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Latent autoimmune diabetes in adults (LADA) is characterized as a slow-progressing form of autoimmune diabetes. LADA resembles
some phenotypes of type 1 diabetes (T1D) and type 2 diabetes (T2D), frequently leading to misdiagnosis and inappropriate
therapeutic strategies. Understanding its transcriptome profiles aids in revealing the detailed molecular mechanisms of LADA and
its therapy. In the present study, we performed RNA-seq analysis of LADA patients from Eastern China and showed that LADA
exhibited 277 differentially expressed genes (DEGs) with 199 upregulated and 78 downregulated. Gene ontology and KEGG
pathway enrichment analysis revealed that these DEGs were mainly related to immune function and cell death and growth.
Furthermore, a comparison of DEGs in LADA with those in T1D and T2D identified from the online databases showed that there
are very few overlapped genes between LADA and T1D or T2D, confirming LADA to be a distinct type of diabetes from T1D or
T2D. In summary, our comprehensive analysis may aid in the understanding and treatment of LADA patients in Eastern China.

1. Introduction

Diabetes, a metabolic disorder characterized by hyperglyce-
mia, belongs to one of the top diseases causing disability in
China and a huge health burden in China [1]. And it is the
seventh leading cause of death in the United States, which
has been recently shown to be far underreported [2, 3]. There
are 2 main categories of diabetes, type 1 (T1D) and type 2
(T2D) with the latter accounting for more than 90% of all
cases. T1D, which usually begins in childhood, is caused by
immune-mediated absolute insulin deficiency, while T2D is
caused by insulin resistance [4, 5]. Among all diabetes,
around 10% of them are diagnosed as latent autoimmune

diabetes in adults (LADA) [6]. These patients are usually
over age 30 and had the presence of diabetes-associated auto-
antibodies (e.g., glutamic acid decarboxylase (GAD65 Ab))
[6]. LADA also shares genetic features with both T1D and
T2D [6]. Meanwhile, LADA patients are often misdiagnosed
as T2D due to the similar phenotypes while it has worse
hemoglobin A1c (HbA1c) levels than T2D [6, 7]. Therefore,
LADA, resembling some of the phenotypes of T1D and
T2D, is often defined as type 1.5 diabetes.

Diabetes is a complex set of multifactorial diseases
involving genetic, environmental, and lifestyle factors. Great
efforts have been made to study the genetic basis of LADA
in relation to T1D and T2D based on the overlap in the
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pathological features between LADA and these two forms of
diabetes. The high-risk T1D gene variants of both protein
tyrosine phosphatase non-receptor 22 (PTPN22) and insulin
(INS) are also associated with LADA [8]. Similarly, a T2D
gene variant of transcription factor 7-like 2 (TCF7L2) has
been found to play important roles in LADA by disrupting
β-cell function and development [9]. However, there is a lim-
ited systemic analysis of the gene expression profile between
LADA and T1D or T2D.

In the present study, we identified the DEGs in LADA
patients by performing RNA-seq analysis of the tran-
scriptome profiles between LADA and healthy controls,
followed by RT-PCR validation of DEGs. We then did the
pathway analysis of these DEGs in LADA patients. Overlap-
ping analyses were further conducted to analyze the common
genes between LADA and T1D or T2D patients. Our study
provides a genome-wide scale to dissect the gene expression
profiles among these three subtypes of diabetes.

2. Materials and Methods

2.1. Subjects. The study protocol was approved by the Fourth
People’s Hospital of Yancheng, and written informed con-
sent was obtained. The inclusion and exclusion criteria of
patients and controls here were diagnosed based on the rules
suggested by the Chinese Diabetes Society. And these
patients do not have other severe diseases than diabetes,
which can help us reduce the potential effects of other
diseases on our transcriptome analysis.

