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Abstract
Objectives To investigate the association of pericoronary adipose tissue mean attenuation (PCATMA) with coronary artery
disease (CAD) characteristics on coronary computed tomography angiography (CCTA).
Methods We retrospectively investigated 165 symptomatic patients who underwent third-generation dual-source CCTA at
70kVp: 93 with and 72 without CAD (204 arteries with plaque, 291 without plaque). CCTA was evaluated for presence and
characteristics of CAD per artery. PCATMA was measured proximally and across the most severe stenosis. Patient-level,
proximal PCATMA was defined as the mean of the proximal PCATMA of the three main coronary arteries. Analyses were
performed on patient and vessel level.
Results Mean proximal PCATMA was −96.2 ± 7.1 HU and −95.6 ± 7.8HU for patients with and without CAD (p = 0.644). In
arteries with plaque, proximal and lesion-specific PCATMA was similar (−96.1 ± 9.6 HU, −95.9 ± 11.2 HU, p = 0.608). Lesion-
specific PCATMA of arteries with plaque (−94.7 HU) differed from proximal PCATMA of arteries without plaque (−97.2 HU,
p = 0.015). Minimal stenosis showed higher lesion-specific PCATMA (−94.0 HU) than severe stenosis (−98.5 HU, p = 0.030).
Lesion-specific PCATMA of non-calcified, mixed, and calcified plaque was −96.5 HU, −94.6 HU, and −89.9 HU (p = 0.004).
Vessel-based total plaque, lipid-rich necrotic core, and calcified plaque burden showed a very weak to moderate correlation with
proximal PCATMA.
Conclusions Lesion-specific PCATMA was higher in arteries with plaque than proximal PCATMA in arteries without plaque.
Lesion-specific PCATMA was higher in non-calcified and mixed plaques compared to calcified plaques, and in minimal stenosis
compared to severe; proximal PCATMA did not show these relationships. This suggests that lesion-specific PCATMA is related to
plaque development and vulnerability.
Key Points
• In symptomatic patients undergoing CCTA at 70 kVp, PCATMA was higher in coronary arteries with plaque than those without
plaque.
• PCATMA was higher for non-calcified and mixed plaques compared to calcified plaques, and for minimal stenosis compared to
severe stenosis.
• In contrast to PCATMA measurement of the proximal vessels, lesion-specific PCATMA showed clear relationships with plaque
presence and stenosis degree.
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Abbreviations
BMI Body mass index
CAD Coronary artery disease
CCTA Coronary computed tomography angiography
CP Calcified plaque
DS Diameter stenosis
ICC Intra-class correlation coefficient
IQR Interquartile range
kVp Kilovoltage peak
LAD Left anterior descending coronary artery
LCx Left circumflex coronary artery
LRNC Lipid-rich necrotic core
NCP Non-calcified plaque
PCATMA Pericoronary adipose tissue mean attenuation
RCA Right coronary artery
SD Standard deviation
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Introduction

Coronary inflammation plays an important role in athero-
sclerosis development [1–3]. Detection and quantification
of coronary inflammation could assist in early risk strati-
fication of coronary artery disease (CAD) patients, possi-
bly even before the development of coronary plaque [4].
Recently, a non-invasive biomarker for coronary inflam-
mation was proposed: computed tomography angiography
(CCTA) derived pericoronary adipose tissue mean atten-
uation (PCATMA) [5]. PCATMA has shown value as a
predictor for cardiac mortality [6]. Few studies, predomi-
nantly using the proximal right coronary artery (RCA) as
a representative location for patient-level analysis, have
shown a relationship of PCATMA with CAD and athero-
sclerosis progression [5, 7–9].

CCTA-based plaque composition and stenosis severity
give information about plaque vulnerability and hemody-
namic significance, and can be used for prognostication
[10–13]. A previous study showed a PCATMA difference
of 3–4HU in the proximal RCA between CAD and non-
CAD patients [5]. However, they found no significant
difference of RCA-based PCATMA between non-
calcified plaques (NCP) and mixed or calcified plaques
(CP) in patients with high plaque burden. Another study
demonstrated that increased NCP and total plaque burden
were associated with higher PCATMA [8].

