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Glioblastoma is the most common and lethal primary brain malignancy. Despite major
investments in research into glioblastoma biology and drug development, treatment
remains limited and survival has not substantially improved beyond 1–2 years. Cancer
stem cells (CSC) or glioma stem cells (GSC) refer to a population of tumor originating cells
capable of self-renewal and differentiation. While controversial and challenging to study,
evidence suggests that GCSs may result in glioblastoma tumor recurrence and resistance
to treatment. Multiple treatment strategies have been suggested at targeting GCSs,
including immunotherapy, posttranscriptional regulation, modulation of the tumor
microenvironment, and epigenetic modulation. In this review, we discuss recent
advances in glioblastoma treatment specifically focused on targeting of GCSs as well
as their potential integration into current clinical pathways and trials.

Keywords: glioblastoma stem cells, glioblastoma, cancer vaccination, radioresistance, tumor recurrence, cancer
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INTRODUCTION

Glioblastoma (GBM), a World Health Organization grade IV astrocytoma, is the most common
primary brain malignancy with an incidence of 3.22:100,000 annually in the U.S (1). Despite
standard of care treatment with maximal surgical resection, radiotherapy, adjuvant temozolomide
(TMZ) chemotherapy, and tumor-treating-fields, median survival is still only 14.6 months (2), and
nearly all patients succumb to fatal tumor recurrence and progression, with a <5% 5-year overall
survival (OS).

The lack of improvement in GBM outcomes may be attributed, in part, to current therapies’
inability to target glioma stem cells (GSCs), a small subpopulation of cells that are implicated in
tumor invasiveness, recurrence, and chemo(radio)resistance. The GSC population remains
challenging both to define empirically and treat. GSCs are described by their ability to self-renew
and differentiate to reform the heterogeneity of GBM (3). Multiple strategies to target GSC are
currently under investigation with varying levels of preclinical and clinical development (4). In this
review, we discuss the evidence supporting GBM’s common stem cell origin and outline the
limitations of standard of care treatment for GBM. We then explore immunotherapeutic targeting
of GSCs and highlight ongoing clinical trials.
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GLIOBLASTOMA AND THE CANCER
STEM CELL MODEL

GBM development originally was defined by two divergent but
interconnected models, namely, the stochastic model and CSC
model. The stochastic or clonal evolution model suggests that all
cells have the equal capacity for undergoing transformation
based on accumulated mutations and/or epigenetic changes
that confer a survival benefit (5). The CSC or hierarchical
model suggests that a limited number of stem-like cells with
few tumorigenic driver mutations have the capacity to divide
symmetrically into identical daughter cells and differentiated
progeny resulting in self-renewal and heterogeneous tumor
progression (6–9). Bonnet and Dick’s seminal discovery of
CSCs in leukemia, and subsequent discoveries of CSCs in most
hematologic and solid tumor malignancies, including breast,
colon, and some skin cancers greatly promoted the acceptance
of the model (10–18). While CSCs mirror many of the features of
normal stem cells, such as lineage determinization, resistance to
apoptosis, neoangiogenesis, and self-renewal, they are distinct
entities capable of tumorigenesis defined by few genetic
mutations and altered epigenetic regulation (19–21). In the
convergence of the stochastic and CSC models (22),
differentiated cells can be transformed (23) and subsequently
acquire a stem-like state (24), although some cell types such as
neurons and their immediate precursors appear to be resistant to
such mutations (25).

While the CSC hypothesis provides a compelling model for
many cancers, attempts to define CSCs based on a set of genetic
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markers, epigenetic makeup, or cell state (e.g., quiescent or
proliferative) have not reproducibly supported the isolation of
fully competent CSCs. Three functional tests that are considered
the gold standard for validating CSCs are: 1) self-renewal, 2)
tumor initiation upon transplantation, and 3) differentiation into
distinct progeny that can recapitulate the initial tumor’s
heterogeneity upon serial transplantation (3). Regulation of the
CSC population in vitro has depended on multiple molecular
mechanisms, genetics, epigenetics, cellular states, intrinsic cell
stimuli, microenvironmental influences, and other factors (7, 11–
13). These mechanisms potentially allow the CSC population to
transition between CSC and non-CSC states.

GSCs were first studied in 2002 (26), and were found to
localize to a vascular niche (27). They are thought to arise from
cells of the subventricular zone (SVZ) or differentiated glioma
cells (28). Several markers of GSCs, namely, CD133, CD44, and
CD15, help to define and enrich these population of cells but are
not specific (3) (Figure 1). Recent single-cell sequencing studies
have revealed that astrocyte-like neural stem cells with driver
mutations migrate from the SVZ and lead to the development of
high-grade gliomas in distant brain regions (28). This has
provided precedent for radiotherapy targeted at high doses at the
SVZ (National Clinical Trial [NCT] 02177578, NCT03956706).
Another recent study demonstrated, via a xenotransplant model,
the potential for slow-cycling cells to form rapidly cycling
progenitor cells capable of self-maintenance and generation of
non-proliferating progeny (29). These results are consistent with
the CSC model suggesting that GBM tumor heterogeneity may
result from a mono- or polyclonal tumor origin (30–32).
FIGURE 1 | Characterization of glioma stem cells Various required functional characteristics of cancer stem cells (CSCs) and glioma stem cells (GCSs) are shown
including self-renewal, proliferation, and initiation. Common characteristics include low frequency within a tumor, stem cell marker expression, and potential for
differentiation. Reprinted with permission from Lathia et al. (3).
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CONTROVERSY

