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Technologies, from molecular genetics to precision agriculture, are outpacing
theory, which is becoming a bottleneck for crop improvement. Here, we out-
line theoretical insights on the wheat phenotype from the perspective of
three evolutionary and ecologically important relations—mother–offspring,
plant–insect and plant–plant. The correlation between yield and grain
number has been misinterpreted as cause-and-effect; an evolutionary pers-
pective shows a striking similarity between crop and fishes. Both respond to
environmental variation through offspring number; seed and egg size are con-
served. The offspring of annual plants and semelparous fishes, lacking
parental care, are subject tomother–offspring conflict and stabilizing selection.
Labile reserve carbohydrates do not fit the current model of wheat yield; they
can stabilize grain size, but involve trade-offs with root growth and grain
number, and are at best neutral for yield. Shifting the focus from the carbon
balance to an ecological role, we suggest that labile carbohydratesmay disrupt
aphid osmoregulation, and thus contribute to wheat agronomic adaptation.
The tight association between high yield and low competitive ability justifies
the view of crop yield as a population attribute whereby the behaviour
of the plant becomes subordinated within that of the population, with
implications for genotyping, phenotyping and plant breeding.
1. Introduction

…the reservoir of theory was being drained. Technological progress would begin to
decelerate and eventually come to a complete halt…Cixin Liu, The Dark Forest [1, p. 275]
Technologies, from molecular genetics to precision agriculture, are outpacing
theory, which is becoming a bottleneck for crop improvement and agronomy
[2,3]. This is part of a broader problem in biologywherebywe are ‘now generating
gigantic amounts of genomic, proteomic,metabolomic andphysiomic data.We are
swimming in data. The problem is that the theoretical structures within which to
interpret it are underdeveloped or have been ignored and forgotten. There is an
essential incompleteness in biological theory that calls out to be filled’ [4, p. VIII].

The phenotype includes all traits of an organism other than its genome [5];
thus, grain yield, seed storage proteins, susceptibility to rust, stomatal conduc-
tance, nitrogen uptake and root architecture are all agronomically important
aspects of the crop phenotype. West-Eberhard’s book Developmental plasticity
and evolution is a milestone in the contemporary theory of the phenotype [5].
Other substantive theoretical insights had a narrower focus [6–11] but all aligned
with Dobzhansky’s [12] premise of an evolutionary perspective, often combined
with developmental and ecological angles. A developmental perspective reveals
the inadequacy of the unidirectional cause-and-effect arrow from genotype to
phenotype as the same genome returns more than 30 cellular phenotypes in
plants and over 200 in humans [5,13,14]. In this developmental context, the
notion of downward causation, where higher scales of organization can causally
influence behaviour at lower scales, is useful to understand and formalize the
phenotype [13,15–17].
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Figure 1. Angiosperms overproduce flowers and ovules and annual crops respond to environmental variation through grain number. (a) Ceiba petandra, native to
Mexico, Central America and the Caribbean, typically produces 1000 or more flowers for every mature fruit [23]. (b) Dynamics of floret survival in wheat illustrate
overproduction and mortality. SD is short day and LD is long day, suggesting the plant might be using photoperiod to anticipate grain fill conditions. (c) Annual
crops respond to environmental variation through grain number, which accounts for most of the variation in yield; average grain weight accounts for the residual
variation. Data sources: (b) [24], (c) wheat [25], oat [26], field pea [27] and lentil [28]. Photograph (a) is from Wikipedia (https://en.wikipedia.org/wiki/Ceiba_
pentandra) accessed on 11 June 2021. (Online version in colour.)
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Darwin [18. p. 69] noted the dominant role of abiotic fac-
tors as drivers of evolution in the most extreme
environments, ‘…the Artic regions, or snow-capped summits,
or absolute deserts’. Elsewhere, he argued, the relation of
organism to organism is the most important of all relations
as verified in contemporary models [19–22]. Here, we outline
theoretical insights on the wheat phenotype from the per-
spective of three evolutionary and ecologically important
relations—mother–offspring, plant–insect and plant–plant.
2. Annual crops and fishes respond to environmental
variation through offspring number

Angiosperms overproduce flowers and ovules (figure 1a,b)
[23]. A handful of non-mutually exclusive hypotheses explain
an overproduction of flowers and ovules, including com-
pensation for the loss of developing embryos, anticipation
of favourable conditions for fruit and seed set (e.g. avail-
ability of pollinators and resources), selective abortion of
low-quality embryos and uniform seed production mediated
by the selection of fertilized ovules with similar resource
absorption rates [23,29,30]. Next, we observe that annual
crops respond to environmental variation through grain
number (GN), which accounts for most of the variation in
yield between crop failure and potential yield (figure 1c);
exceptions are rare.