Most studies measured PCATMA at one proximal cor-
onary location [5, 6, 8, 14]. Compared to proximal
PCATMA, there may be a stronger relation of lesion-
specific PCATMA with plaque considering a hypothesized
local effect of coronary inflammation. Three PCATMA

s tud ies (35–199 pa t i en t s ) used a les ion-based

measurement method considering all three main coronary
arteries [9, 15, 16]. One study showed that lesion-specific
PCATMA was higher around culprit lesions in acute cor-
onary syndrome (ACS) patients compared to non-culprit
lesions in ACS and CAD patients [15]. Another study
revealed lesion-specific PCATMA was significantly in-
creased in patients with abnormal FFR [9]. However,
lesion-specific PCATMA failed to show a significant dif-
ference between patients with and without elevated high-
sensitivity C-reactive protein [16]. Currently, there is a
lack of knowledge on the relationship between PCATMA

and plaque presence, plaque type, and stenosis severity. In
addition, the majority of studies only investigated a sin-
gle, proximally measured PCATMA value (mostly RCA)
to represent overall pericoronary attenuation but did not
investigate a potentially more relevant, focal PCATMA

value across coronary plaque.
The aim of this study was to evaluate the relationship of

proximal and lesion-specific PCATMA with coronary plaque
presence, type, and severity.

Materials and methods

Study population

This single-center, cross-sectional study was performed at the
UniversityMedical Center Groningen. The study was compli-
ant with the Declaration of Helsinki and approved by the
institutional ethical review board, who waived the need for
informed consent.

In total, 2621 patients underwent cardiac CTA for routine
indications between January 2015 and November 2017. Of
these patients, a random sample of 1280 patients was further
characterized by gathering hospital record information on CT
indication, demographics, and clinical risk factors, to be used
in various CT analyses. In a previous analysis (Ma et al) [17],
we studied a cohort of patients with a zero calcium score and
no coronary plaque on CCTA (“normal patients”); from this
population, we selected patients with CCTA at 70 kilovoltage
peak (kVp) as a reference category for the current study (n =
72). From the 697 patients (out of 1280) who underwent
CCTA because of angina, we randomly selected patients with
CAD, defined as patients with plaque on their CCTA images,
for the current analysis based on the following inclusion
criteria: 1, age > 18 years; 2, CCTA performed at 70 kVp; 3,
no coronary stents or coronary artery bypass grafts. Tube volt-
age was restricted to 70 kVp in view of known influence of
kVp on PCATMA [17]. In total, 171 patients (72 + 99) were
included. Six CAD patients were excluded for the following
reasons: anomalous origin of coronary artery (n = 2), insuffi-
cient image quality (n = 1), incomplete coronary image cov-
erage (n = 3) (Fig. 1). A radiologist with 10-year experience in
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cardiac radiology performed the CCTA evaluation (R.M.). In
case of doubt, a radiologist with 14 years of experience was
consulted and consensus was obtained (R.V.).

CCTA scan protocol

CCTA imaging was performed according to the routine clin-
ical protocol using third-generation dual-source CT
(SOMATOM Force, Siemens Healthineers). First, a non-
enhanced ECG-gated CT at a high pitch (tube voltage 120
kVp, reference tube current 64 mAs, reconstructed slice thick-
ness 3.0mm) was performed for coronary calcium score
(CACS) analysis. Subsequently, CCTA was performed using
CarekV (kVp optimization assistance), depending on patient
size; patients scanned at 70 kVp were included. ECG-gated
high-pitch spiral scanning was performed in low, regular heart
rate, otherwise ECG-triggered sequential scanning. Patients
received sublingual nitroglycerin, unless contraindicated. If
the heart rate was > 70–73 beats/min, the patient received
intravenous beta-blocker, unless contraindicated. Contrast
timing was determined using a test bolus. Iomeprol

(Iomeron 350) was injected with dose- and flow-rate depend-
ing on patient characteristics and scan mode. A dual-injection
technique was used followed by a saline flush. CCTA images
were reconstructed at 0.6 mm thickness.

