in C57BL/6 mice also
occurs independently of host Arg1 expression (233).

Adaptive-Innate Cross Talk and Its Impact
on Infection
The idea of a weaker Th1 immune response during L.a. infection
compared to L. major infection has been implicated as a cause of
susceptibility (230, 234). However, this weaker Th1 immunity
appears to be dose and/or route of infection dependent, as,
following intradermal infection with lower doses, this
phenotype is not readily apparent (43, 235). In addition, we
and others have shown that the enhancement of Th1 immunity
does not translate into a protective phenotype, despite the strong
induction of iNOS expression by phagocytic cells (43, 79, 229,
236). There is no doubt that IFN-g do mediate parasite killing
during L.a. infection, however, the exponential parasite growth
observed during early stages of the disease is not impacted by the
absence of IFN-g (43, 44, 236). We propose that, rather than
eliciting a weak Th1 response or compromising the induction of
this response, L.a. parasites have evolved to actually take
advantage of some aspects of the otherwise protective type I
immune response to establish a chronic and progressive disease
(Figure 4). IFN-g, the key cytokine produced by Th1 cells,
modulates immunity through different ways, such as inducing
effector mechanisms (NO/ROS production) in innate cells, but
also by influencing immunometabolism, leukocyte trafficking,
apoptosis and cell proliferation, to name a few (237). Two
properties of IFN-g function can favor L.a. growth: 1) it’s
influence on cell metabolism and 2) leukocyte trafficking to
skin lesions. When BMDMs are pre-activated with low doses
of IFN-g, and then infected with L.a. amastigotes in vitro, an
enhancement in parasite replication, rather than their killing is
observed. In this case, IFN-g mediate CAT-2B up-regulation by
BMDMs, increasing, therefore, the availability of this amino acid
for Leishmaniametabolism (60, 61). In addition, IFN-gmediates
the production of chemokines such as CCL2, CCL5, CXCL9 and
CXCL-10 (44), significantly increasing leukocyte trafficking to
sites of inflammation. In the context of L.a. infection, the
influence of IFN-g on monocyte recruitment has a large impact
by providing host cells for parasite growth, as discussed below.

Monocyte Recruitment
The observation that equivalent numbers of L.a. infected cells are
seen in lesions of STAT6-/- mice compared to Wt mice, despite
strong Th1 immunity, greater frequencies of iNOS+ phagocytic
cells, and the absence of Arg1 expression is explained by an
enhanced monocyte infiltration and IL-10 production. The
opposite is found in ifng-deficient settings, where a lack of a
Th1 response during the early phases of infection leads to a Th2
polarized environment but no enhancement of parasite numbers
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due to a lack of Th1-mediated monocyte recruitment (43). These
data show how important the recruitment of permissive
monocytes to the site of infection can be, which has been
shown in different contexts for other Leishmania parasites as
well (208, 211). In fact, emergency hematopoiesis, a process that
facilitates the expansion of hematopoietic stem cells (HSCs) and
myeloid progenitor cells (MPCs) is stimulated by systemic
infection with L. donovani and is largely associated with the
expansion of Ly6Chi monocytes rather than neutrophils, thereby
providing a robust and ongoing supply of infiltrating monocytes
that are permissive to infection (209). When in the tissue,
monocytes differentiate into macrophages (mon-Macs) or DCs
(mon-DCs), a process that takes time (Figure 3A). The different
environmental cues, in different experimental models, associated
with monocyte differentiation towards either mon-Macs or mon-
DCs are still not completely understood. IL-4, TNF and GM-CSF
has been associated with a mon-DC phenotype (238, 239) while
IL-6 and M-CSF with a mon-Mac phenotype (240). If present
during early stages of monocyte differentiation, IFN-g, by
Frontiers in Immunology | www.frontiersin.org 14
modulating IL-6 expression and M-CSF expression and
internalization, can shift human monocyte differentiation, in
vitro, from a DC to a macrophage phenotype, even in the
presence of IL-4 and GM-CSF (241). In addition, germ-free
mice, under steady state, present lower numbers of mon-DCs in
the dermis, but the same number of mon-Macs comparing to
specific pathogen free mice, showing that the microbiota also
influences monocyte fate in the skin (197).

Employing a tamoxifen inducible CCR2-Cre lineage tracing
strategy we found that maturation from a circulating CCR2+

