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Abstract
This article studies a multi-strain epidemic model with diffusion and environmental
heterogeneity. We address the question of a control strategy for multiple strains of the
infectious disease by investigating how the local distributions of the transmission and
recovery rates affect the dynamics of the disease. Our study covers both full model
(in which case the diffusion rates for all subgroups of the population are positive) and
the ODE–PDE case (in which case we require a total lock-down of the susceptible
subgroup and allow the infected subgroups to have positive diffusion rates). In each
case, a basic reproduction number of the epidemic model is defined and it is shown
that if this reproduction number is less than one then the disease will be eradicated
in the long run. On the other hand, if the reproduction number is greater than one,
then the disease will become permanent. Moreover, we show that when the disease
is permanent, creating a common safety area against all strains and lowering the
diffusion rate of the susceptible subgroupwill result in reducing the number of infected
populations. Numerical simulations are presented to support our theoretical findings.
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1 Introduction

Implementing an effective strategy to limit infection, or if possible, completely eradi-
cating an infectious disease has always been a challenging question for public health.
In some urgent situations, portions of the population are completely locked down in
order to control an outbreak as was the case during the early of Covid-19 in some coun-
tries around the world. But the safety measures of restricting population movement
often result in an increased financial burden on the society. In addition, these safety
measures substantially affect people’s daily activities and capacity for in-person social
interactions. In some cases, people might experience mental health issues and anxiety
as consequences of the imposed control strategies. Although some of the aforemen-
tioned negative impacts can be linked to the implementation of the safety measures
requiring the restriction of population movement, they are still widely used by the
government in the fight against the spreading of deadly infectious diseases. Our goal
of this paper is to usemathematical models to assess the effectiveness of the lock-down
strategies against multiple strains.

In this work, we investigate the dynamics of the multi-strain PDE–SIS epidemic
system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂t S = dS�S +∑k
i=1 γi (x)Ii − S

∑k
i=1 βi (x)Ii

S+∑k
j=1 I j

x ∈ �, t > 0,

∂t Ii = di�Ii − γi (x)Ii + βi (x)
SIi

S+∑k
j=1 I j

x ∈ �, t > 0,

dS
∂S
∂ �n = di

∂ Ii
∂ �n = 0 x ∈ ∂�, t > 0,

N = ∫
�
[S(0, x) +∑k

i=1 Ii (0, x)]dx > 0

(1)

in a bounded domain� ⊂ R
n with smooth boundary ∂�, n is a positive integer, and �n

is the outer unit normal vector on ∂�. The PDE–SIS system (1) supposes that there are
k ≥ 1 strains of the diseasewith Ii (t, x) denoting the density of the infected population
with the i th strain for each i = 1, . . . , k, and S(t, x) is the density function of the
susceptible subgroup of the population. For each i = 1, . . . , k, βi and γi are positive
Hölder continuous functions on � and denote the transmission and recovery rates of
the i th strain of the disease, respectively. N , a given positive number, denotes the total
size of the population. The constant dS > 0 is the diffusion rate of the susceptible
group, while the positive constant di , i = 1, . . . , k, is the diffusion rate of the infected
population with the i th strain. It is assumed that there is no co-infection of the host
with two or more strains of the disease. We further impose no-flux boundary condition
on ∂�.

The PDE–SIS model (1) is a generalization of the multi-strain ODE-SIS infection
disease system studied in Bremermann and Thieme (1989). The single strain model of
(1), that is k = 1, was first proposed byAllen et al. (2008) to study the impact of spatial
heterogeneity of the environment and movement of individuals on the persistence and
extinction of a disease. In Allen et al. (2008), the basic reproduction number R0 is
defined for the single strain PDE–SIS model and it is established there that besides
the disease-free equilibrium, the system has a (unique) endemic equilibrium if and
only if R0 > 1. The basic reproduction number R0 of the single strain model is
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independent of dS, the diffusion rate of the susceptible subgroup, and depends solely
on the diffusion rate of the infected group, the transmission and recovery rates. Allen et
al. further introduced the concept of low risk region inAllen et al. (2008), i.e., locations
where the local basic reproduction number is smaller than one. They showed that if
there is a low risk region, restricting the movement of the susceptible population could
substantially reduce the size of the infected populations. The stability of the endemic
equilibrium of the single strain model is studied in Peng and Liu (2009). We refer to
Cui et al. (2017), Cui and Lou (2016), Deng (2019), Deng andWu (2016), Gao (2019),
Ge et al. (2015), Li et al. (2017), Li et al. (2020), Liu and Lou (2021), Peng (2009),
Peng and Yi (2013), Peng and Zhao (2012), Song et al. (2018), Wu and Zou (2016)
and references therein for more recent progress.