Patient characteristics

Baseline patient characteristics were collected from clinical
records. Age, sex, and CAD risk factors were collected. The
classification criteria of risk factors were as follows: (a)
hypertension—systolic blood pressure > 140 mmHg or diastolic
blood pressure > 90 mmHg according to guidelines [18] and/
or anti-hypertension medication use; (b) hyperlipidemia—
patients with a low-density lipoprotein > 4.5 mmol/L or total
cholesterol > 6.5 mmol/L based on guidelines [19] were con-
sidered as hyperlipidemic; lipid-lowering medications used at
the time of CT scanning was considered as a separate factor
indicating treated hyperlipidemia; (c) diabetes mellitus—anti-
diabetic medication use; (d) smoking status was classified as
non-smoker, current smoker, or former smoker. Depending on
the risk factors, information was missing in 26 to 51 patients. If

Fig. 1 Flowchart of patient inclusion and PCATMA measurement analysis levels. kV is kilovoltage; CCTA is coronary computed tomography
angiography; CAD coronary artery disease
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there was no mention of a risk factor, the risk factor was
considered absent. Body mass index (BMI) information was
collected as well.

Plaque analysis

Visual, qualitative analysis

For visual plaque evaluation only, the main coronary arteries,
left anterior descending (LAD), left circumflex (LCx), and
right coronary artery (RCA) were taken into account to opti-
mize patient comparability. Plaque composition and diameter
stenosis (DS) were assessed for the most severe plaque per
coronary artery. Plaque components were classified into non-
calcified plaque (NCP), mixed plaque, and calcified plaque
(CP). Using visual analysis, CP was defined as plaque when
it had > 75% volume with density higher than the luminal
contrast; NCP was defined as plaque when it had > 75%
volume with a density lower than the lumen contrast and
higher than soft tissues around. Mixed plaque was defined
as plaque comprising 25 to 75% volume with density higher
than the luminal contrast [20, 21]. DS was classified into 4
stenosis categories: minimal, DS 1–24%; mild, DS 25–49%;
moderate, DS 50–69%; and severe, DS 70–100% [22].

Quantitative analysis

Semi-automated software (Aquarius iNtuition, TeraRecon,
Version 4.4.13) was used to measure the Agatston-based
CACS on a per-patient level. The CACS was stratified
into four categories: 0, 1–99, 100–399, and ≥ 400.

Quantification of the plaque composition was semi-
automatically performed by the software (vascuCAP,
Research Edition, Elucid Bioimaging) [23]. Automatic
segmentation of the entire coronary lumen and wall was
performed, allowing manual corrections if needed.
Subsequently, the matrix burden, CP burden, and lipid-
rich necrotic core (LRNC) burden were automatically cal-
culated by the software on a per-vessel level [24]. The
classification of the different plaque components, which
was validated with plaque histology, was based on an
adaptive threshold. The LRNC lower limit was defined
as −300HU; LRNC-IPH boundary was defined as 25HU.
The lower limit and upper limit of the CP were 250 and
3000HU. Matrix burden was calculated by dividing the
total wall volume by the matrix volume, where the matrix
is defined as normal organization tissues in the vessel wall
[23]. Plaque burden was defined as 1-matrix burden [24].

PCATMA measurements

PCATMA was measured proximally in the RCA, LAD, and
LCx, using dedicated software (Aquarius iNtuition,

TeraRecon, Version 4.4.13). The starting point of the proxi-
mal PCATMA measurement was 10mm after the left main
bifurcation for LAD, at the bifurcation point for LCx, and
10mm after the ostium for RCA [17]. In vessels with plaque,
a lesion-specific PCATMA measurement was performed cen-
tered around the most severely stenotic plaque. The proximal
and distal ends of the measurement were 5mm away from the
lesion center. The measurement length and width for all mea-
surements were 10mm and 1mm. A 1mm gap was left be-
tween the outer vessel wall, taking into account eccentric
plaques, and the measured cylindrical volume to avoid arti-
facts. PCATMA was defined as the mean CT value in the
measured area within the range of −190 to −30 HU (Fig. 2).