While there is evidence that supports GSCs involvement in GBM’s
genesis, progression, and recurrence, there are several roadblocks
to studying this cell population. First, stem cells are regulated in a
multitude of ways, including genetic and epigenetic modifications,
metabolic changes, cell responses to the immune system,
microenvironment, and niche factors (3, 4, 33). These regulatory
mechanisms result in a highly dynamic pool of cells which are
therefore difficult to define and target. Additionally, the stem-like
phenotype is mutable and in-vitro techniques may induce
differentiation of the cells making them increasingly difficult to
study. For the studies that have investigated, there are not
consistent methods to define and isolate the physical
characteristics of GSCs, so it is difficult to find consensus in the
scientific community with regards to their role in GBM. Finally,
CSCs in general are rare within the tumor mass (34), casting doubt
upon the role they might play in tumor genesis, progression,
and recurrence.

Despite the challenges of studying GSCs, there is hope that
more advanced techniques, such as single cell sequencing, are
elucidating some of the mysteries of these cells. One study by
Patel et al. (2014) utilized single cell sequencing technology to
investigate 430 cells in each of 5 GBM tumors, and elucidated a
stem-like population of cells which existed within a stemness
gradient (35). Further, a recent study by Couturier et al. (2020)
used single cell RNA sequencing and discovered that in 16
IDHwt glioblastomas there was a GSC cell type with a distinct
transcriptomic signature (36). While GSCs have historically been
difficult to define, emerging technologies and findings are
furthering the hypothesis that GSCs may be a worthy target in
researching GBM therapeutics.
LIMITATIONS OF CURRENT
GLIOBLASTOMA TREATMENTS

Current therapeutic treatment remains limited for GBM and
multiple resistance mechanisms for GCS may partially account
for this. Subclonal populations of cells left behind after gross total
resection result in tumor recurrence and resistance (31). GSCs
have the potential to maintain a quiescent cell cycle phenotype,
rendering many chemotherapeutic agents ineffective. GSCs
primarily reside within perivascular niches, where components
of the extracellular matrix (ECM) modulate GSC survival and
function. Several components within the ECM, like hyaluronic
acid and the dystrophin–glycoprotein complex (DGC), have
been shown to contribute to resistance and promote invasion
(37–39). In addition, CSCs overexpress ATP-binding cassette
(ABC) transporters that pump foreign toxins out of the cell,
conferring multidrug resistance (40). Cells that express CD133, a
cell surface marker highly associated with GSCs, have been
shown to express O6-methylguanine-DNA methyltransferase
(MGMT) at levels 32–56 times those of CD133(−) cells (41).
The high activity of MGMT in these cells helps explain TMZ’s
Frontiers in Oncology | www.frontiersin.org 3
relative ineffectiveness against GSCs (42). By inducing expression
of hypoxia-inducible factors, such as HIF1a and HIF2a—itself
associated with poor prognosis for glioma patients (42)—TMZ
may induce stemness in differentiated glioma cells (43).
Resistance to radiation is also seen in GCSs, where a high ratio
of GSCs to differentiated tumor cells correlates with increased
tumor radioresistance (44), and CD133(+) cells have been
reported to be resistant to apoptosis induced by in vitro
radiotherapy (45). Hypoxic microenvironments preferentially
contribute to GCS growth, which can reduce oxidative-stress
produced by radiation (46). GSC radioresistance is also conferred
by both the hypoxia-mediated activation of DNA damage
checkpoint response enzymes Chk 1/2 (47) as well as by
induction of autophagy to process and eliminate constituent
parts of cells damaged by radiation (48).
TARGETED THERAPY OF GSCS

Scientists have attempted to target GSCs through a multitude of
avenues (Figure 2). Small molecules which activate or inhibit
common, upregulated pathways in this cell population associated
with their resilience. Targeted pathways are those that, when
disrupted, result in chemo- and radiosensitization, tumor growth
inhibition, induction of differentiation, inhibition of multidrug
resistance, and promotion of apoptosis. Some of these pathways
include STAT3 (49), Notch (50), PI3K/Akt/mTOR (51, 52), and
Hedgehog (53). There are many pathways that contribute to the
resilience and tumorigenicity of GSCs, and the dominant driver
pathways vary from patient to patient. Because of this, finding a “one
size fits all” small molecule solution is unlikely. Difficulties associated
with chemotherapeutic approaches to treat GBM highlight the need
for a new generation of cancer therapy, and immunotherapy
presents an alternative that addresses these shortcomings.
IMMUNOTHERAPY: THE FUTURE OF
GSC TREATMENT?

The body prevents neoplastic proliferation primarily via the immune
system. However, GBMs are known to exert immunosuppressive
effects systemically and in the tumor microenvironment through a
combination of decreased immunogenicity and active suppression of
T cells that exceeds the immunosuppressive capacity of non-stem
glioma cells (54, 55). Immunotherapy is a highly specific GBM
treatment modality that may overcome the immunosuppressive
effects of GBM generally, and GSCs in particular, through the
introduction of monoclonal antibodies (mAb) or stimulation of
the patient’s own immune response. These approaches may induce
fewer side effects than other oncolytic methods which are less precise
in their action.