The papers Tuncer and Martcheva (2012), Wu et al. (2017) considered the two-
strain model, that is k = 2. In Tuncer and Martcheva (2012), the authors introduced
the invasion numbers of the two-strain PDE–SIS model (1) and showed analytically
and numerically that if both invasion numbers are larger than one, then there is a coex-
istence equilibrium. The authors ofWu et al. (2017) also studied the two-strain system
and investigated analytically under what conditions the model leads to competitive
exclusion, and what characteristics of the model imply coexistence. In particular, it is
shown in Wu et al. (2017) that if the transmission and recovery rates are constants,
the two-strain PDE–SIS model (1) does not have a coexistence endemic equilibrium.
It is also shown in Wu et al. (2017) that if all the diffusion rates are equal and suffi-
ciently small, then both strains of the disease may coexist provided that each strain
has a nonempty region in which its local reproduction number is the largest and it
is also greater than one. We refer the interested reader to Ackleh and Allen (2003),
Ackleh and Allen (2005), Ackleh et al. (2016), Levin and Pimentel (1981), Mena-
Lorca and Velasco-Hernandez (1995) and the references therein for some studies of
the multi-strain ODE infectious disease models.

The main aim of this paper is to study how to implement control strategies when
there are multiple strains. For a single strain, the earlier works of Allen et al. (2008)
suggested that decreasing the diffusion rate of the susceptible population could be an
effective control strategy, provided that there is a low risk region. A natural question
is whether such control strategy remains effective for multiple strains. Our findings
suggest that the existence of a common low risk region for all strains is critical. More
specifically,

1. Even if the infectious disease becomes endemic, as long as there is a common
low risk area for all its strains, the total size of the infected individuals can be
significantly reduced by restricting the movement of the susceptible subgroup of
the population (see Theorem 2.3).

2. In the absence of a common low risk area for all strains of the disease, it is possible
that each strain persists no matter how the movement of the susceptible subgroup
is being restricted (see Theorem 2.4).

As noted above, these results suggest that creating a common low-risk region and
restricting the movement of the susceptible subgroup can be effective strategies for
the control of multi-strain infectious diseases. Furthermore, our result (Theorem 2.5)
indicates that a complete lock-down of the susceptible hosts only, that is dS = 0

123



10 Page 4 of 47 Y. Lou, R. B. Salako

and di > 0 for each i = 1, . . . , k, will substantially weaken the capability of the
disease to spread if there is a common low risk region. We hope that these studies can
provide some insight into the impacts of movement of populations and environmental
heterogeneity upon the spatial spread of multi-strain infectious diseases.

The rest of the paper is organized as follows. Section 2 is devoted to the statement of
themain theoretical results. Section3provides biological interpretations andnumerical
simulations of our theoretical results. The proofs of the main results are presented in
Appendices A, B and C.

2 Main Results

In this section, we state our results. We first introduce some notations and definitions.
Next, we state our results when dS > 0 and then discuss the results for the case dS = 0.

2.1 Notations and Definitions

In the current subsection, we introduce some notations and definitions. Let C(�)

denote the Banach space of uniformly continuous functions on � endowed with
the sup-norm. We denote by C+(�) the closed subset of C(�) consisting of non-
negative functions. Given (S(0, ·), I1(0, ·), . . . , Ik(0, ·)) ∈ [C+(�)]k+1, we denote
by (S(t, ·), I1(t, ·), . . . , Ik(t, ·)) the unique classical solution of (1) with initial
condition (S(0, ·), I1(0, ·), . . . , Ik(0, ·)) and defined on its maximal interval of exis-
tence [0, Tmax ), where Tmax ∈ (0,∞]. It follows from the maximum principle
that (S(t, ·), I1(t, ·), . . . , Ik(t, ·)) ∈ [C+(�)]k+1 for every t ∈ (0, Tmax) and that
Tmax = ∞. Throughout this work, we are only interested in non-negative solutions of
(1). For convenience, we introduce the hypothesis

(A) (S(0, ·), I1(0, ·), . . . , Ik(0, ·)) ∈ [C+(�)
]k+1

and N =
∫

�

[
S(0, x) +

k∑

i=1

Ii (0, x)
]
dx .

It is important to note that hypothesis (A) is invariant for solutions of (1). Throughout
this work, we shall always suppose that hypothesis (A) holds. We say that a classi-
cal solution (S(t, x), I1(t, x), . . . , Ik(t, x)) of (1) has a positive initial condition if
Ii (0, ·) ≥, �= 0 for each i = 1, . . . , k and S(0, ·) ≥, �= 0.

A function (S(x), I1(x), . . . , Ik(x)) is said to be an equilibrium solution of (1) if it
is a time-independent solution of (1), that is, it solves the system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 = dS�S +∑k
i=1 γi Ii − S

∑k
i=1 βi Ii

S+∑k
j=1 I j

x ∈ �,

0 = di�Ii + βi
S Ii

S+∑k
j=1 I j

−γi Ii x ∈ �, i = 1, . . . , k,

0 = dS
∂S
∂ �n = di

∂ Ii
∂ �n x ∈ ∂�, i = 1, . . . , k,

N = ∫
�
[S +∑k

i=1 Ii ].