The strong correlation between yield and GN (figure 1c)
had been misinterpreted as cause-and-effect until Sinclair &
Jamieson [31] challenged this view. They used a metaphor:
the number of bottles used by the brewery in marketing its
beer correlates with, but is an unlikely cause of, total beer
production; they focused on resources driving both GN and
yield. Their proposition had gaps and triggered controversy
[32,33], but motivated further interpretations of the corre-
lation between yield and GN. Why would a plant adjust
GN and keep grain size (GS) stable?

An excursion into evolutionary territory showed a strik-
ing similarity between crop and fishes (figure 2a). The
question changed fundamentally—we are now asking what
wheat and salmon have in common [38,39]. In contrast
with most mammals, birds and social Hymenoptera where
parents provision their offspring as they develop, wheat
and salmon offspring are on their own after birth, and the
size of the seed and egg are subject to mother–offspring
conflict and stabilizing selection as outlined in the model of
Smith & Fretwell [37] (figure 2b). Building on this model
with explicit consideration of genomic conflict, De Jong
et al. [40] predicted that (i) when offspring genes drive the
provisioning of the seed, the optimal seed size can be calcu-
lated with Hamilton’s rule, and (ii) when seed size is a
compromise between mother and offspring, selfers such as
wheat would produce smaller seed than outcrossing plant
species. The original model [37] did not consider factors
such as environmental variability [41,42], variance in fertili-
zation success among flowers within a plant [43], density-
dependent mechanisms [44], maintenance respiration [45]
and overhead cost of reproduction [46]. Nonetheless, the
core principle remains: mother–offspring conflict emerges
because, beyond a certain size, the maternal fitness benefit
from larger offspring is offset by the benefit from creating
and provisioning additional offspring (figure 2b). Answers
to the wheat–salmon question progressed in theoretical
studies of grain yield in annuals [39,47–49] accounting for
genomic conflict [50], the evolution in the units of selection
[51] and hierarchies of plasticity [52]. The role of labile reserve
carbohydrates, routinely quantified as water-soluble carbo-
hydrates (WSC) in cereal shoot [53–56], remains a major gap.
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Figure 2. In species that lack parental care, offspring size is subject to mother–offspring conflict and stabilizing selection. (a) Wheat (Triticum aestivum, top) and
pond smelt (Hypomesus nipponensis, bottom) adjust offspring number and conserve offspring size in response to availability of resources. Note the log scale necess-
ary to capture the variation in offspring number. Wheat and pond smelt are both semelparous, that is, they reproduce once and die. For iteroparous organisms, like
perennial plants and most mammals, lifetime reproduction is divided into many discrete bouts, hence evolutionary explanations for the trade-off between offspring
size and number require more complex models accounting for the effect of reproductive effort on any one period on further survival and reproduction [34].
(b) Relationship between offspring fitness and maternal fitness (dimensionless) and allocation of resources to offspring. The model considers a range of maternal
strategies investing a fixed amount of resources (1000 units) among a variable number of offspring, hence the variable effort per offspring (x-axis), which for our
purposes could be approximated to seed or egg size. The dashed lines in the top diagram represent two adaptive functions intersecting the curve of possible
maternal types; the intersection involving the adaptive function of highest slope corresponds with the optimal maternal type defined in terms of effort per offspring.
Sources: (a) wheat [35], and pond smelt [36] and (b) [37]. (Online version in colour.)
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3. The puzzling role of labile reserve
carbohydrates in the algorithm of wheat
reproductive allocation and grain yield

Yield is the product of GN per unit land area and average
grain weight, but these traits are not independent [48,57].
The simplest algorithm accounting for the simultaneous
determination of GN and potential GS is

R
GS

� GN, ð3:1Þ

where R is crop resources. Theory and empirical observations
justify using crop growth rate (CGR) in the critical period of
grain set as a surrogate for R in annual crops [57,58] including
wheat [59]. The rationale of this model involves four main
elements [39,47–49,57]. The first assumption is that plants
account, albeit imperfectly, for past, current and future environ-
mental conditions by combining transgenerational mechanisms
including epigenetics, proximate environmental cues such as
direct sensing of water and nutrient availability in soil, and
cues such as photoperiod that allow for future conditions [49]
(e.g. figure 1c). Second, ovary size sets the upper limit of GS,
and this process is simultaneous with the critical period of
grain set [59]. Third, conserved offspring size is adaptive; it
has typically high heritability, e.g. median of 52 reports = 0.78
[39]. Fourth, the plant responds to environmental variation by
allowing for the allocation of a variable amount of resources R
to GN grains of target size GS.