Cancer immunotherapy approaches can be primarily
categorized as passive, active, or adoptive (Figure 3). Passive
immunotherapy uses antibodies to target tumor specific antigens
February 2021 | Volume 11 | Article 615704

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Piper et al. Glioma Stem Cell Immunotherapy Review
and often doesn’t require a host immune response to initiate
cancer cell death. Active immunotherapy activates the host’s
immune system against tumor specific antigens, most often
utilizing dendritic cells as antigen presenters. In adoptive
immunotherapy, immune cells are removed from the patient,
selected or genetically engineered for their reactivity against a
target of interest, and reintroduced. Finally, many consider
virotherapy a form of immunotherapy due to the activation of
the immune system. Virotherapy makes use of genetically
engineered oncolytic viruses to train the body’s immune
system against remnant cancer particles following virus-
mediated killing.

Radiation therapy used as a complement with immunotherapy
is an exciting and promising avenue to explore in the management
of GBM. For example, radiation has been shown to cause
immunogenic tumor cell death (ICD). ICD induces the
translocation of calreticulin to the surface of the tumor cells
surface, causing APCs to phagocytose tumor cells. ICD also
promotes the release of HMGB1, encouraging dendritic cell
maturation and tumor antigen presentation (56). Radiation can
also enhance the permeability of the blood-brain barrier, which
may allow T-cells to invade the tumor. Furthermore, radiation has
Frontiers in Oncology | www.frontiersin.org 4
been shown to drastically increase the presence of MHC on the
tumor cell surface providing greater density of T-cell targets (57–
60). The various potential benefits presented by the combination
of radiation and immunotherapy have spurred immense interest
in the field.

In this section, we will discuss immunotherapy clinical trials
which target GSC-specific and GSC-overexpressed targets with a
focus on ongoing clinical trials (Table 1).
Passive Immunotherapy
Passive immunotherapy utilizes antibodies to bind to
oncomodulatory signaling molecules or target proteins on
cancer cells and disrupt cellular function without producing a
memory immune response in the patient. The most significant
improvement in standard of care treatment in the United States
recently has been the addition of the monoclonal antibody
bevacizumab, or Avastin, which was granted accelerated
approval by the FDA in 2009 (61). Bevacizumab targets
vascular endothelial growth factor (VEGF), a signaling
molecule that promotes angiogenesis and is secreted in high
quantities by GBM cells. While bevacizumab has improved the
FIGURE 2 | Methods of targeting glioma stem cells. Methods of targeting glioma stem cells (GSCs) can be divided into treatments targeting epigenetic regulation,
metabolic pathways, microenvironment, post-transcriptional regulation, and immunotherapy. Within immunotherapy, strategies can include immunomodulatory drugs,
oncolytic viral targeting, as well as passive, active, and adoptive immunotherapy approaches. Reprinted with permission from Gimple et al. (4).
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progression free survival (PFS) of patients with GBM, it has
failed to improve OS. GSCs are notoriously resistant to hypoxia
and may therefore persist despite the additional therapeutic,
contributing to inevitable recurrence (62).

Epidermal growth factor receptor (EGFR) is molecular target
overexpressed in GSCs which confers chemo- and radioresistance
in GBM tumors, resulting in poorer outcomes among GBM
patients (63). The EGFR-targeting mAbs nimotuzumab and
cetuximab have been shown to reduce the total number of
radioresistant CD133(+) cancer stem cells in a murine glioma
model (64). Nimotuzumab alone demonstrates antiangiogenic and
antiproliferative activity while cetuximab inhibits downstream
EGFR signaling, resulting in tumor radiosensitization. The co-
administration of these drugs delayed tumor growth, decreased
brain tumor sizes, inhibited invasion, and promoted tumor cell
apoptosis. The synergistic effects of these monoclonal antibodies
makes the case for further investigation of combination therapies,
Frontiers in Oncology | www.frontiersin.org 5
especially given the well-documented resistance developed by GBM
tumors to individual anti-EGFR mAbs which are frequently
rendered ineffective by extracellular EGFR mutations (65, 66).
This limitation has been evidenced in clinical trials when, used in
combination with standard of care treatment, nimotuzumab failed
to demonstrate significantly improved PFS or OS in 142 patients
with newly diagnosed GBM (NCT00753246) (66). Cetuximab is
now being assessed in a phase I/II clinical trial in combination with
bevacizumab (NCT01884740). There are currently nearly two
dozen trials testing the efficacy of bevacizumab in combination
with another treatment against GBM (67).

