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Microorganisms have a wonderful ability to adapt rapidly to new or altered environmental
conditions. Enzymes are the basis of metabolism in all living organisms and,
therefore, enzyme adaptation plays a crucial role in the adaptation of microorganisms.
Comparisons of homology and parallel beneficial mutations in an enzyme family provide
valuable hints of how an enzyme adapted to an ecological system; consequently,
a series of enzyme collections is required to investigate enzyme evolution. Targeted
metagenomics is a promising tool for the construction of enzyme pools and for studying
the adaptive evolution of enzymes. This perspective article presents a summary of
targeted metagenomic approaches useful for this purpose.
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Introduction

Enzymes are the driving force behind life since they catalyze the biochemical reactions, and
hence the metabolism, of all living organisms. Enzymes have evolved and been optimized for the
metabolic networks of individual species (Copley, 2012). The pressure of survival at the metabolic
level allows organisms to adapt to a changing chemical environment, such as the ability of bacteria
to degrade xenobiotic compounds (Portnoy et al., 2011). There are many reports that microbes
adapt to changes in their environment by improving their ability to degrade natural or xenobiotic
compounds, and degradation enzymes play a crucial role in these adaptation mechanisms (Janssen
et al., 2005). Therefore, in order to understand the ability of microorganisms to adapt rapidly to
a new environment, it is necessary to understand how enzymes evolve to make this adaptation
possible.

Comparison of the sequence and activity of enzymes from the same family but from different
organisms indicates that enzymes are derived from a common ancestor and have accumulated
mutations that allow them to adapt to environmental pressures. A collection or pool of related
enzymes must be studied to understand enzyme evolution. There are two approaches for obtaining
these specific enzyme pools: (i) construct the pool by directed evolution in the laboratory or
(ii) retrieve the enzymes from the natural environment. Directed evolution, first used 20 years
ago, mimics natural evolutionary processes (Stemmer, 1994; Dalby, 2011), allows the artificial
evolution of enzymes in the laboratory under controlled selection pressures, and has resulted
in the identification of different adaptive mechanisms (Arnold, 2001). Another approach is to
isolate enzymes frommicroorganisms that show a specific enzymatic activity. For example, various
homologous genes involved in the degradation of aromatic compounds have repeatedly been
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identified in microorganisms isolated from aromatics-
contaminated environments (Furukawa et al., 2004;
Vilchez-Vargas et al., 2010). These gene collections can also
be useful for investigating molecular mechanisms in the adaptive
evolution of xenobiotic-degrading enzymes and bacteria in the
natural environment. However the majority of microorganisms
in natural environments cannot be cultured using readily
available technologies (Amann et al., 1995; Quince et al., 2008).
This has spurred the development of metagenomics, which
allows us to obtain various genes of interest from the entire
microbial community (Handelsman, 2004; Shade et al., 2012).
Metagenomics is, therefore, a powerful tool for constructing
comprehensive gene collections of specific groups of enzymes
from microbes in various habitats. This collection is useful
for studying the adaptive evolution of enzymes and their host
microorganisms.

Two Strategies for Metagenomics

Metagenomics approaches are roughly classified into two groups:
(i) whole metagenomics and (ii) targeted metagenomics, and
are based on random and selective sequencing strategies,
respectively. Many projects based on the random sequencing
of microbial domains, such as the bacteria and archaea, and
of viruses, have been reported (Thomas et al., 2012; Sharpton,
2014). Although whole metagenomic analyses revealed that
microbial communities are well adapted to their geochemical
conditions, those analyses provided no definitive evidence for
the positive selection of enzymes for key ecological processes
under environmental pressures. This lack of evidence is likely
due to insufficient sequence data for the target enzyme group
(Hemme et al., 2010). Mutations in the genes encoding
such key enzymes would provide an adaptive phenotype
optimized for a specific niche (Chattopadhyay et al., 2013).
Therefore, high-resolution metagenomic sequencing to collect
data of sufficient breadth and depth for any particular gene
is necessary to verify the adaptive processes of enzymes
in their ecosystem. This “targeted metagenomics” approach
would be a suitable tool for constructing gene collections
of specific groups of enzymes which are useful for studying
their adaptive evolution. Previously, we presented a summary
of the targeted metagenomics approaches to understanding
the composition of gene clusters for key ecological processes
in microbial communities (Suenaga, 2012). In this review,
we focus on targeted metagenomics studies for surveying
the adaptive evolution of enzymes toward environmental
changes.