Data analysis

First, PCATMA was studied on per-patient level (Fig. 1).
Patients with any coronary plaque were considered as CAD
patients; patients without plaque were considered non-CAD
patients. For the per-patient PCATMA, the mean of the prox-
imal PCATMA values based on the three main coronary arter-
ies was calculated to represent an overall, patient-based
PCATMA value. Patient-based CACS and DS were analyzed
in conjunction with the per-patient PCATMA. Patient-level
categorization of DS degree was based on the most severe
DS in all three coronary arteries. To allow comparison with
prior studies that used only the proximal measurement of
PCATMA of the RCA, we additionally performed analyses
for RCA-based PCATMA. Additionally, a comparison of pa-
tients with and without at least 50% stenosis was performed.
The total plaque burden of the main coronary arteries was
considered as the patient-based plaque burden.

Second, vessel-based analysis was performed (Fig. 2). We
discriminated arteries with any plaque, and arteries without
plaque. CAD patients could contribute arteries without
plaque. For arteries with multiple plaques, the lesion with
the highest DS was used. The proximal PCATMA was used
in arteries without plaque to compare with lesion-specific
PCATMA in arteries with plaque. Lesion-specific PCATMA

was analyzed based on plaque type and DS severity.

Statistical methods

Normality testing for continuous variables was performed
with the Shapiro-Wilk test. Continuous variables are repre-
sented as mean± standard deviation (SD) or median (inter-
quartile range [IQR]), according to distribution. The model
estimated values are given in mean with 95% confidence in-
terval (CI). Categorical variables were recorded as numbers
(n) and percentages (%). Paired t-tests were used to evaluate
differences between proximal and lesion-specific PCATMA.
Independent t-tests were used to compare PCATMA measure-
ments between patients. One-way analysis of variance
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(ANOVA) testing was used to compare PCATMA between
categories of plaque type and DS severity. Spearman correla-
tion testing was used to assess the correlation of PCATMA

with plaque burden and plaque component burden.
A generalized linear model was used to evaluate the

influencing factors for patient-based PCATMA. Using mixed
models with random intercepts, the model estimated marginal
means and 95% CI of the corrected PCATMA were calculated.
The basic model included age, sex, and vessel, while the ad-
vancedmodels included CAD risk factors. The models did not
include BMI because of 43 missing values. PCATMA was
taken as a dependent variable in order to study the relationship
between PCATMA and plaque features. A p value < 0.05 was

considered statistically significant. Statistical analyses were
performed using SPSS version 25 (IBM).

Results

Patient demographics

In total, 93 patients with CAD and 72 patients without CAD
were included. Figure 2 shows an overview of the inclusion
process. Patient characteristics are given in Table 1. Patients
with CAD were significantly older (60.9 ± 8.7 vs. 51.2 ± 12.6
years, p < 0.001) and had significantly more hypertension

Fig. 2 PCATMAmeasurements. a
and b represent CCTA images
from a 59-year-old male patient
with CAD. a represents the
lesion-specific PCATMA

measurement in the RCA across a
calcified plaque. b shows the
lesion-specific PCATMA

measurement across a non-
calcified plaque in LAD. c and d
represent CCTA images from a
56-year-old male patient without
plaque. c shows the proximal
PCATMA measurement of the
RCA. d shows the cross-sectional
view of the proximal PCATMA

measurement in the RCA. The red
zones indicate the areas used for
PCATMA measurement
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(39 [41.9%] vs. 16 [22.2%], p = 0.008) and hyperlipidemia
(39 [41.9%] vs. 12 [16.7%], p < 0.001) compared to patients
without CAD.