EGFR variant III (EGFRvIII) is a constitutively active mutated
form of EGFR that is highly expressed in many GBM tumors
(68). Though not specific to GSCs, it is significantly co-expressed
with CD133 (69) and promotes a stem-like phenotype in GBM
cells. It has been targeted for antibody therapy in combination
with radiation and chemotherapy. Although the anti-EGFRvIII
FIGURE 3 | Basic schema of the main immunotherapeutic modalities for targeting malignancies. In passive immunotherapy (A), antibodies are developed which
bind specific tumor antigens and induce cellular-mediated phagocytosis or complement membrane attack complex-mediated cell death. In active immunotherapy
(B), mononuclear cells are isolated from the patient’s blood then incubated with synthetic or biopsy-derived tumor antigens and activated before being transfused
back into the patient in order to facilitate an anti-tumor T cell immune response. In adoptive immunotherapy (C), either tumor-infiltrating T cells are isolated from
tumor biopsy, selected for their reactivity, and then transfused into a lymphodepleted patient, or T cells are isolated from blood, virally transduced to express a
chimeric antigen receptor (CAR), and then transfused into a lymphodepleted patient.
February 2021 | Volume 11 | Article 615704
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antibody rindopepimut showed promising results in phases I and
II (70, 71), its large international phase III trial, ACT IV, was
discontinued after interim analysis did not demonstrate survival
benefit (72).

While monotherapies have stumbled in clinical studies,
bispecific antibodies (bsAb) and novel technologies have
shown promise in bolstering the anti-GSC effects of passive
immunotherapies. A bispecific antibody against CD133 and
EGFRvIII was demonstrated to be highly cytotoxic against
GSCs (but not NSCs) and significantly more effective in
prolonging OS in mice as compared to CD133 or EGFRvIII
mAbs alone (69). Though it has yet to be validated in human
studies, these bispecific antibodies’ increased specificity may
confer greater anti-GSC effects and decreased toxicity than
monotherapies (73, 74). Near-infrared photoimmunotherapy
(NIR-PIT) is another novel technology that has the potential
to improve the anti-GSC effect of monoclonal antibodies. NIR-
PIT involves administration of monoclonal antibodies tagged
with photoactive molecules (commonly IR700 dye) followed by
near-infrared irradiation. Photoactivation of these antibodies
results in specific and robust cell death via cellular membrane
damage. Jing et al. demonstrated that CD133-targeted NIR-PIT
induced rapid cell death of CD133(+) GSCs in vitro and in
orthotopic GSC tumor mouse models (75). Importantly, the
ability to administer this non-harmful irradiation through the
skull suggests that NIR-PIT may present a safe treatment method
in humans.

While research into GSC-specific passive immunotherapy is
sorely lacking, additional research is warranted given their
demonstrated superiority to bulk tumor-targeting mAbs in
preclinical applications. New antibodies which can eliminate
chemo(radio)resistant GSC populations, such as one against anti-
apoptotic protein CD47, are being developed constantly and warrant
optimism (74). Given their ability to target a variety of pathways, and
their general tolerability in humans, GSC-specific passive
immunotherapies may be utilized as safe and effective adjuncts to
more aggressive chemo- or immunotherapeutic approaches.
Frontiers in Oncology | www.frontiersin.org 6
Active Immunotherapy
Both dendritic cell (DC) vaccines and antibody-mediated T cell
immunotherapies rely on the activation of host immunity in order
to target specific cancer cells. These approaches have demonstrated
safety and efficacy for treatment of GBM in both preclinical and
clinical trials (76). Given the success of these trials, researchers are
utilizing active immunotherapeutic approaches to eliminate chemo
(radio)resistant GSC subpopulations. These GSC specific therapies
work via two primary mechanisms: 1) promotion of a broad
immunity against GSCs by GSC lysate-pulsed DCs and 2)
activation of immunity against specific GSC antigens by synthetic
peptide/RNA/mRNA-pulsed DCs.

Promoting immunity against GSC lysate trains the immune
system against any antigens associated with GSCs. Murine
models which utilize this technique have highlighted the
potential for anti-GSC DC vaccines and have served as the
basis for multiple clinical trials. Dendritic cells pulsed with
GSC tumor lysate have shown to be highly effective at
preventing viability of murine GBM tumors grown as both
neurospheres (which preferences GSC growth) (77), and have
elicited specific T cell responses against GSCs and improved OS
in xenografted mice (78). Allogenic GSC lysate-loaded DCs are
now being tested in multiple clinical trials (NCT02010606
and NCT01567202).

Other groups are utilizing patients’ surgical specimens to
culture tumor-initiating GSCs and train autologously derived
dendritic cells (NCT03400917). Along with GSC lysate, it is also
possible to extract mRNA from patient derived GSCs and produce
personalized vaccines. One phase I trial, NCT00846456,
demonstrated the safety of this approach as well as a nearly
three-times longer PFS compared to matched controls (78).

Much effort has been taken over the past three decades to
define GSC specific peptides in order to decrease the risk for off-
target effects, and numerous clinical studies are now assessing the
effectiveness of DC vaccines which target peptides that are highly
expressed in GSCs. One phase III clinical trial, NCT02546102,
which was suspended in 2017 for inadequate funding showed
TABLE 1 | Ongoing immunotherapy clinical trials targeting glioma stem cells (GSCs).