(2)
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A solution of system (2) of the form (S, 0, . . . , 0) is called a disease-free equilibrium
(DFE). It is easy to see that the only DFE of (1) is ( N

|�| , 0, . . . , 0) when dS > 0. An
equilibrium solution for which at least one of its Ii component being positive is called
an endemic equilibrium (EE). A coexistence EE is an EE for which Ii > 0 for every
i = 1, . . . , k.

For each i = 1, . . . , k, set

R0,i := sup

{ ∫

�
βiϕ

2

∫

�

[
di |∇ϕ|2 + γiϕ2

] : ϕ ∈ H1(�) \ {0}
}

.

Thanks to the work of Allen et al. (2008) on the single-strain PDE–SIS model (1)
with dS > 0,R0,i is the basic reproduction number of the i th strain when considered
as the only strain of the disease. It is shown in Allen et al. (2008) that for every i =
1, . . . , k, a single-strain EE, (S∗, 0, . . . , I ∗

i , 0, . . . , 0), exists if and only if R0,i > 1.
For convenience, set

R0 := max{R0,i : i = 1, . . . , k}.

Aswe shall see later,R0 is the basic reproduction number of themulti-strain PDE–SIS
model (1) when dS > 0.

Next, for each i = 1, . . . , k, consider the “local basic reproduction number” func-
tion for the i th strain

Ri (x) := βi (x)

γi (x)
∀ x ∈ �

and define the sets

H−
i := {x ∈ � : Ri (x) < 1} and H+

i := {x ∈ � : Ri (x) > 1}.

For i th strain, we refer H−
i as the low-risk area and H+

i as its high-risk area, respec-
tively.

As in the above, we also introduce the function

R(x) := max{Ri (x) : i = 1, . . . , k} x ∈ �,

the set

H− := {x ∈ � : R(x) < 1} = ∩k
i=1H−

i ,

and the quantity

R0 := min
x∈�

R(x).

The functionR(x) can be understood as the local reproduction number of the disease
while the set H− is the common safety area for all strains. This set turns out to be of
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particular importance when we study the multi-strain model (1) with dS = 0. Observe
that H− is nonempty if and only if R0 < 1. In studying the PDE–SIS model with
dS = 0, the number R0 will be of interest.

Finally, to capture the region of the dominance of i th strain, we introduce the sets

�i := {x ∈ � : Ri (x) > max
{
R j (x) : j �= i, j = 1, . . . , k

}}
, i = 1, . . . , k.

Clearly, for each i = 1, . . . , k, the i th strain has the highest local basic reproduction
number on the set �i . Whence �i will be referred to as the dominant area for i th
strain.

2.1.1 Main Results When dS > 0

All the results stated in the current subsection are for the case dS > 0 and di > 0 for
each i = 1, . . . , k. Our first result is on the stability of the DFE, which depends on
the basic reproduction number R0.

Theorem 2.1 Let k ≥ 2 and (S(t, ·), I1(t, ·), . . . , Ik(t, ·)) be a classical solution of
(1) with a positive initial data satisfying hypothesis (A). The following conclusions
hold:

(i) If R0,i ≤ 1 for some i ∈ {1, . . . , k}, then ‖Ii (t, ·)‖∞ → 0 as t → ∞.
(ii) If R0 ≤ 1, then ‖S(t, ·) − N

|�| ‖∞ +∑k
i=1 ‖Ii (t, ·)‖∞ → 0 as t → ∞.

(iii) If R0 > 1, then there is some constant m∗ > 0, independent of initial data, such
that

lim inf
t→∞ min

x∈�

k∑

i=1

Ii (t, x) ≥ m∗. (3)

It follows from Theorem 2.1-(iii) that the disease persists when R0 > 1 in the
sense of (3). The next result provides sufficient conditions for the extinction of some
strains of the disease even if their reproduction numbers are greater than one.

Theorem 2.2 Let k ≥ 2, d1 = · · · = dk = d and suppose that R0 > 1, so that the
disease persists. Let (S(t, ·), I1(t, ·), . . . , Ik(t, ·)) be a classical solution of (1) with a
positive initial data satisfying hypothesis (A). The following conclusions hold:

(i) If β1 = · · · = βk and γ1 < min2≤i≤k γi , then ‖(I2(t, ·), . . . , Ik(t, ·))‖∞ → 0 as
t → ∞.

(ii) If γ1 = · · · = γk and β1 > max2≤i≤k βi , then ‖(I2(t, ·), . . . , Ik(t, ·))‖∞ → 0
as t → ∞.