Patient-based PCATMA analysis

An overview of PCATMA values for CAD and non-CAD pa-
tients, CACS, and DS category is provided in Table 2. There
was no correlation between PCATMA and CACS (r = −0.006,
p = 0.939). Correlation of PCATMA with DS category and
plaque burden was very weak (r = 0.073, p = 0.486 and
r = −0.092, p = 0.383). When corrected for age and sex,
PCATMA showed no difference between patients with and
without CAD (−95.7 HU vs −95.6 HU, p = 0.933).
PCATMA was significantly different between sexes (men:
−94.0 HU vs. women: −97.3 HU, p = 0.007). Results for
proximal RCA-based PCATMA are provided in Table S1
and Table S2.

Vessel-based proximal PCATMA analysis

There were 204 arteries with plaque and 291 without plaque
(216 from patients without CAD and 75 from patients with
CAD). The mean proximal PCATMA of vessels without
plaque was −95.6 ± 9.6 HU and −96.3 ± 8.3 HU for patients
with and without CAD, respectively (p = 0.567). The different
plaque components or degrees of stenosis groups did not show
a difference in proximal PCATMA.

Vessel-based lesion-specific PCATMA analysis

Lesion-specific PCATMA showed a significant difference
(p = 0.002) for the coronary lesions with different plaque

Table 1 Patient characteristics
Variables CAD patients Non-CAD patients p value

n 93 72

Male, n (%) 43 (46.2%) 23 (31.9%) 0.063

Age (years) (SD) 60.9 ± 8.7 51.2 ± 12.6 < 0.001

BMI (kg/m2) (SD)* 24.2 ± 2.9 23.2 ± 3.1 0.092

Hypertension, n (%) 39 (41.9%) 16 (22.2%) 0.008

Diabetes mellitus, n (%) 10 (10.8%) 3 (4.2%) 0.119

Hyperlipidemia, n (%) 39 (41.9%) 12 (16.7%) < 0 .001

Statin use, n (%) 23 (24.7%) 6 (8.3%) 0.005

Smoking, n (%) 0.144

Former smoker 22 (23.7%) 8 (11.1%)

Current smoker 26 (28.0%) 18 (25.0%)

Family history of CAD, n (%) 41 (44.1%) 22 (30.6%) 0.076

Indication for CCTA, n (%) 0.517

Typical angina 12 (12.9%) 8 (11.1%)

Atypical angina 50 (53.8%) 36 (50%)

Non-anginal chest pain 2 (2.2%) 7 (9.7%)

Dyspnea/dyspnea d’ effort 7 (7.5%) 5 (6.9%)

Others* 22 (23.7%) 16 (22.2)

BMI body mass index; SD standard deviation; CCTA coronary computed tomography angiography. BMI infor-
mation was available for 122 patients. *Others included arrhythmias or high-risk profile

Table 2 PCATMA by CAC score and degree of stenosis, per-patient
analysis

Patient-level evaluation Mean proximal PCATMA p value

0.325

CAC score 0 −95.4 ± 7.9 HU (n = 78)

CAC score 1–99 −96.9 ± 7.1 HU (n = 35)

CAC score 100–399 −97.3 ± 5. 7HU (n = 34)

CAC score > 400 −94.0 ± 8.5 HU (n = 18)

0.644

no CAD −95.6 ± 7.8 HU (n = 72)

With CAD −96.2 ± 7.1 HU (n = 93)

0.825

DS < 50% −96.0 ± 7. 3HU (n = 121)

DS ≥ 50% −95.7 ± 7.6 HU (n = 44)

0.580

DS 1–24% −98.3 ± 6.5 HU (n = 16)

DS 25–49% −95.8 ± 6.7 HU (n = 33)

DS 50–69% −94.9 ± 6.8 HU (n = 16)

DS 70–100% −96.2 ± 8.2 HU (n = 28)

DS diameter stenosis; CAC coronary artery calcium; PCATMA

pericoronary adipose tissues mean attenuation
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components. However, there was no significant difference
in degrees of stenosis (p = 0.288). In arteries with plaque
(n = 204), the median [IQR] plaque burden was 32.9%
[29.6–37.5%], showing a weak correlation with PCATMA

(r = −0.260, p < 0.001). The median LRNC plaque bur-
den was 9.9% [5.9–13.7%], showing a moderate correla-
tion with PCATMA (r = −0.325, p < 0.001). Median CP
burden was 4.1% [1.9–7.9%], with a weak correlation
between PCATMA and CP burden (r = −0.097, p = 0.167).