Trial name Therapy type Target Combination Phase
(O-III)

ClinicalTrials.gov
Identifier

AVeRT DC vaccine pp65 Nivolumab I NCT02529072
DENDR-STEM DC vaccine Autologous GSCs I NCT02820584
IL13R⍺2 CAR T cell therapy CAR T cell IL13R⍺2 Ipilimumab,

nivolumab
I NCT04003649

Allogeneic GSC lysate DC
vaccine

DC vaccine Allogeneic GSC lysate SOC I NCT02010606

HERT-GBM CAR T cell HER2, pp65 I NCT01109095
Autologous GSC lysate DC
vaccine

DC vaccine Autologous GSC lysate SOC II NCT01567202

SurVaxM Antibody mediated T cell
therapy

Survivin TMZ, GM-CSF II NCT02455557

ELEVATE DC vaccine pp65 Td, basiliximab,
TMZ

II NCT02366728

ATTAC-II DC vaccine pp65 TMZ II NCT02465268
AV-GBM-1 DC vaccine Autologous tumor-initiating cellular

antigens
II NCT03400917

DEN-STEM DC vaccine GSC antigens, hTERT, survivin II/III NCT03548571
Febr
uary 2021 | V
GM-CSF, granulocyte-macrophage colony-stimulating factor; GSC, glioma stem cell; SOC, standard of care; TMZ, temozolomide; Td, tetrodotoxin.
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significant promise in early phases. DC vaccines were pulsed
with 6 synthetic peptides overexpressed in GSCs: HER2, TRP-2,
gp100, MAGE-1, IL13R⍺2, and AIM-2 and this therapy was
given in conjunction with standard of care chemo(radio)therapy.
Results from phase I of the trial suggested a powerful therapeutic
effect: median PFS in newly diagnosed patients treated with the
vaccine was 16.9 months and OS was 38.4 months, noticeably
exceeding historical standards (79). Five patients who underwent
a second tumor resection also demonstrated a decrease or absence
of CD133 expression in tumor tissue, suggesting the therapy may
have exerted GSC-selective cell death. Another phase I trial
(NCT02049489) demonstrated that a DC vaccine against
CD133 was well tolerated in a pilot group of 20 patients (80).

The phosphoprotein pp65, a product of human cytomegalovirus
(HCMV), is an interesting DC vaccine target. A large fraction of
clinically isolated CD133(+) cells are found to be positive for pp65,
and infection of GBM cells with HCMV in vitro causes an
upregulation of CD133, Notch1, Sox2, Oct4, and Nestin, and
promotes the growth of GBM neurospheres, suggesting that pp65
may play a role in stemness (81). The presence of HCMV in GBM is
a controversial topic, having been confirmed and denied by various
labs (82). Regardless, targeting HCMV products may show promise
in clinical trials.

Researchers at Duke University have a number of ongoing
clinical trials investigating the effectiveness of a pp65 RNA-
pulsed DC vaccine in combination with various other
treatments. One addition being tested is that of anti-IL-2R⍺
antibodies which researchers hope will decrease Treg function
and improve the penetration of DC vaccinations. Early research
demonstrated that TMZ-induced lymphopenia enhances vaccine
responses but dramatically upregulates T-reg function. IL-2R⍺
therefore diminishes the T-reg response allowing for a more
robust anti-tumor effect (83). Interestingly, administration of IL-
2R⍺ antibodies depleted vaccine-induced immune responses in
mice without lymphopenia, but acted synergistically with TMZ
in mice experiencing TMZ-induced lymphopenia. These results
were confirmed in a pilot study with six patients and draw focus
to the importance of combination therapies which utilize tumor
debulking therapies like TMZ along with targeted therapies like
IL-2R⍺ antibodies and DC vaccines.

In a phase I trial (NCT00626483), the group combined a pp65
DC vaccine with basiliximab, another anti-IL-2R⍺ antibody (84).
Initial results from phase I of the trial demonstrated high
tolerability of the combination therapy but survival benefit was
not extrapolated at the time of data collection. After
demonstrating that pp65 RNA-pulsed DC vaccines with tetanus/
diphtheria (Td) toxoid pre-conditioning significantly increased
patient PFS and OS in a small pilot study (85), the group is
comparing the effectiveness of pp65 vaccine alone, with Td toxoid
pre-conditioning, and with both Td toxoid pre-conditioning and
basiliximab against newly diagnosed GBM after standard of care
treatment (ELEVATE; phase II; NCT02366728). The most
promising of the group’s trials combines the pp65 DC vaccine
with dose-intensified TMZ cycles (ATTAC; NCT00639639).
Preliminary results demonstrated more than double the OS and
triple the PFS as compared to historical controls (85). Notably,
Frontiers in Oncology | www.frontiersin.org 7
four patients remained progression-free at 59 to 64 months. Phase
II of this trial (NCT02465268) is currently underway. Finally, an
ongoing phase I trial (NCT02529072) is evaluating the
effectiveness of the pp65 vaccine in combination with the
programmed cell death 1 (PD-1) blocking antibody nivolumab.
In a fashion similar to anti-IL-2R antibodies, the inclusion of this
checkpoint inhibitor will hopefully antagonize GBM’s
immunosuppressive effects.

Another promising ongoing clinical trial is that of a trivalent
GSC-targeting DC vaccine which is now in stage II/III
(NCT03548571). Researchers at Oslo University Hospital are
targeting GSCs by administering DC vaccines transfected with
GSC mRNA along with the anti-apoptotic peptide survivin and
human telomerase reverse transcriptase (hTERT). Both survivin
and hTERT have been found to increase stemness in GBM and
are expressed in high levels in GSCs (86, 87). In a small
preliminary study of this therapy, median PFS was nearly three
times longer as compared to those receiving standard of care.