(iii) If βi = β̂i g, γi = γ̂i h, where β̂i and γ̂i are positive constants for each
i = 1, . . . , k and g, h are positive Hölder continuous functions, β̂1 ≥
max{β̂ j : j = 2, . . . , k}, and β̂1

γ̂1
> max{ β̂ j

γ̂ j
: j = 2, . . . , k}, then

‖(I2(t, ·), . . . , Ik(t, ·))‖∞ → 0 as t → ∞.
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(iv) If dS = d, Ri is constant for all i = 1, . . . , k, with R1 > max{R j : j =
2, . . . , k}, then (S(t, ·), I1(t, ·), . . . , Ik(t, ·)) → ( N

|�|R1
, N

|�|
(
1− 1

R1

)
, 0, . . . , 0)

as t → ∞, uniformly in x ∈ �.

We point out that if dS = d, in addition to the hypotheses of Theorem 2.2 (i), (i i),
and (i i i), it can be shown that solutions will converge to the first single-strain EE as
t → ∞. It would be interesting to know whether the results of Theorem 2.2 hold for
strains with different diffusion rates. In this direction, we would like to point out that
in (Tuncer and Martcheva 2012, Theorem 3.2), it is established that the two-strain
PDE–SIS model has no coexistence EE for any choice of diffusion rates d1, d2 and
dS when the infection and recovery rates are all positive constant numbers. Also, it
can be shown (see Bremermann and Thieme 1989) that if (S(t), I1(t), . . . , Ik(t)) is
a positive solution of the ODE-system of (1), that is no diffusion, the population is
uniformly distributed over its habitat and the infection and recovery rates are positive
constant numbers, then

Ii (t) = Ii (0)

[
I j (t)

I j (0)

] βi
β j

e

(
1

R j
− 1

Ri

)
βi t ∀ t > 0, i, j = 1, . . . , k. (4)

It follows from Eq. (4) that if R j > Ri , then Ii (t) → 0 as t → ∞. This shows

that for the multi-strain ODE-SIS model, the strain with the largest reproduction num-
ber outcompetes the other strains and drive them to extinction. This is known as the
competition exclusion principle. Hence, Theorem 2.2 confirms the competition exclu-
sion principle when the local basic reproduction functions Ri are constant positive
numbers and the susceptible host and the infected population all have equal diffusion
rates. It is worthmentioning thatWu et al. (2017) also shows the competition exclusion
principle for the two-strain PDE–SIS model (1) when both the recovery and infection
rates are positive constant numbers, the diffusion rates are equal, R1 > R2 > 1 and
1 + 1

R1
< 2

R2
.

It is important to note that R0 is independent of the susceptible host diffusion
rate dS, which implies that the persistence of the disease and hence the existence of
single strain EE is not affected by the susceptible host movement. So, it becomes
interesting to know whether a total lock-down of the susceptible host or a limitation
of its diffusion rate are good control strategies for reducing the impact of the disease
within the population. To this end, we study the asymptotic limit of EE when dS tends
to 0. The case of dS = 0 will be discussed in the next subsection when we present
our results for that case. An interesting result by Allen et al. (2008), Cui et al. (2017)
for the single-strain model states that in environment with nonempty low-risk area,
the size of infected population at equilibrium is proportional to the susceptible host
movement rate dS as dS tends to zero. Our next result shows that a similar result holds
for the multi-strain model (1).

Theorem 2.3 Assume that H− �= ∅. Then there exists a positive constant M, inde-
pendent of dS, such that if (S(x), I1(x), ..., Ik(x)) is a coexistence EE of (1), it holds
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that

1

M
≤
∑k

i=1 Ii (x)

dS
≤ M ∀ 0 < dS < 1, x ∈ �. (5)

Theorem 2.3 shows that in an environment with a nonempty common safety area
for all the strains of the disease, restricting the susceptible group movement helps to
reduce the impact of the disease on the population, at least at the steady-state level. It
turns out that when H− = ∅, the assertion of Theorem 2.3 does not hold in general.
In this direction, we have the following result:

Theorem 2.4 Let k = 2 and suppose that R > 1 on �, R1 − R2 changes sign
on �, β1

β2
is constant, and βi , γi ∈ C2(�̄) for i = 1, 2. Let D1 and D2 be two

given positive numbers and set di = εDi , i = 1, 2. There is ε̃∗ > 0, such that for
every 0 < ε < ε̃∗, there is d∗

ε > 0 such that (1) has a coexistence EE, denoted as
(S∗(·, dS, ε), I ∗

1 (·, dS, ε), I ∗
2 (·, dS, ε)), for every 0 < dS < d∗

ε . Furthermore, for every
0 < ε < ε̃∗, (S∗(·, dS, ε), I ∗

1 (·, dS, ε), I ∗
2 (·, dS, ε)) → (S∗(·, ε), I ∗

1 (·, ε), I ∗
2 (·, ε)) as

dS → 0 uniformly in �, where (S∗(·, ε), I ∗
1 (·, ε), I ∗

2 (·, ε)) is the unique positive
solution of

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S∗(·, ε) =
∑2

i=1 γi I ∗
i (·,ε)·∑2

i=1 I ∗
i (·,ε)