This model overlooks allocation to root [55] and storage of
labile carbohydrates in shoot [56] that are concurrent with
the determination of GN and potential GS [59]. Hence, using
CGR between stem elongation and anthesis (g m−2 d−1) as a
surrogate for R [57–59], we can rewrite equation (3.1):

CGR
GS

� EGR�GN � GN, ð3:2Þ

where EGR–GN is the efficiency of conversion of growth rate per
unit GS into GN (d−1). Crops with more resources allocated to
reserve will have lower efficiency to produce grain, hence the
expected inverse function:

EGR�GN � f ðWSCÞ�1, ð3:3Þ

where WSC is the amount of WSC stored in the shoot at
anthesis (g m−2). Likewise, EGR–GN is expected to decline
with an increasing allocation of resources to root. Fruiting effi-
ciency, defined as the number of grains per unit spike dry
matter at anthesis, is an important source of variation in GN
[59,60] and could be expected to contribute to EGR–GN:

EGR�GN � f ðfruting efficiencyÞ: ð3:4Þ

We tested the predictions in equations (3.2) and (3.3) with data
from an experiment with 13 historic wheat varieties adapted
to winter-rainfall environments grown in two locations;
equation (3.4) remains to be tested. Data conform to expec-
tations: GN is proportional to growth rate per unit GS
(equation (3.2), figure 3a), and high allocation to labile carbo-
hydrates reduces the efficiency of grain set (equation (3.3),
figure 3b). Independent, comprehensive studies under robust
agronomic conditions support the conclusion that labile
reserve carbohydrates may buffer grain weight under stress,
but are neutral or negative for yield [53,54,63]. Large amounts
of labile reserve carbohydrates may remain in mature cereal
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Figure 3. Labile reserve carbohydrates are central to the carbon economy of the crop and have overlooked implications for osmotic potential. (a) Wheat grain number is
proportional to growth rate per unit grain weight (equation (3.2)). (b) The efficiency of grain set is inversely related to the amount of WSC in shoot at flowering (equation
(3.3)). (c) Trade-off between wheat root growth and concentration of stem WSC; roots were measured in two soil layers (0.6–0.9 and 0.9–1.2 m) and biomass is relative to
maximum. Selection for wheat yield and agronomic adaptation over five decades steadily increased (d ) the concentration and (e) the amount of WSC in shoot at flowering.
( f ) Correlation between the osmotic potential and concentration of WSC in wheat plants. Data sources: (a,b,d,e) 13 Australian varieties released between 1958 and 2006
grown in two to three locations [61]; (c) eight wheat genotypes randomly selected from a mapping population derived from a Seri/Babax cross [55]; ( f ) three wheat
cultivars infested with Russian wheat aphid (Diuraphis noxia) and uninfested controls [62]. (Online version in colour.)
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crops, particularly under favourable growing conditions [26].
Empirical evidence also supports the trade-off between storage
of labile reserve carbohydrates and root growth (figure 3c).
On the other hand, selection for yield and agronomic adap-
tation over several decades has favoured a higher amount
and concentration of WSC in wheat adapted to low-yielding
Australian environments (figure 3d,e). In a historic collection
of wheat cultivars adapted to high-yielding environments
in the UK, the concentration of WSC in shoot at anthesis
was high (greater than 41%) and did not change with the
year of release, but the total amount of WSC increased at
4.6 g m−2 yr−1 with selection for yield between 1972 and
1995 [64]. How, therefore, has selection for yield and agronomic
adaptation favoured traits—amount and concentration
of labile reserve carbohydrates—that are at best neutral
for yield. Correlative variation of traits is central to evolution
[18,65–67]; we expect the strong directional shift in
wheat labile carbohydrates (figure 3d,e) correlates with yet
unrecognized, agronomically important traits.