Figure 3 gives an overview of proximal and lesion-
specific PCATMA measurements for different plaque
components and degrees of stenosis.

Model-based analysis of PCATMA

In the basic model, the corrected mean (95% CI) PCATMA

was −94.1 HU (−95.7; −92.5 HU) in vessels with plaque
(lesion-specific) and −96.3 HU −97.8; −94.9 HU) in vessels
without plaque in non-CAD patients (proximal) (p = 0.026)
(Table 3). Sex (p = 0.032), age (p = 0.018), and vessel (LAD,

LCx, RCA) had significant effects on PCATMA (p < 0.001).
The mean (95% CI) lesion-specific PCATMA of NCP, mixed,
and CP was −90.2 HU (−93.8; −86.7 HU), −94.8 HU (−98.0;
−91.6 HU), and −96.6 (−98.6; −94.5 HU), respectively
(p = 0.006). For DS categories, the overall group effect did
not reach statistical significance (p = 0.073), but PCATMA of
severe DS was significantly different from minimal DS
(p = 0.037). For the advanced models, including CAD risk
factors, the differences remained significant (Table 3). For the
model with all healthy and diseased vessels, there was a sig-
nificant difference of PCATMA between patients with and
without statin use (−97.6 HU vs −94.3 HU, p = 0.039).
Table S3 shows results comparing proximal PCATMA

between plaque types and DS using all arteries with and with-
out plaque combined.

After correction for CAD risk factors, LRNC burden
and plaque burden had significant effects (estimate: −0.8
vs. −0.6) on proximal PCATMA, while the CP burden
had no significant effects on proximal PCATMA

(Table 3).

Fig. 3 Proximal and lesion-
specific PCATMA by plaque type
and stenosis severity. PCATMA

pericoronary adipose tissue mean
attenuation

7257Eur Radiol (2021) 31:7251–7261



Discussion

This study investigated the relationship between PCATMA

and plaque presence, plaque type, and stenosis severity in
the main coronary arteries in symptomatic patients undergo-
ing CCTA at 70 kVp. PCATMA was higher in vessels with
plaque than in vessels without plaque, taking into account
patients’ risk factors. Lesion-specific PCATMA was higher
for non-calcified and mixed plaques compared to calcified
plaques, and for minimal stenosis compared to severe stenosis.
In contrast to proximal PCATMA, lesion-specific PCATMA

showed clear relationships with plaque presence and stenosis
degree.

The proof-of-concept paper byAntonopoulos et al [5] dem-
onstrated that RCA-based PCATMA differed by approximate-
ly 3HU between CAD and non-CAD patients, where CAD
was defined as the presence of a stenosis of more than 50%.
As PCATMA values vary between coronary arteries and
plaque distribution among the coronary arteries, with the
LAD most often affected, taking only the RCA as a
PCATMA reference location may not accurately represent the
patient’s PCATMA status. Oikonomou et al [6] reported that
increased PCATMA in the RCA and LAD rather than LCxwas
related to increased cardiac mortality risk. Gaibazzi et al [25]
reported significant differences between the LAD/RCA and

the LCX in vessels with a stenosis < 50%, with a HU differ-
ence of approximately 1.5 HU on 120kVp scans. In our pre-
vious study, comparing PCATMA at different kVp levels in
patients without plaque, there were significant differences be-
tween the PCATMA of LAD, LCX, and RCA with a HU
difference around 2~4 HU [17].