∑2
i=1(Ri −1)γi I ∗

i (·,ε) x ∈ �,

0 = di�I ∗
i +

(

βi

∑2
i=1 γi I ∗

i∑2
i=1 βi I ∗

i
− γi

)

I ∗
i x ∈ �, i = 1, 2,

0 = ∂�n I ∗
i x ∈ ∂�, i = 1, 2,

0 < min{S∗(x, ε), I ∗
1 (x, ε), I ∗

2 (x, ε)} x ∈ �.

(6)

For k = 2, R1 − R2 changes sign if and only if both �1 and �2 are nonempty.
Recall that �i is the dominant area of the i th strain. Hence, Theorem 2.4 illustrates
that if each strain has a nonempty dominant area but there is no common safety zone
for both strains, it is possible for two strains to be permanent even if the diffusion
rate of the susceptible host is significantly small. In fact, the assertion of Theorem 2.4
follows from Theorem 4.5 (see Sect. 4.2) which provides sufficient hypotheses for the
existence of coexistence EE when the rate of movement for the susceptible population
is small.

2.1.2 Main Results When dS = 0

All the results stated in the current subsection are for the case dS = 0 and di > 0 for
each i = 1, . . . , k. Our first result is on the extinction of the disease when R0 < 1.

Theorem 2.5 Suppose that R0 < 1. Let (S(t, x), I1(t, x), . . . , Ik(t, x)) be a positive
classical solution of (1). Then there is a non-negative function S∗ ∈ C(�) such that

lim
t→∞

[

‖S(t, ·) − S∗(·)‖∞ +
k∑

i=1

‖Ii (t, ·)‖∞

]

= 0. (7)
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Moreover, by introducing the set J+ := {x ∈ � : S∗(x) = 0}, the followings hold:

(i) If R0 > 1, then the set J+ is nonempty and contained in ∪k
i=1(�∩ H+

i ). Further-
more, both sets J+ and ∪k

i=1(� ∩ H+
i ) \ J+ have positive measures.

(ii) If R0 < 1, then ‖∑k
i=1 I (t, ·)‖∞ decays exponentially as t → ∞ and there is

m0 > 0 such that the set J+ is empty whenever ‖∑k
i=1 Ii (0, ·)‖∞ < m0S(0, ·).

Assume that Ri (x) = R(x) is independent of i and that dS = 0. By Theo-
rem 2.5, if R0 < 1, that is H− is not empty, then (7) holds for every solution
(S(t, x), I1(t, x), . . . , Ik(t, x)) of (1). However, if R0 > 1, that is � = H+

1 , system
(1) has a continuum of coexistence endemic equilibria (Se(x), Ie,1, . . . , Ie,k) given
by

Se(x) = N

(R(x) − 1)
[ ∫

�
R

R−1dy
] and

Ie,i (x) ≡ ci > 0 with
k∑

i=1

ci = N
∫

�
R

R−1dy
.

Recall that the set H− is the common safety region for all the strains of the disease
and that R0 < 1 if and only if H− is nonempty. Hence, Theorem 2.5 shows that if
dS = 0 and there is a nonempty common safety region for all the strains of the disease,
then all the strains of the disease will be eradicated in the long run. This result seems
to be new even for the case k = 1. Our results below will show that the statement
of Theorem 2.5 might not hold if H− = ∅. The next two results are concerned with
the single-strain model. The first result is on the existence of steady states for single
strain, while the second result complements Theorem 2.5 and establishes the stability
of the EE.

Theorem 2.6 Suppose that k = 1.

(i) If R0 < 1, then (1) has only disease-free equilibrium solutions which are of the
form (S∗(x), 0) where S∗ ∈ C(�) and satisfies

N =
∫

�

S∗dx and S∗(x) ≥ 0 ∀ x ∈ �. (8)

(ii) If R0 > 1, then in addition to the disease-free equilibria listed in (i), (1) has a
unique endemic equilibrium (Se(x), Ie(x)) given by

Se(x) = Ie

R1(x) − 1
and Ie = N

∫

�
R1

R1−1dx
. (9)

Remark 2.7 Suppose that k = 1. We make the following comments about Theorem
2.6.

(i) IfR0 = 1 and β1/(β1 −γ1) /∈ L1(�), then (1) has only disease-free equilibrium
solutions which are of the form (S∗(·), 0) with S∗ satisfying (8).
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(ii) If R0 = 1 and β1/(β1 − γ1) ∈ L1(�), then (1) has measurable and unbounded
EE

(S(x), I (x)) =
(

Nχ
H− (x)

(R(x) − 1)
∫

�
R

R−1dy
,

N
∫

�
R

R−1dy

)

x ∈ �

where χ
H− denotes the indicator function of the set H−. It is important to note

that, whenR0 ≤ 1, continuous disease-free equilibrium are the only continuous
equilibrium solutions of (1).