2.2. RNA Extraction and RNA-seq. Peripheral blood mono-
nuclear cells (PBMCs) were separated from collected whole
blood using density gradient centrifugation. Total RNA was
extracted from PBMCs using a RNeasy kit (Qiagen, Valencia,
CA) and quantified with NanoDrop 1000 (Thermo Fisher
Scientific, Waltham, MA). The cDNA sequencing libraries
were prepared using Illumina’s TruSeq Sample Preparation
Kit (San Diego, CA) and the sequencing was performed using
the Illumina Genome Analyzer. RNA-seq data were analyzed
using R with various packages. The sequencing reads were
mapped to the human genome (hg19) using the TopHat
package and annotated with a GTF file. Oebiotech company
finished the sequence. The differential analysis of genes was
conducted on counts using the DESeq2 package. Differen-
tially expressed genes (DEGs) were identified as such if the
fold change > 2 and the p value < 0.05. Gene ontology (GO)
enrichment and enriched KEGG (Kyoto Encyclopedia of
Genes and Genomes) pathways were performed. All the
raw data of RNA-seq were deposited into GEO databases
(GSE136053).

2.3. Real-Time qRT-PCR. Total RNA extracted from
PBMCs was reverse transcribed using the SuperScript III
First-Strand Synthesis System (Thermo Fisher Scientific,
Waltham, MA) according to the manufacturer’s instruc-
tions. Synthesized cDNA was used to quantify the gene
expression on the Applied Biosystems 7500 Real-Time
PCR system (Applied Biosystems, Foster City, CA) using
the SYBR-green PCR master mix (Thermo Fisher Scien-

tific, Waltham, MA). The relative mRNA expression was
calculated in comparison to the control of GAPDH using
the equation 2-ΔΔCt.

2.4. Data Analysis. Data were represented as mean ± SEM.
Statistical analysis was performed with GraphPad Prism 6.0
(Graphpad Software Inc., San Diego, CA). Comparisons
between the two groups were performed using Student’s
t-test. A p value < 0.05 was considered significant.

3. Results

3.1. Identification of DEGs in LADA in Comparison with
Healthy Controls. To study the gene expression profiles in
LADA, we performed RNA-seq analysis of LADA patients
and healthy controls. In the blood of LADA patients, we
identified 277 DEGs, among which 199 genes were upregu-
lated and 78 genes were downregulated (Supplementary
Table 1). Hierarchical clustering heat map of the DEGs
revealed that 4 LADA patients were clustered together and
were distinctly separated from the clustering of 5 healthy
controls (Figure 1). These data demonstrated that LADA
exhibited unique gene expression profiles in comparison
with that of healthy controls.

3.2. Gene Ontology Analysis of DEGs in LADA. To further
characterize the functions of these DEGs, we performed gene
ontology analysis. As shown in Figure 2(a), the top 30 GO
terms were significantly enriched in 3 cellular function cate-
gories, namely biological process, cellular component, and
molecular function. Importantly, many of these enriched
GO terms are closely related to immune function, such as
positive regulation of neutrophil chemotaxis (GO:0090023),
chemokine-mediated signaling pathway (GO:0070098), and
CXCR chemokine receptor binding (GO:0045236) (Supple-
mentary Table 2). Next, we validated the gene expression of
several key genes in the top GO terms of both biological
process and molecular function categories. The real-time
RT-PCR experiment showed that PF4V1, PF4, PPBP, and
CXCL8 were significantly increased in the LADA patients
compared with the healthy controls (Figure 2(b)).

3.3. KEGG Pathway Analysis of the Transcriptome Profiles of
LADA. To understand the molecular mechanisms of these
DEGs in the pathophysiology of LADA, we performed
KEGG pathway analysis. From the KEGG pathway classifica-
tion analysis, we found that cell death and growth ranked
first in the KEGG pathway among all, indicating that these
DEGs play important roles in regulating cell survival
(Figure 3(a) and Supplementary Table 3). We validated
the expression of 8 genes in this pathway using real-time
qRT-PCR and demonstrated that CCND1, CCNE1, ITPR2,
NTRK1, and PRF1 were decreased in LADA, while
MAPK12 and SPDYC were increased in LADA compared
with the healthy controls (Figure 3(b)). Furthermore,
cytokine-cytokine receptor interaction pathway has the
most number of DEGs (Figure 4(a) and Supplementary
Table 4), indicating that this pathway plays important
roles in the development of LADA. The upregulation of
representative DEGs in this pathway was further confirmed
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by RT-PCR (Figure 4(b)). These results revealed the
autoimmune feature of LADA.