Strategies for Targeted Metagenomics

In a targeted metagenomics approach, a deliberately selected
DNA pool is sequenced. The selection process is usually
based on (i) sequence-driven screening or (ii) function-driven
screening. By focusing efforts on selective sequence analysis,
targetedmetagenomics can provide broad coverage and extensive

redundancy of sequences for targeted genes and reveal specific
genome areas directly linked to an ecological function, even at
low abundances within a metagenome (Suenaga, 2012). Better
sequence coverage of the obtained target metagenomics can be
beneficial for genome assembly and subsequent data analysis.
Examples of studies on targeted metagenomics are summarized
below.

Targeted Metagenomics Based on
Sequence-driven Screening

The PCR-based approach has been used extensively to retrieve
specific genes from a pool of DNA. Instead of cloning all the
extracted DNA, primers are designed specifically against an
identified target gene, such as phenol hydroxylase (Futamata
et al., 2001), catechol 2,3-dioxygenase (Mesarch et al., 2000), and
methane monooxygenase (Henckel et al., 2000). The advantage
of using sequence-driven screening is that it uses well-established
and high-throughput techniques, such as PCR and hybridization,
and can be used for different targets. On the other hand, this
approach requires designing DNA probes and primers derived
from conserved regions of known gene or protein families.
Thus, already-known sequence types will be identified and only
a fragment of the main target gene will be amplified. Despite
this limitation, combining PCR detection of small conserved
regions with genome sequencing/walking at flanking regions
makes it possible to obtain the entire gene and thus reconstruct
the evolution of the target enzymes in response to alterations in
the ecosystem.

Dissimilatory sulfate reduction is a crucial process in the
mineralization of organic matter in marine sediments. PCR
screening of a metagenomic fosmid library (11,000 clones)
using degenerate primers resulted in the identification of three
fosmid DNA fragments harboring a core set of essential genes
for dissimilatory sulfate reduction; these fragments contained
genes associated with the reduction of sulfur intermediates
(dsrAB gene) and the synthesis of the prosthetic group of
dissimilatory sulfate reductase (aprA gene; Mussmann et al.,
2005). Complete sequence analysis of all fosmid inserts revealed
the genomic context of the key enzymes of dissimilatory sulfate
reduction as well as novel genes functionally involved in sulfate
respiration in their flanking regions. The results support the
hypothesis that the set of genes responsible for dissimilatory
sulfate reduction was concomitantly transferred in a single event
among prokaryotes.

Denitrification is a microbial respiratory process within the
nitrogen cycle responsible for the return of fixed nitrogen
to the atmosphere. A sequence-driven screening (colony
hybridization) of 77,000 clones from a soil metagenomic library
led to the identification of positive clones, and subsequent
sequencing analysis revealed nine denitrification gene clusters
(Ginolhac et al., 2004; Demanèche et al., 2009). This targeted
metagenomics study indicated that the gene clusters involved in
denitrification were probably subject to shuffling by endogenous
gene displacement or by horizontal gene transfer between
bacteria.
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Targeted Metagenomics Based on
Function-driven Screening

Function-driven screening strategies potentially provide a means
of revealing undiscovered genes or gene families that cannot be
detected by sequence-driven approaches, although this screening
is more laborious than sequence-based screening procedures
(Ferrer et al., 2005; Fernández-Arrojo et al., 2010).

Nitrilases are important in synthesis and degradation for
nitriles which are attractive starting compounds in the synthesis
of fine chemicals. However, nitrilase genes are quite rare in
bacterial genomes, and fewer than 20 were reported in the
scientific and patent literature prior to the application of
metagenomics (Podar et al., 2005). A leading metagenome
company, Diversa Co. (USA), reported that 651 environmental
samples collected worldwide from terrestrial and aquatic
microenvironments were used to construct a metagenomics
library, allowing identification of 137 new nitrilases by visual
observation of Escherichia coli cells grown in liquid medium
supplemented with nitrile substrate (Robertson et al., 2004).
Phylogenetic analysis and enzymatic characterization of these
enzymes revealed important correlations between sequence
clades and selective properties of three structurally distinct
nitrile substrates. Together with other metagenomic surveys
for nitrilases (DeSantis et al., 2002; Bayer et al., 2011),
the metagenomics approach has helped reveal the ecological
distribution and diversity of nitrilases.