We complete the list of results on the single strain model with a result on the
stability of endemic equilibrium when the whole habitat consists of only high-risk
environment.

Theorem 2.8 Suppose that k = 1 and R0 > 1. Let (Se(x), Ie(x)) be the unique
endemic equilibrium given by Theorem 2.6 (i i). Then given any positive initial data
(S(0, x), I (0, x)), its corresponding unique classical solution (S(t, x), I (t, x)) of (1)
satisfies

lim
t→∞(‖S(t, ·) − Se(·)‖∞ + ‖I (t, ·) − Ie(·)‖∞) = 0. (10)

Thanks to Theorems 2.5, 2.6 & 2.8, if R0 < 1 and dS = 0, then the single-
strain disease will be eradicated and there is no endemic equilibrium. However, if
R0 > 1, then the single-strain disease will become permanent and every solution
will converge to the unique endemic equilibrium. Hence, the quantity R0, which is
independent of the diffusion rate d1 of the infected subgroup, plays the role of the basic
reproduction number of (1) when dS = 0. For each i = 1, . . . , k, it is well known

that R0,i ≥
∫

� βi∫

� γi
for every di > 0, and equality holds if and only if Ri is constant.

Hence, for example when k = 1, it holds that R0 ≤ infd1>0 R0,1, and equality holds
if and only if R1 is constant. This shows that when the local reproduction rates are
space homogeneous then a total lock-down of the susceptible host helps in lowering
the disease’ reproduction number.

We complete the list of our results with a result on the existence of coexistence EE
when H− is empty, dS = 0 and k = 2.

Theorem 2.9 Suppose that k = 2, R0 > 1 and both �1 and �2 are nonempty.
Let D1 and D2 be two positive real numbers and set di = εDi for each i = 1, 2.
Then there is ε̃∗ > 0 such that for every 0 < ε < ε̃∗, (1) has a coexis-
tence EE, denoted by (S∗(·, ε), I ∗

1 (·, ε), I ∗
2 (·, ε)). Moreover, if β1

β2
is constant, then

(S∗(·, ε), I ∗
1 (·, ε), I ∗

2 (·, ε)) is the only coexistence EE solution of (1) for every
0 < ε < ε̃∗.

We note from Theorem 2.9 that in the event of a complete lock-down of the suscep-
tible hosts and absence of a common safety zone, the multi-strain disease may persist
even if each of its strains has a nonempty low risk area.
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3 Discussion

In the current work, we study a system of nonlinear partial differential equations
modeling the dynamics of a multi-strain infectious epidemic disease. We consider a
finite number of strains (k ≥ 2) of the infectious disease and allow the recovery and
infection rates for each strain to be spatially heterogeneous. Our multi-strain PDE–SIS
epidemic model is a generalization of the single-strain PDE–SIS model introduced in
Allen et al. (2008). We study the disease dynamics in both full model (by allowing all
the diffusion rates to be positive) and the degenerate ODE-PDE model (by limiting
the diffusion rate dS of the susceptible subgroup S to zero). Our epidemic model with
dS = 0 models the situation of a total lock-down of the susceptible host. We allow
the diffusion rate of each infected subgroup to be positive. One reason for such choice
of the diffusion rates is to permit the infected members of the population to seek for
medical treatment by allowing them some degree of freedom in their movement, while
ordering a total stay at home of the non-infected population.

When dS > 0,we define the basic reproduction numberR0 of themulti-strain PDE–
SIS model to be the maximum of the basic reproduction numbersR0,i , i = 1, . . . , k,
of the single-strain PDE–SIS epidemic models. Since each of the single-strain basic
reproduction number is independent of the susceptible host diffusion rate dS, thenR0
is independent of dS as well. We then show in Theorem 2.1 that all the strains of the
infectious disease will be controlled and be eradicated in the long run if the basic
reproduction numberR0 is less or equal to one. However, if the reproduction number
R0 is larger than one, then the disease will become permanent in the population.
Then we seek to understand which of the strains of the disease will persist if R0 is
bigger than one. In Theorem 2.2, we show that when the whole population has equal
diffusion rate and the disease’ local basic reproduction functions are positive constant
numbers, then only the strain with the largest reproduction number can persist while
all the remaining strains will go extinct in the long run. This phenomenon is known
as the competition exclusion principle for different pathogens of the same disease as
mentioned before. Figure 1 shows simulations of this competition exclusion principle
for two- and three-strain models.