3.4. Overlapping Analysis of DEGs between LADA and T1D or
T2D. To study the relationship between LADA and
T1D/T2D, we compared the DEGs from our LADA dataset
with those from T1D or T2D from the previous study
(GSE9006) [10]. We identified 770 upregulated genes and
782 downregulated genes in T1D comparedwith healthy con-
trols by analyzing the online dataset (Supplementary Table 5).
However, only 3 commonly upregulated genes (MMP8,
GPR146, and DNLZ) and 1 commonly downregulated gene
(BNC2) were identified between LADA and T1D datasets
(Figure 5). Similarly, we identified 898 upregulated genes
and 819 downregulated genes in T2D compared with
healthy controls (Supplementary Table 6). There were 4
commonly upregulated genes (MMP8, YBX3, FAM210B,
and RGMB) but no commonly downregulated gene
identified between LADA and T2D datasets (Figure 6).

4. Discussion

Here, we did a comparative analysis of the transcriptome
profiles of LADA patients in Eastern China, followed by the

ontology and KEGG pathway analyses showing these DEGs
in LADA to be highly related to immune function and cell
death and growth, respectively. In line with the previous find-
ings [11], we also found that there are distinct transcriptome
profiles between LADA and T1D and T2D.

In T1D, β-cell destruction is thought to be largely medi-
ated by autoreactive T cells and autoantibody-induced auto-
immune attack [12, 13]. The presence of autoimmune
antibodies against β-cells is one of the diagnostic criteria of
LADA, suggesting that the immune-mediated β-cell death
also plays pivotal roles in the pathogenesis of LADA. In line
with this, the top KEGG pathway classification analysis iden-
tified cell growth and death as the top pathway in DEGs, indi-
cating that a large amount of DEGs were involved in the
regulation of cell survival in LADA.

Like other forms of diabetes, the immune response is
also critically involved in the pathogenesis of LADA. In line
with this, our RNA-seq analysis revealed that the DEGs
were enriched in GO terms of the immune response, such
as chemokine activity, chemokine-mediated signaling, and
neutrophil chemotaxis. For example, CXCL8, CCL2, and
CCL23 were confirmed to be upregulated in LADA. CXCL8
was originally identified as a potent neutrophil chemotactic
factor by acting on G-protein-coupled receptors CXCR1
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Figure 1: Identification of DEGs in the blood of LADA using RNA-seq. (a) The hierarchical clustering of the log2 fold change expression
values of DEGs in LADA. (b) The summary of upregulated and downregulated genes in LADA compared with healthy controls.

3Journal of Diabetes Research



and CXCR2 [14, 15]. Emerging evidence suggests that neu-
trophils play important roles in the pathogenesis of diabe-
tes, including LADA [16]. Gene products of CCL2 and

CCL23 are ligands for chemokine receptors CCR1 and
CCR2, respectively. Both CCL2 and CCL23 are potent che-
moattractants for monocytes [17, 18]. Increased expression

Case vs control (total): top 30 GO term
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Figure 2: GO analysis of differentially expressed genes. (a) The bar chart shows the top 30 GO terms enriched in DEGs in LADA. These GO
terms fell into 3 categories: biological process, cellular component, and molecular function. (b) Bar charts show the validation of DEGs using
RT-PCR. ∗p < 0:05; Student’s t-test, n = 3‐5 in each group.
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of neutrophil and monocyte chemoattractants may reflect
the augmented inflammation in LADA since neutrophils
act as the first-line-of-defense cells recruited to the site of
inflammation [19]. Besides, monocytes and their macro-
phage progeny play important roles in the development of
chronic inflammation [20]. The upregulation of chemokines
and chemokine-mediated signaling supports the nature of
inflammation in LADA.

Although there is the conventional perception that
immune-mediated processes are not relevant to the patho-
genesis of T2DM, low-grade inflammation that characterizes
visceral obesity is linked to an autoimmune process that
could influence the pathogenesis of T2DM [21]. Here, we
found that LADA exhibited a dramatic increase of platelet
activation-related genes, such as PF4, PF4V1, and PPBP.

These data suggest that like other types of diabetes, LADA
is also characterized by a chronic inflammatory response.
Therefore, the heterogeneity of LADA may represent a
progressive phenotypic spectrum between the twomost com-
mon forms of diabetes mellitus, T1DM and T2DM.