Besides the coronary artery, the measurement location may
also have a significant effect on PCATMA. Goeller et al [8]
showed that, although there was a correlation between
PCATMA and epicardial adipose tissue (EAT), there was no
correlation between changes in EAT and plaque burden progres-
sion. Dai et al [16] found no relationship between lesion-specific
PCATMA and high-sensitive C-reactive protein, suggesting that
PCATMA may be associated with local coronary inflammation
rather than global inflammation. Previously mentioned studies
used lesion-specific PCATMA only; few investigated the relation-
ship with coronary plaque. Kwiecinski et al [26] found that in-
creased lesion-specific PCATMA in patients with high-risk
plaque was related to focal 18F-NaF PET uptake. Lin et al [27]
reported on the relationship of PCAT radiomic features and
PCATMA in the proximal RCA and around (non-) culprit lesions
at presentation and 6 months post-MI, in comparison to stable
CAD and non-CAD cases. They report that the most significant
radiomic parameters distinguishing patients with and without MI
were based on texture and geometry, yielding information not

Table 3 Mixed linear models for PCATMA and plaque characteristics

Categories Basic models Advanced models

Estimated fixed effect (95% CI) Estimated mean
(95% CI)
(HU)

p value Estimated
fixed effect (95% CI)

Estimated mean
(95% CI) (HU)

p value

Models of vessels with and without plaque

Vessels without plaque 0 (Ref) −96.3 (−97.8; −94.9) 0.026* 0 (0) −97.2 (−100.0; −94.3) 0.015*

Vessels with plaque 3.7 (1.0; 6.4) −94.1 (−95.7; −92.5) 0.026 3.9 (1.2;6.7) −94.7 (−97.5; −92.0) 0.015

Models of vessels with plaque

Type of plaque

Non-calcified (n = 38) 4.5 (−0.6; 9.7) −90.2 (−93.8; −86.7) 0.001 4.7 (−0.5;9.8) −89.9 (−94.3; −85.4) 0.001

Mixed (n = 45) 1.3 (−4.3; 6.8) −94.8 (−98.0; −91.6) 0.329 0.9 (−4.6; 6.5) −94.6 (−98.6; −90.5) 0.301

Calcified (n = 121) 0 (Ref) −96.6 (−98.6; −94.5) 0.006* 0(Ref) −96.5 (−99.8; −93.2) 0.004*

Degree of stenosis

1–24% (n = 59) 0 (Ref) −94.4 (−97.2; −91.6) 0.073* 0 (Ref) −94.0 (−97.9; −90.1) 0.079*

25–49% (n = 85) 0.5 (−4.5; 5.5) −94.1 (−96.5; −91.7) 0.856 0.2 (−4.8; 5.2) −93.8 (−97.6; −90.1) 0.927

50–69% (n = 26) 5.0 (−5.1; 15.1) −93.2 (−97.5; −88.8) 0.622 3.7 (−6.5; 13.8) −93.3 (−98.4; −88.3) 0.798

70–100% (n = 34) −3.5 (−10.2; 3.2) −98.8 (−102.2; −95.3) 0.037 −3.6 (−10.3; 3.1) −98.5 (−102.9; −94.1) 0.030

Plaque component burden

LRNC burden −0.8 (−1.2; 0.4) 0.009 −0.7 (−1.1; −0.3) 0.014

Calcified plaque burden −0.3 (−0.9; 0.3) 0.326 −0.3 (−0.9; 0.3) 0.336

Plaque burden −0.6 (−1.0; −0.2) 0.003 −0.6 (−1.0; −0.2) 0.007

CAD coronary artery disease; CI confidence interval; HU Hounsfield unit; PCATMA pericoronary adipose tissues mean attenuation; LRNC lipid-rich
necrosis core. Values are lesion-specific PCATMA values, apart from vessels without plaque (proximal PCATMA). * is the fixed effect p value of the
factor
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included in PCAT attenuation. They found that radiomic features
were not different between culprit and non-culprit lesions, where
the PCATMA showed a significant difference. The authors men-
tion that PCATMA may have utility as a lesion-specific imaging
biomarker, while radiomics features may have more value as a
patient-specific biomarker of systemic inflammation. Our study,
using both proximal and lesion-based PCATMA, confirms that
lesion-specific PCATMA is a better representation of focal in-
flammation and plaque development. Only lesion-specific
PCATMA measurements showed a difference between vessels
with and without plaque. Using an adjusted model, the
PCATMA of vessels with plaque was around 2HU higher than
those without plaque. This result is similar to the HU difference
in the study by Antonopoulos et al [5].