As the diffusion rate dS > 0 of the susceptible host does not affect the permanence
of the infectious disease, it is natural to ask whether reducing the size of dS would
lower the impact of the disease on the population once it is permanent. To this end,
we study the asymptotic limit of endemic equilibrium solutions of the fully parabolic
multi-strain PDE–SISmodel as dS tends to zero. Our result (Theorem2.3) shows that if
there is a common safety region against all the strains of the disease, then the total size
of the infected subgroup of the population at endemic equilibrium is proportional to the
susceptible host diffusion rate dS as dS tends to zero. On the other hand, Theorem 2.4
shows that the later result is false when there is no common safety region against all
the strains. These results suggest that reducing the susceptible host movement is an
effective control strategy to lower the impact of a disease on a population when there
is a common safety area against all the strains. Figure 2 shows simulations illustrating
the permanence of more than one strain of the disease when there is no common safety
region against all the strains even though each strain has a nonempty safety area.
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Fig. 1 a Simulations of solutions for two-strain ODE system with (β1, γ1) = (3, 2) and (β2, γ2) =
(4, 3) and initial (S(0), I1(0), I2(0)) = (3, 1, 2). Hence, N = 6 and (S∗

1 , I∗
1,1, I∗

2,1) = (4, 2, 0) and

(S∗
2 , I∗

1,2, I∗
2,2) = ( 92 , 0, 3

2 ) are the two single-strain EE solutions. The simulation shows that strain one
outcompetes strain two and drives it to extinction. b Simulations of solutions for three-strain ODE system
with (β1, γ1) = (3, 2), (β2, γ2) = (4, 3), and (β3, γ3) = (5, 4) and initial (S(0), I1(0), I2(0), I3(0)) =
(3, 1, 2, 3). Hence, N = 9 and (S∗

1 , I∗
1,1, I∗

2,1, I∗
3,1) = (6, 3, 0, 0), (S∗

2 , I∗
1,2, I∗

2,2, I∗
3,2) = ( 274 , 0, 8

4 , 0),

and (S∗
3 , I∗

1,3, I∗
2,3, I∗

3,3) = ( 365 , 0, 0, 9
5 ) are the three single-strain EE solutions. The simulation shows

that strain one drives strains two and three to extinction

To better understand how the movement of the susceptible host impacts the spread
of the disease, we also study the dynamics of the multi-strain PDE–SIS model with
dS = 0, i.e., there is a total lock-down of the susceptible host. In the case of the
single-strain model, our results in Theorems 2.5 and 2.8 provide a fairly complete
picture of the dynamics. These results show that the outcome of the disease depends
delicately on the local basic reproduction number R1 for the single-strain model. In
particular, it follows from Theorems 2.5 and 2.8 that for the single-strain model and
a total lock-down of the susceptible host, the existence of a low risk area for all the
strains of the disease is enough to eradicate the disease in the long run. However if
the whole habitat consists of only high-risk area to the disease, then the disease will
persist and the population will stabilize at the unique endemic equilibrium. In view
of these results, we may conclude that a total lock-down of the susceptible host is a
good control strategy leading to the eradication of the disease only if some additional
safety measures are implemented to create a safety area for the disease. Simulations
in Figs. 3 and 4 confirm these theoretical results. An interpretation of these results is
that even in the event of a total lock-down of the susceptible host during the outbreak
of a multi-strain infectious disease, it is indispensable to create a common safety area
for all the strains if one wishes to eradicate the disease.
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NSF grant DMS-1853561.
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Fig. 2 a Simulations of solutions at time t = 100 for two-strain PDE–SIS system with γ1 = γ2 = 1,
β1(x) = 1.25 − 12x and β2(x) = 0.4 + x on � = [0, 1]. The initial data are S(0, x) = 2 + cos(πx),
I1(0, x) = 3 + cos(πx), and I2(0, x) = 4 − cos(πx). Hence, R1 := R1 = β1 and R2 := R2 = β2. The
diffusion rates are dS = 10−11 and d1 = d2 = 10−6. The graphs of R1 and R2 show that the common
safety area, H− = (0.02, 0.6), against two strains is nonempty. The simulations I1(x) := I1(100, x) and
I2(x) := I2(100, x) are for steady states of Theorem 2.3. b Simulations of solutions at time t = 100 for
two-strain PDE–SIS system with β1(x) = 2 + 4x , γ1(x) = 2.5 + x , β2(x) = 5 − 4x and γ2(x) = 3 − x
with initial data S(0, x) = 2+cos(πx), I1(0, x) = 3+cos(πx), and I2(0, x) = 4−cos(πx). The diffusion
rates are all equal, dS = d1 = d2 = 0.0001. The graphs of R1 = R1 and R2 = R2 are also given. The
simulations show that both strains persist and that each strain drives the other to extinction on the set where
its local basic reproduction function is the largest. Both H−

1 and H−
2 are non-empty sets and that H− = ∅.