Monoclonal and bispecific antibodies are also being
investigated for their ability to activate T cell immune responses
against GSCs, and once again survivin is a promising target.
SurVaxM, a survivin vaccine, is being tested in combination
with TMZ and granulocyte-macrophage colony-stimulating
factor in a phase II clinical trial (NCT02455557). Initial results
warrant optimism: of 55 patients with newly diagnosed GBM
treated with the SurVaxM vaccine concomitant with standard of
care therapy, 96%were progression free at 6 months and 93%were
alive at 12 months, a substantial improvement over historical
controls of 43 and 41%, respectively (88). Survivin has also been
utilized along with peptides IL13R⍺2 and Ephrin-A2, a target
highly expressed in GSCs and responsible for self-renewal and
tumorigenicity (89). This trivalent vaccine was tested in a phase I/
II trial (NCT02078648) against recurrent GBM with or without
bevacizumab but demonstrated poor results, with median OS
around 11 months in both groups (90).

The recombinant bispecific antibody AC133CD3 targets T
cells and the CD133 epitope AC133, redirecting human
polyclonal T cells to patient derived AC133(+) GSCs, inducing
GSC lysis, and preventing the growth of subcutaneous GBM
xenografts (91). In tandem with CD8(+) T cell infusion, this
treatment has been demonstrated effective as both a prophylactic
and therapeutic treatment for orthotopic GSC-derived brain
tumors, while AC133(+) hematopoietic stem cells were
virtually unaffected by the therapy.

The successes of endogenous and virus-associated GSC
antigen-targeted therapies indicate that GSC antigens may
represent promising targets for various therapy modalities.
Caution must be taken, however, when considering early
clinical victories, particularly with antibody-mediated T cell
therapies. Some trials which demonstrated promise in phase I
and II have failed in phase III as they could not demonstrate
survival benefit. In the context of their established success in
recurrent GBM treatment, DC vaccines are a promising GBM
immunotherapy approach and preclinical and clinical results of
GSC antigen-specific and GSC lysate DC vaccine approaches
should motivate further investigation.
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Adoptive Immunotherapy
Adoptive immunotherapy utilizes a patient’s own immune cells
—whether selected or genetically modified for antitumor activity
—to combat the growth and spread of neoplasia. Both T cell and
natural killer (NK) cell therapies are of growing interest for
various cancers and are being utilized to target GSCs. Cytotoxic
T lymphocytes (CTL) can be used to target tumor-associated
antigens by being drawn from the patient, selected for their
existing antitumor specificity, and expanded ex vivo before
autologous reintroduction. CTL-mediated GSC targeting has
demonstrated promise in preclinical applications and small
human cohorts, but has yet to be put to test in a large clinical
trial. Chimeric antigen receptor (CAR) T cells, in contrast, are
genetically engineered to exert their cytotoxic effects against
specific antigens and have been extensively studied in the
context of targeting tumor-associated antigens in various types
of cancer. Though CAR T cell therapies have been successful
treating blood cancers—two different therapies were approved by
the FDA in 2017 for treatment of acute lymphoblastic leukemia
(92) and diffuse large B cell lymphoma (93)—they have shown
mixed results in targeting solid cancers. NK cell therapies are less
common and represent a promising, but largely theoretical,
avenue for targeting GSCs. NK cells broadly recognize
transformed cells, do not require activation by particular
tumor-bound antigens, and generally leave healthy cells
unharmed. Finally, CAR NK cells, like CAR T cells, are
genetically modified NK cells which target cancer-specific
antigens. Researchers hope to harness these technologies to
eliminate chemo(radio)resistant GSC populations while relying
on standard of care therapy to debulk tumors.

CAR T cells have been developed to target several GSC-
specific antigens. In a preclinical application of CAR T cell
therapies targeting GSCs, therapies have been developed
against the CD133 epitope AC133 (94). These AC133-specific
CAR T cells recognized and eradicated patient-derived AC133
(+) glioma stem cells in vitro and in mouse models and improved
OS in treated mice.

Non-GSC-specific peptides, which are also upregulated in
GSCs, have demonstrated some efficacy in killing GSC
populations. IL13Ra2 (95, 96), EGFRvIII (97, 98), and
chlorotoxin-based therapies (99) have all been shown to
eliminate both GSCs and bulk tumor cells in preclinical
experiments. An IL13Ra2 CAR T cell therapy is currently
being investigated in a phase I clinical trial alone and in
combination with two checkpoint inhibitors (NCT04003649).

Adoptive immunotherapies cannot always be easily
subcategorized. Some groups of researchers are investigating
technologies which utilize both genetic modification (i.e., CAR)
as well as selection of T cells based on reactivity to particular
antigens (i.e., CTL). A group at Baylor has an ongoing clinical trial
(NCT01109095) aiming to improve the efficacy of a human
epidermal growth factor receptor 2 (HER2) CAR T cell therapy
by selecting for cytotoxic T cells which recognize the human
cytomegalovirus (HCMV) protein pp65. The group has previously
demonstrated the efficacy of the HER2-targeted CAR T cells in
eliminating GBM cells irrespective of CD133 expression (100).
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Their inclusion of the pp65 target in this clinical trial is predicated
on the theory that anti-HCMV antibodies are present in most
human adults and thus this HCMV protein will cause persistent
activation of the CAR T cells. In addition to broadly activating the
CAR T cells, it is possible that this treatment preferentially targets
GSCs. As previously mentioned, HCMV has been shown to
increase stemness of GBM cells, and pp65 is preferentially
expressed in GSCs among infected tumors (81). Initial results
from the phase I study demonstrate that the approach is safe and
potentially effective (101). Eight out of the 16 patients enrolled
demonstrated objective response to the treatment. Three of the
patients demonstrated stable disease and were still alive 24 to 30
months, and longer, after T cell infusion.