Physiological, ecological and agronomic studies mostly
focus on the role of reserve carbohydrates in the carbon econ-
omy of the plant, for example, as buffers for reproduction or
regrowth after herbivory or fire [53–56,68,69]. Within physio-
logical limits, labile carbohydrates have a significant osmotic
effect (figure 3f ) that has received less attention in the context
of ecological and agronomic adaptation.
4. Selection for tolerance to aphids might favour
high concentration of labile reserve carbohydrates

…plants and animals, most remote in the scale of nature, are bound
together by a web of complex relations… (Darwin [18], p. 73)
Aphids (Hemiptera, Aphidoidea), and the viruses they carry,
are major pests of wheat and a focus of breeding programmes
worldwide [70,71]. We speculated that selection of wheat phe-
notypes with lower aphid load or less severity of the viral
disease may have favoured the steady increase in WSC
(figure 3d,e) that potentially challenges osmoregulation in
aphids [63]. Aphids have evolved intricate anatomical, physio-
logical and behavioural traits for osmoregulation [72–77].
An early study with Myzus persicaea grown on sea aster (Aster
tripolium) found that the osmotic pressure of the excreted
honeydewwas similar to that of the haemolymph, thus demon-
strating the aphid’s ability to reduce the osmotic pressure of the
ingested sap [72]. Aphid growth and fitness feature a sweet spot
in response to diet’s sugar concentration [76]. This is illustrated
in figure 4a, showing the relative growth rate of pea aphid
(Acyrthosiphon pisum) was impaired by reduced feeding reflect-
ing the role of sucrose as a phagostimulant at low dietary
sucrose concentrations, and by osmoregulation failure at high
concentrations. Up to a threshold of 1.06 ± 0.21 M sucrose in
the diet, the osmotic pressure of the aphid’s haemolymph
was maintained, but osmoregulation broke down above this
threshold (figure 4b). Furthermore, the abundance of symbiotic
bacteria Buchnera spp., critical to the supply of essential amino
acids to the aphid, collapsed after a threshold of 0.87 ± 0.18 M
sucrose in the diet (figure 4c). Aphids occasionally consume
the dilute xylem sap, a behaviour associated with both dehy-
dration and osmotic stress in non-dehydrated insects [77].
Macrosiphum euphorbiae, a common pest in potatoes, increased
the time actively sucking xylem sap with both increased osmo-
tic potential of the artificial diet and deprivation of primary
symbionts with antibiotics, a condition that leads to higher
haemolymph osmotic potential [77].

An aphid reproduction experiment showed a decline in the
number of adult bird cherry-oat aphids Rhopalosiphum padi
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with increasing concentration of sugars in wheat stem
(figure 4d ). In a field comparison of 28 cereal genotypes (15
bread wheat, five durum wheat, eight barley), plant damage
caused by Diuraphis noxia declined with increasing concen-
tration of WSC in shoot (figure 4e). Empirical evidence
linking labile reserve carbohydrates and aphid tolerance is
just emerging, but the view of an ecological role of labile carbo-
hydrates opens a new dimension to the established, narrow
focus on plant carbon balance and source–sink relations.
5. Crop yield is a population attribute whereby
the behaviour of the plant becomes
subordinated within that of the population