Lesion-specific PCATMA differed by DS categories, taking
into account age, sex, and coronary artery. Our results suggest
that there may be more inflammation in mild and moderate DS
than in severe DS. This fits with the hypothesis that as the plaque
becomes more stabilized and more calcified in severe DS, in-
flammation could be relatively decreased [28]. Inflammatory cy-
tokines play a critical role in the development and progression of
coronary atherosclerosis [29, 30]. The theory behind PCATMA is
that vessel wall atherosclerosis inhibits adipocyte maturation and
lipid accumulation in the pericoronary fat tissue, increasing the
attenuation. Additionally, corresponding increases in edema and
amount of inflammatory cells possibly result in an additional
increase in PCATMA in patients at risk of or with CAD [31,
32]. Results from previous studies suggest that the relationship
between coronary inflammation and PCATMA may be more
evident in NCP than CP, since CPs are relatively stable and have
only a minimal inflammatory component [31, 32]. Goeller et al
[8] investigated the relationship between PCATMA and progres-
sion of plaque burden on CCTA. Measuring patient-based
plaque burden/composition and RCA-based PCATMA, they
found that PCATMA is related to progression of total plaque
burden and NCP burden. PCATMA > −75 HU of the proximal
RCA was independently associated with increased NCP burden
at 120kVpCCTA [8].However, similar to our results, they found
that there was no relationship with CP burden. In our study, the
model-adjusted, lesion-specific PCATMA values for NCP were
5–7 HU higher compared to CP and mixed plaques at 70kVp
CCTA, measured in the three main coronary arteries. Our study
showed only a weak correlation between vessel-based plaque
burden and per-vessel PCATMA, and no significant correlation
between patient-based total plaque burden and patient-based
PCATMA. The per-vessel LRNC burden had a moderate corre-
lation with PCATMAwhereas the CP burden showed a very poor
correlation. Recent research revealed that LRNC burden is capa-
ble of predicting myocardial infarction better than CAC scoring,
cardiovascular risk scores, and coronary artery stenosis [33].

There are reports that show that lipid-lowering medication
could decrease the EAT attenuation independent of decreasing
lipid values [34]. Our study also shows a significant effect of

lipid-loweringmedication onPCATMAvalues, supporting the idea
that statins have an effect on cardiac fat attenuation and, potential-
ly, adipose tissue activity [35]. Additionally, we found that vessel,
sex, and age had significant effects on PCATMA. The relationship
between age, sex, and CAD has been reported frequently [36–38].
Men showed generally higher PCATMA values than women
(−94.0 vs −97.3 HU). Gender-specific hormones may be the rea-
son for the different effects on coronary inflammation.

Limitations

This is a single-center, cross-sectional study of patients with
clinically indicated CCTA. No follow-up information is avail-
able; hence, CCTA results cannot be related to cardiovascular
prognosis. Although our study demonstrates a relationship
between plaque presence, type, and stenosis degree with
PCATMA, it was not designed to show direct causality be-
tween inflammatory status, plaque characterization, and
PCATMA. Plaque burden quantification was performed by
automatic software, allowing manual corrections. In general,
automatic analysis might be sensitive to errors due to image
artifacts or decreased image quality and errors in segmenta-
tion. To avoid these errors in this study, scans were selected on
image quality (2 scans were excluded), and at each segmen-
tation step, the segmentation was visually assessed and man-
ually corrected when necessary by an experienced radiologist
to avoid errors. Window levels could be adjusted manually to
reduce, for example, blooming effects from calcifications in
order to optimize the segmentation and automated analysis.

Conclusion

PCATMA was higher in coronary arteries with plaque, com-
pared to vessels without plaque. Lesion-specific PCATMA

was higher in NCP and mixed plaque compared to CP, and
in minimal stenosis compared to severe stenosis. Proximally
measured PCATMA only showed differences by plaque com-
position, and only when corrected for clinical parameters. This
suggests that in particular lesion-specific PCATMA is related
to plaque development and vulnerability.
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