Ly6C+ phenotype to a CCR2-Ly6C-CD11c+ DC phenotype
requires approximately 2 weeks, during which the majority of
maturing monocytes provided a safe niche for parasite replication,
despite the Th1 immune response, likely as a result of L.a.-infection
induced manipulation of cell activation by enhancing IL4R, MR and
PDL2 expression on infected versus uninfected monocytes from the
same dermal site of infection (43). While Mon-DCs represent the
cell phenotype that is most efficient at restricting L.a. growth and
adopts an MHC+PDL2- phenotype, even these cells can be found to
FIGURE 4 | Dynamic of monocyte and monocyte derived cells during an ongoing adaptive immune response against L.a. infection: recruitment, activation and cell
clusters. Infected monocytes (A) and CXCR3+ Th1 cells (B) produce CXCL9 and CXCL10 facilitating continuous recruitment of permissive immature inflammatory
monocytes (C) that provides a niche for ongoing infection (D) and possibly favors the formation of monocyte-Th1 cell clusters. After infection, mon-Macs mediate
some parasite killing when activated by IFN-g (E); but when activated simultaneously by IFN-g and Th2 cytokines (F) or by Th2 cytokines alone (G) support parasite
replication. Infected monocytes can also be suppressed by IL-10, while receiving signals from IFN-g and/or Th2 cytokines, which also favors parasite replication (H).
Mature mon-DCs are more efficient at restricting parasite growth versus mon-Macs but this developmental program takes 7-14 days (I). Embryonic derived resident
macrophages due to CCL24 production, cluster with eosinophils, which are an important source of IL-4 and IL-10 (J). Created with BioRender.com.
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harbor viable parasites, which has been shown for other pathogens
(43, 184, 242). Importantly, permissive monocyte recruitment is
mediate by IFN-g produced by Th1 cells, as depletion of CD4+ T
cells abrogated virtually all IFN-g mRNA from the lesion site 21
days post-infection. Lastly, the monocytes and monocyte derived
cells, recruited after the development of Th1 immunity, which
coincide with parasite exponential growth, represent the host cells
that harbor higher numbers of amastigotes, in contrast with the cells
recruited during the innate phase of the disease and that are further
along in their maturation (43). Altogether, these data suggest that
L.a. parasites have evolved through evolution to subvert this
property of Th1 immunity to facilitate infection. This represents
one of the strongest examples of the paradox of a phagosomal
lifestyle, where L.a. parasites evolved to depend upon monocyte
recruitment mediated by IFN- g to provide a permissive niche
for replication.

Tissue Spatial Organization
During infection with the non-healing Seidman or Ryan strains
of L. major, embryonic derived RTMs, via close interactions with
IL-4 producing eosinophils, maintain anM2-like, wound healing,
activation state, despite highly polarized Th1 immunity at the site
of infection, providing a perfect niche for replication (135, 212). In
addition, monocytes and monocytes derived cells represent the
majority of phagocytic cells responding to Th1/Th2 cytokines
during infection with either the L.a. or L.m. (healing Fn) strain (43,
232). In CCR2 deficient mice, a huge deficit in the number of
phagocytic cells with either a iNOS+ or Arg1+ phenotype strongly
support the idea that monocytes and monocyte-derived cells are
the cells either directly interacting with T cells or that are in close
enough proximity to become activated by the T cell cytokine
gradient (43). Specifically, Th1 CD4 T effector cells can mediate
protection by interacting with only a fraction of infected cells, as a
gradient of IFN-g can reach and activate phagocytes that are not
directly interacting with T cells to promote pathogen control.
Furthermore, to reach an effective killing activity a certain
threshold of phagocytic cells expressing iNOS might be
necessary, where due to the diffusion capacity of NO through
membranes, non-activated host cells are also able to kill the
parasite (75, 243). In addition, dermal L.a. infected monocytes
(43), as well as Th1 effectors cells, produce and are chemoattracted
by the chemokines CXCL9 and CXCL10 (244, 245), which might
favor cluster formation between these cell types (Figure 4). Lastly,
the migratory capacity of Th1 and Th2 cells in the skin is different.
Th2 cells, by expressing higher levels of the integrin aVb3, can
undertaking a broader “scanning” phenotype in the tissue and
interact with more cells, compared to Th1 cells, which are more
dependent on chemokine gradients to migrate (246).

We can speculate that ontogeny plays a role in the formation
of phagocyte-T cell clusters, as embryonic derived RTMs are less
mobile, while both monocytes and T cells migrate to the site of
infection via the bloodstream, which may favor cluster formation
between these cells. Clusters of embryonic derived RTMs
associated with local skin nerves and clusters between T cells
and monocytes during skin contact hypersensitivity has also
been reported showing that the tissue spatial organization
influences physiological and immunological events (247, 248).
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These relatively new data strongly support the idea that cell
clusters among different cell subsets at the site of infection plays a
major role on the outcome of disease, creating an opportunity for
specific niches that facilitate pathogen growth or killing.
CONCLUDING REMARKS

In a context of evolutionary host-parasite interactions the host
must evolve and adapt to virulence factors associated with the
pathogens, while the parasites have to evolve and adapt to the
host-immune response. Phagosomal pathogens, such as
Leishmania, have adapted to survive and replicate inside the
innate cells that are recruited to eliminate them, representing a
challenge for effective intervention. Innate effector mechanisms,
for reasons discussed in this review, are not enough to eliminate
Leishmania parasites and that creates an opportunity for the
parasite to establish a niche for replication before the induction
of Th1 adaptive immunity. During infection with the self-healing
L. major strain, the development of Th1 immunity is enough to
induce protection. However, in the context of L. amazonensis
infection, Th1-dependent monocyte recruitment provides an
opportunity for the parasite to replicate inside recently recruited
immature monocytes and, while IFN-g activation does ultimately
provide some parasite killing, these infected cells are also
responding to other environmental cues that are not associated
with parasite elimination (Figure 4). The use of reporter parasites
in-vivo has been instrumental in revealing the characteristics of
infected monocytes and, while these cells eventually adopt
characteristics of macrophages or DCs, to a certain degree they
represent unique populations of monocyte-derived phagocytes
that are more defined by their infection status rather than a
classical macrophage or DC phenotype. Mechanistically reaching
a subtle balance between monocyte recruitment by modulating the
Th1/Th2 immune response to allow parasite killing while not
providing a permissive host cell reservoir might represent one of
the current big challenges in the field that could potentially lead to
a vaccine or improvement of therapy.
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