…the struggle almost invariably will be most severe between the
individuals of the same species, for they frequent the same dis-
tricts, require the same food, and are exposed to the same
dangers… (Darwin [18, p. 75]).
Since the inception of agriculture in the Neolithic until the
end of the eighteenth century, crop yield has been measured
as the ratio of seed harvested to seed sown [80], e.g. small
grain crops in Europe yielded four to seven seeds per seed
in the 1770s [81]. This measure of yield favoured competitive,
tall plants with large root system and profuse branching.
Only recently on a historical time scale, the definition of
yield shifted to the current measure of mass of seed per
unit land area [80]. The selective pressure thus shifted to
favour a ‘communal’ phenotype [82–84]. An updated evol-
utionary focus of crop yield in relation to plant–plant
relations emphasizes kin selection and multi-level selection
[85–89]. Empirical evidence supports the association between
high yield per unit area and less competitive phenotypes in
morphologically and physiologically diverse annual and
perennial crops [90–92], including wheat (figure 5). In a
collection of elite wheat CIMMYT1 cultivars, removing or
bending adjacent plant rows to relax competition with the
focal central row showed a strong negative correlation
between grain yield and response to reduced competition
(figure 5a). Next, an association mapping panel of 287
CIMMYT elite lines was phenotyped for response to compe-
tition, based on the yield difference between outer and inner
rows of experimental plots, to identify genomic regions
associated with low competitive ability and high yield per
unit area [95]. Selection for yield in low-rainfall environments
of Australia over five decades returned high-yielding pheno-
types with a reduced competitive ability (figure 5b,c). Binary
mixtures of wheat cultivars demonstrated a strong symmetry
in yield response to neighbour (figure 5d ); this is, Halberd
(the oldest, more competitive cultivar in the series) increased
yield by approximately 17% with Scepter (the newest, less
competitive) neighbour in comparison to pure stands, and
Scepter reduced yield in a similar proportion when grown
with a Halberd neighbour (figure 5d ). All 12-pairwise combi-
nations of cultivars grown under eight environmental
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conditions aligned in a plot of yield of target cultivar relative
to pure stand versus the age difference between target and
neighbour (figure 5d ). Owing to the steady selection pressure
returning a linear genetic yield gain (figure 5b), difference in
year of release between target and neighbour, for example, 46
years between Halberd and Spear, roughly captures the gen-
etic divergence between cultivars. Figure 5e updates the
communal wheat phenotype [94]. The less competitive,
higher yielding phenotype is shorter and intercepts less radi-
ation. Higher radiation use efficiency compensates for the
lower interception of radiation in the less competitive pheno-
type and relates to an erectophyl canopy that favours more
radiation and higher nitrogen concentration in leaves at the
bottom of the canopy. The less competitive phenotype has
a smaller root system with compensatory higher nitrogen
uptake per unit root length (figure 5e).

The theoretical and empirical evidence for the tight link
between high yield and low competitive ability justifies the
view of crop yield as a population attributewhereby the behav-
iour of the plant becomes subordinated within that of the
population [96]. Two implications fromthis conclusion illustrate
how data-driven technologies for crop improvement would
benefit from interpretations of the crop phenotype informed
by evolutionary, ecological and developmental perspectives.

First, a better understanding of trade-offs, which can
represent either constraints or opportunities, is key to under-
standing past progress, remaining opportunities and the
ultimate limits to crop genetic improvement [97,98]. Plant
breeding is unlikely to improve traits shaped by natural selec-
tion over evolutionary timescales, such as the efficiency of
photosynthetic enzymes [87,99], but unrealized opportunities
may exist for the selection of traits that increase crop yield at
the expense of plant fitness [87,97,100]—plant breeding
should be based on group selection [89]. Nonetheless, crop
adaptation to current agricultural environments can also be
achieved at the expense of adaptation to early environments.
For example, the trade-off between specificity and reaction
rate of rubisco is a constraint for the improvement in the
efficiency of rubisco by reducing photorespiration, but
CO2-specificity becomes less important with increasing
concentration of atmospheric CO2 [100].

Second, phenotyping and genotyping efforts must account
for plant–plant relations [2,3]. Traits such as herbicide tolerance
usually scale from plants in controlled environments to
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agronomic conditions. But yield and photosynthesis typically
do not [99,101]. In a textbook study, chlorophyll-deficient soy-
bean isolines, Clark y9 and Clark yu, featured about half the
concentration of leaf chlorophyll in comparison to the normal
pigmented wild-type Clark [102]. Despite this massive
handicap, the canopies of the mutant isolines were photo-
synthetically similar or out-performed the wild-type; this was
attributed to more radiation penetrating down to the lower
leaves in the chlorophyll-deficient canopies, effectively increas-
ing the leaf area contributing to canopy photosynthesis [102].
Indeed, gene expression and the phenotype depend on both
stand density and genetic identity of neighbouring individuals
[85,103–106]. Overlooking plant–plant relations is a source of
inefficient plant phenotyping, even under controlled con-
ditions where size-hierarchies develop from interference
between neighbours [107].
Soc.B
288:2021
6. Conclusion
Data-driven approaches to improve crops are powerful
but incomplete. Theoretical perspectives promoted major
conceptual twists bringing the trade-off between GN and
grain weight into the framework of mother–offspring
conflict, and expanding the role of labile reserve carbohydrates
from a simple component of the plant carbon balance to a
source of osmotic stress with putative implications for plant–
insect relations. Crop yield is a population trait, and
in common to photosynthesis, plant–plant relations preclude
scaling from plant to crop. Data-driven approaches require
these theoretical insights, at the very least, to design more
robust experiments and to make biological and agronomic
sense of the wheat phenotype, the ultimate target of crop
improvement.
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