Some groups also are investigating the HCMV protein pp65
as a target for CTL-mediated oncolysis. In one study, HCMV
pp65-specific CTLs were comparably cytotoxic against both
GSCs and differentiated cells both in vitro and in a mouse
model (102). Here, all GSC populations were eliminated in
vivo in an antigen-specific manner, indicating a potentially safe
method of attacking GBM. Two phase I/II clinical trials
(NCT01205334 and NCT00990496) which utilized pp65-
trained CTLs in patients with GBM were stopped due to poor
subject recruitment, though other groups are pursuing this
approach with promising preliminary results. The Duke group
pursuing multiple pp65 DC vaccination trials has also
demonstrated that training T cells with pp65-pulsed DCs
increases the polyfunctionality of CTLs in a cohort of 11
patients (NCT00693095), increasing OS (103). Another group
at MD Anderson is investigating autologous pp65-specific CTLs
following lymphodepleting doses of TMZ and found that the
therapy was well tolerated in a pilot trial of 12 patients (104).
Unfortunately, the group recently released results of their phase
I/II trial which demonstrated attenuated T cell functionality and
poor PFS (NCT02661282) (105).

Another peptide which is being utilized for CTL-mediated
cytolysis is that of SOX6, an immunogenic peptide is involved in
inhibition of neuronal cell differentiation and neuronal stem cell
maintenance (106, 107). It has been demonstrated that, due to
SOX6’s immunogenicity and upregulation in GSCs, human
leukocyte antigen (HLA)-A2, and -A24 restricted SOX6
derivatives are effective and safe targets for glioma CTL-
mediated cytolysis in mouse model (107). This target has yet
to be tested in a clinical setting but represents another avenue for
CTL therapies targeting GSCs.

Most adoptive GBM immunotherapy research has been
devoted to CAR T cell and CTL therapies as early research
suggested NK cells were ineffective against GBM (108–110).
However, in 2009, Castriconi et al. showed that allogeneic and
autologous IL-2 and IL-5-activated NK cells were effective in
killing human-derived GSCs (111), opening the door to further
investigations into lymphokine-activated NK cell therapy. Recent
research supports this finding and suggests that NK cell therapies
might be even more effective against GSCs than differentiated
cells, as GSCs were significantly more susceptible to NK cell-
mediated cytolysis than were cells grown in differentiation-
inducing media (112).
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Finally, CAR-NK cells have also been explored for their ability
to selectively target and eradicate GSCs. In 2015, a group from
The Ohio State University demonstrated that CAR-NK cells
targeting both EGFR and EGFRvIII effectively killed patient-
derived GSCs in vitro (113). They also demonstrated that EGFR
targeting CAR-NK cells significantly suppressed growth of
xenografted human-GSC tumors in mice and yielded double
the median lifespan compared to controls. Of note, the EGFR
targeting CAR-NK cells were more effective than non-modified
NK cells.

Preclinical insights for NK and CTL therapies warrant some
optimism, and clinical evidence that utilizing DCs to train CTLs
increases the treatment modality’s effectiveness supports further
research into this strategy. However, in the absence of clinical
evidence which demonstrates an improvement in OS or PFS,
hope for approaching advancements in adoptive GSC therapies
lies primarily with CAR T cells. Even these advancements,
though, will take patience. None of the three ongoing CAR T
cell clinical trials which target GSCs have yet to reach phase III,
and therefore clinical adoption is unlikely for a number of years.

Virus-Mediated Immunotherapy
A broad range of viruses have been explored for treating high
grade glioma (114), and the list continues to grow (115). These
viruses have demonstrated tropism for tumor cells resulting in
tumor cell lysis, recruitment of the immune system, and finally a
T cell mediated antiviral and antitumor response. This leads
to systemic immunity against the tumor and its recurrence
(116). Because of the interaction with the immune system,
some have classified the use of oncolytic viral therapies as an
immunotherapeutic approach. Clinical trials involving viral
immunotherapies against GBM have recently been reviewed
(117), and those which target GSCs in addition to bulk tumor
cells are listed in Table 2. Researchers have focused efforts on fine
tuning genetic modifications in viruses to specifically target
tumor cells and introduce cytotoxic transgenes. Transgenes
generally function by enhancing prodrug activation, inducing
apoptosis and immune activation, and in the case of GBM,
inhibiting angiogenesis. Investigators have utilized these features
to deliver short interfering (si)RNA and short hairpin (sh)RNA in
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order to downregulate cancer cell gene expression, or directly kill
GSCs. Lentivirus-mediated shRNA inhibition of Chk1/2, the stem
cell gene SirT1, and STAT3 have all been found to sensitize GSCs to
radiotherapy (45, 47, 118, 119). Clinical trials have had varying
success, and likemost therapies for GBM, clinical adaptation is slow.
To date, there are only two governmentally approved oncolytic
virus-mediated immunotherapies on the market, both of which
utilize herpes simplex virus vectors (120, 121).
DISCUSSION