We also noticed that our LADA patients either had insu-
lin treatment or not (Supplementary Table 7). We found the
DEGs, which are identified between LADA and control
patients (Supplementary Table 1), showing the different
expression patterns between LADA patients with or
without insulin treatment (Supplementary Tables 8 and 9).
Expectedly, the top changed genes (e.g., SPATA6L) between
insulin treatment or non-insulin treatment LADA patients
were associated with insulin response. For example,
SPATA6L (Spermatogenesis Associated 6-Like Protein),
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Figure 3: KEGG pathway classification analysis of DEGs. (a) The bar chart shows the classification of enriched GO terms into 6 classifications
in LADA. The numbers beside each bar represent the amount of DEGs in each GO term. (b) Bar charts show the validation of DEGs using
RT-PCR. ∗p < 0:05, ∗∗p < 0:01; Student’s t-test, n = 3‐5 in each group.
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Case vs control (total): KEGG enrichment top 20
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Figure 4: KEGG pathway analysis of DEGs. (a) The advanced bubble chart shows the enrichment of DEGs in signaling pathways. The y-axis
represents signaling pathways. The x-axis represents an enrichment score. Symbol size and color represent the amount of DEGs and p value in
each pathway, respectively. (b) Bar charts show the validation of DEGs using RT-PCR. ∗p < 0:05, ∗∗p < 0:01; Student’s t-test, n = 3‐5 in
each group.
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upregulated in LADA compared to the control group
(Supplementary Table 1), had relatively higher expression
in insulin treatment LADA patients than that in non-
insulin treatment ones (Supplementary Table 8). Thais
et al. reported that SPATA6 was dysregulated in the

development of type 1 diabetes mellitus in nonobese
diabetic mice [22] and Georg et al. recently found SPATA6
to be one of the novel genes mediating β-cell failure [23].
Interestingly, these genes with similar changes (e.g.,
LGALS3, also named Galectin 3, Supplementary Table 8)

TID vs control (p < 0.05)
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LADA vs control
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Figure 5: Overlapping analysis of DEGs between LADA and T1D. (a) The heat map shows the hierarchical clustering of the DEGs in T1D
(solid green bar) and control (solid red bar) groups. Expression values in each row are z-score normalized. (b) Venn diagrams show the
overlap of commonly upregulated or downregulated genes in T1D and LADA. The identified common genes are indicated.
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Figure 6: Overlapping analysis of DEGs between LADA and T2D. (a) The heat map shows the hierarchical clustering of the DEGs in T2D
(solid red bar) and control (solid green bar) groups. Expression values in each row are z-score normalized. (b) Venn diagrams show the
overlap of commonly upregulated or downregulated genes in T2D and LADA. The identified common genes are indicated.
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between insulin treatment or non-insulin treatment LADA
patients seem to be regulated independently of insulin. Of
note, Galectin 3 (LGALS3) has been reported to cause
insulin resistance [24]. Therefore, these genes with similar
changes between insulin treatment or non-insulin treatment
LADA patients (Supplementary Tables 8 and 9) may play
important roles in insulin resistance.

There are some limitations to our study. First, although
islet-infiltrating immune cells are presumably in equilibrium
with circulating pools, they are diluted in the circulation.
Therefore, our transcriptome analysis of sampled PBMCs
may be improved by the analysis of fractionated PBMCs or
pancreatic islets, particularly about the resolution in an
understanding of the subset of cells. This idea was supported
by the analysis of fractionated PBMCs (e.g., monocyte [25]).
For example, CCL2 and EMP1were identified in our DEGs of
LADA to have a 3.3- and 2.46-fold increase, respectively
(Supplementary Table 1), while analysis of monocytes
showed they had a 4.62- and 3.49-fold increase [25]. The
differences about these fold changes of genes may lead to
more findings, evidenced by CCL2 that was found to be a
common DEG between LADA and T1D or T2D in the
analysis of monocytes [25] though it is not a common gene
in our analysis (Figures 5 and 6). Second, we identified
these DEGs in LADA with the q-PCR validation of their
gene expression. Further investigation of the regulatory
mechanism of gene expression will aid in understanding
how LADA develops. Particularly, epigenetic regulators can
precisely turn off or on gene expression upon different
stimulations. Third, more conclusions can be made by the
recruitment of a large number of patients.

Taken together, our current study showed that the DEGs
of LADA are highly involved in immune response and cell
death and survival, resembling classical types of diabetes.
On the other hand, few common DEGs between LADA and
T1D/T2D make LADA a unique type of diabetes, requiring
careful discrimination to reduce the rate of misdiagnosis
and improve therapeutic treatment.
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