Deep-sea areas require that microbial communities adapt
to harsh physical conditions, particularly high salinity and
high pressure (Daffonchio et al., 2006; Smedile et al., 2013).
A set of eight different enzymes was screened for activity
from metagenomic fosmid and phage libraries constructed using
DNA from five distinct deep-sea environments (Alcaide et al.,
2015). The activities of the purified metagenomic proteins were
characterized at various temperatures and salt conditions. The
results suggested that adaptation to high pressure is linked to
high thermal resistance in salt-saturated deep-sea conditions.
Therefore, salinity might increase the temperature window for
enzyme activity, and possibly microbial growth, in deep-sea
habitats.

Extradiol dioxygenases (EDOs) are enzymes that play an
important role in the catabolism of aromatic compounds (Sipilä
et al., 2008; Brennerova et al., 2009), cleaving the aromatic
ring of catechol compounds, which are common intermediates
in the aerobic microbial degradation of natural and xenobiotic
aromatic compounds (Furukawa et al., 2004). Based on the
activity of EDO enzymes, 96,000 fosmid clones were screened,
and subsequent sequencing of positive fosmids led to the
identification of 43 novel EDO genes (Suenaga et al., 2007,
2009). Using combinations of single nucleotide polymorphisms
(SNPs), a possible evolutionary lineage of the EDO genes was
constructed (Figure 1) and suggested that these genes evolved
from a common ancestor (group 1 and 3), then diverged through
the accumulation of various nucleotide mutations. Furthermore,
investigation of the kinetic properties and thermal stability of
the purified EDO enzymes showed an apparent trade-off between
activity and stability (Figure 1). Bloom et al. (2006) reported that

FIGURE 1 | The relationship between activity and thermostability of
purified metagenomic extradiol dioxygenase (EDO) enzymes. The size
of each circle is proportional to the number of EDO enzymes in the group. The
arrow indicates the proposed genetic evolutionary pathway. The thermostable
ancestral groups, group 1 and 3, may have adaptively evolved toward the
more active group 2 via group 5 and 6 by sacrificing unessential
thermostability. EDO enzymes that acquired higher activities (group 2) were
more frequently discovered in the retrieved enzyme collection.

cytochrome P450 BM3 mutants with higher stabilities were more
likely to acquire new or improved functions through random
mutagenesis. They concluded that protein stability promotes
adaptive protein evolution. Similarly, in EDO enzymes, the most
thermostable ancestral groups (group 1 and 3) may have evolved
toward more active groups (group 2 through group 5 and 6)
by sacrificing thermostability. Note that EDO enzymes that had
acquired higher activities (group 2 and 5) were more frequently
discovered in the retrieved EDO clones, likely reflecting the allele
frequencies in the environment.

The above studies of marine enzymes and EDO enzymes
incorporated three-dimensional structural analyses to unveil the
molecular mechanisms of enzyme adaptation, but the structural
basis for enzyme evolution remains unclear. The amount of data
on enzyme diversity made available by metagenomic approaches
exceeds our ability to analyze the data based on our current
knowledge of protein structure/function.

Future Perspective

In the Section “Introduction”, I stated that directed evolution
and metagenomics are different approaches for creating enzyme
pools that can provide valuable hints on how enzymes adapt to
ecological conditions. However, both approaches use the same
key technology: high-throughput screening to collect the target
enzymes. A variety of high-throughput screening methods have
been established in recent years, and continue to develop in
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step with new developments in robotics, analytical devices, and
visualizing assays. For example, microarray-based technologies
coupled with microfluidic devices, cell compartmentalization,
flow cytometry, and cell sorting have been proposed as promising
new tools (Tracy et al., 2010; Simon and Daniel, 2011; Ekkers
et al., 2012; Zhou et al., 2015). These screening systems offer
higher levels of quantification and the possibility to detect
multiple traits in one assay. Researchers in the two fields can share
their wide knowledge of enzymes and up-to-date technologies to
analyze enzyme characteristics.

Environmental pressures led to today’s diverse enzymes
distributed throughout the earth’s ecosystems. Therefore,
the collection of metagenomic enzyme pools from extreme

environments, such as deep-sea hydrothermal vent fields,
contaminated sites, and hot springs, is effective for studying the
adaptive evolution of enzymes and their host microorganisms.
In the near future, by integrating scientific knowledge in
environmental microbiology, enzymology, and geology, it will
be possible to assemble and use good quality enzyme collections
suitable for the analysis of enzyme evolution.
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