The growing body of knowledge regarding GSCs’ role in
oncogenesis and tumor recurrence necessitates reevaluation of
conventional cancer assessment and treatment methods, as
lasting remission will likely remain elusive for many GBM
patients without the means of reliably detecting and extinguishing
GSC populations. Methods of targeting GSCs vary widely, both in
terms of the vector used to exert cytolytic effects on this cell
population as well as the antigen or cellular pathway targeted by
such vectors. Over the past several years, immunotherapy has
emerged as a promising method of culling GSC populations in
GBM tumors and has increased survival in GBM patients.
Nevertheless, immunotherapies targeting malignancies of the
immune-privileged central nervous system present a host of
unique challenges.

Due to the relative inability of many immunotherapies to
penetrate the blood-brain barrier and subsequently localize to
GBM, modalities which show promise in vitro may stumble in
in vivo and clinical application. Direct introduction of
immunotherapeutic agents into the tumor resection cavity
effectively bypasses the blood-brain barrier but runs the risk of
causing inflammation in the brain due to a productive immune
response. The paradoxical need for a robust immune response with
limited inflammatory changes to kill GBM while preserving the
patient highlights just one of the complexities of immunotherapy in
the context of intracranial neoplasia. Dexamethasone, the current
standard of care agent to treat GBM-associated edema, exerts
global immunosuppression and may thereby limit the efficacy of
some immunotherapies (122). This underscores the importance of
TABLE 2 | Ongoing virotherapy clinical trials targeting glioma stem cells (GSCs).

Virus family Therapy type Viral strain Combination Phase
(O-III)

ClinicalTrials.gov
Identifier

ADV NSC vector oncolytic
virus

BM-hMSC-DNX-2401 I NCT03896568

Reovirus Oncolytic virus Wild-type reovirus
(reolysin)

Sargamostim (rGM-
CSF)

I NCT02444546

Vaccinia
virus

Oncolytic virus TG6002 5-FC I NCT03294486

ADV Oncolytic virus DNX-2440 I NCT03714334
HSV Oncolytic virus HSV G207 Low dose radiation I NCT03911388
HSV Oncolytic virus C134-HSV-1 I NCT03657576
ADV Viral vector gene therapy ADV/HSK-tk Valacyclovir, SOC I NCT03596086
ADV Viral vector gene therapy ADV/HSK-tk Valacyclovir, SOC I NCT03603405
ADV Oncolytic virus DNX-2401 Pembrolizumab II NCT02798406
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developing safe anti-inflammatory medications to be administered
concomitantly with immunotherapy that do not limit the
effectiveness of these agents.

Another hurdle for future immunotherapies to clear is the
necessity that therapies be highly specific for glioma stem cells,
avoiding antigens shared by healthy neural stem cells or other
normal stem cell populations throughout the body, in order to
mitigate the risk of adversely affecting somatic stem cell function.
Even with highly targeted therapies, however, GBM tumors’ innate
immunosuppressive effects can dampen the benefit of
immunotherapies. Although aberrant cell growth results in
immune recruitment through production of chemotactic factors,
GBMs antagonize this process by secreting other chemokines which
recruit T regulatory cells and suppress immune effector cells (123).
In GBM, systemic decrease in T cell responsiveness and
immunoglobulin levels, as well as an increase in Treg circulation,
limits the effectiveness of those immunotherapies which rely on the
body’s endogenous immune system. Further, immunosuppression
in the tumor microenvironment can render ineffective both
endogenous and exogenous immunotherapies. Finally, autologous
vaccination strategies are both costly and time consuming. Given
the rapid progression of GBM and the association between
minimal tumor burden and immunotherapy success (124), efforts
to expedite vaccine preparation are imperative to the success of this
treatment modality.

Though many immunotherapeutic approaches are currently
being investigated, some have shown greater promise in clinical
application than others. The use of static monotherapies such as
single-target antibodies have been repeatedly demonstrated to be
ineffective in the long term due to cellular adaptation by GSCs and,
in some cases, even differentiated tumor cells. However, the
success of bevacizumab in slowing GBM progression and
improving quality of life indicates that passive immunotherapies
might be viable adjuncts to more aggressive chemo- or
immunotherapeutic approaches.

Further, research into the interaction between GSCs and the
tumor microenvironment has shown us that stem cell phenotypes
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vary significantly throughout the tumor and that subpopulations
of GSCs may be differentially susceptible to immunotherapeutic
approaches (125). These studies provide a basis for pursuing
multiple immunotherapeutic modalities based on the relative
permissiveness of GSC populations. Currently, the most
thoroughly investigated and perhaps most promising form of
immunotherapy against GBM is that of DC vaccination. Nearly
three dozen clinical trials are currently assessing DC vaccines
against high grade gliomas (126). DC vaccines’ ability to train
cytotoxic T cells to target GSCs without harmful off-target effects
is well documented in both preclinical and clinical applications.
However, none of these vaccines have yet attained FDA approval.
The number of avenues being pursued to target GSCs warrants
optimism, but for now agents trained to eliminate this cancer-
driving cell population remain inaccessible to many.
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