The simulations I1(x) = I1(100, x) and I2(x) = I2(100, x) are for steady states of Theorem 2.4

Fig. 3 Illustration of Theorem 2.5. Simulations of solutions of (1) on � = (0, 1) with the choice of
parameters: dS = 0, d1 = 1, β1(x) = 2 + 4x , γ1 = 3 + x . We take the initial data (S(0, x), I (0, x)) =
(3 + cos(πx), 2 + cos(πx)), hence N = 5. The graph in (a) is the graph of R1. The graphs in (b) are
simulations of the solutions at different times

Appendix A: Proofs of Theorems 2.1, 2.2 and 2.3

This section is devoted to the proofs of Theorems 2.1, 2.2 and 2.3. First, we derive
some estimates on solutions. Let us denote by {et�}t≥0 the heat-semigroup on L p(�),
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10 Page 14 of 47 Y. Lou, R. B. Salako

Fig. 4 Illustration of Theorem 2.9. Simulations of solutions of (1) on � = (0, 1) with the choice of
parameters:dS = 0,d1 = 1,β1(x) = 2.5+4x ,γ1 = 2+x . (S(0, x), I (0, x)) = (3+cos(πx), 2+cos(πx)),
hence N = 5. The graph in (a) is the graph of R1. The graphs in (b) are simulations of the solutions at
different times. We see from Fig. (b) that the graphs of the simulations S(t, ·) converge to the graph of
Se(x) uniformly in x ∈ [0, 1]

p > n subject to no-flux condition on ∂�. It follows from (Quittner and Souplet 2007,
Proposition 48.4*-(f)) that there is a positive constant C∗ depending on � and the
space dimension n such that

‖et�φ‖∞ ≤ [C∗ min{t, 1}]− n
2 ‖φ‖L1(�) ∀ φ ∈ L1(�). (11)

For convenience, for f = β or f = γ , we let

f = min{ fi (x) : x ∈ �, i = 1, . . . , k} and f = max{‖ fi‖∞ : i = 1, . . . , k}.

Let k ≥ 1 be fixed and (S(t, x), I1(t, x), . . . , Ik(t, x)) be a classical solution of (1).
Observe that for each i = 1, . . . , k, Ii (t, x) satisfies

{
∂t Ii = di�Ii + Fi (t, x)Ii x ∈ �, t > 0,

0 = ∂�n Ii x ∈ ∂�, t > 0,
(12)

with Fi = βi
S

S+∑k
j=1 I j

− γi satisfying ‖Fi‖∞ ≤ ‖βi + γi‖∞ ≤ β + γ < ∞. Note

also that

N =
∫

�

(S(t, x) +
k∑

i=1

Ii (t, x))dx ∀ t ≥ 0 (13)
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since assumption (A) holds and that

d

dt

∫

�

[

S(t, ·) +
k∑

i=1

Ii (t, ·)
]

=
∫

�

[

dS�S +
k∑

i=1

di�Ii

]

= 0 ∀ t > 0.

Hence, by (11), (12), (13) and the comparison principle for parabolic equations, we
have

‖Ii (t + t0, ·)‖∞ ≤ et(β+γ )‖etdi � Ii (t0, ·)‖∞ ≤ et(β+γ )[C∗ min{tdi , 1}]− n
2 N

for every t > 0, t0 > 0 and i = 1, . . . , k. Therefore, letting ct0 = ∑k
i=1 ct0,i where

ct0,i = e
t0
2 (β+γ )[C∗ min{ di t0

2 , 1}]− n
2 for every t0 > 0 and i = 1, . . . , k, we conclude

that

k∑

i=1

‖Ii (t, ·)‖∞ ≤ ct0 N ∀ t ≥ t0, dS ≥ 0. (14)

Moreover, the regularity theory for parabolic equations (Henry (1981)) yields that the
map

[1,∞) � t �→ Ii (t, ·) ∈ C1+θ (�) is continuous (for every dS ≥ 0), i = 1, . . . , k,

(15)

for 0 < θ � 1. Note also that since Ii satisfies (12) for each i , by the Harnack
inequality for linear parabolic equations (Húska 2006, Theorem 2.1), for every t0 > 0
there is c̃t0 independent of dS such that

Ii (t, x) ≤ c̃t0 Ii (t, y) ∀ t ≥ t0, x, y ∈ �,∀ dS ≥ 0, i = 1, . . . , k. (16)

Now suppose that dS > 0 and observe from (14) and the equation satisfied by S(t, x)

that

∂t S ≤ dS�S + c1Nγ t ≥ 1, x ∈ �.

Thus, by the comparison principle for parabolic equations and recalling inequality
(11),

S(1 + t) ≤edS�S(t) +
∫ 1

0
e(1−s)dS� (c1Nγ ) ds ≤ edS�S(t) + c1Nγ

≤ ‖S(t)‖L1

[C∗ min{dS, 1}] n
2

+ c1Nγ ≤ N

[C∗ min{dS, 1}] n
2

+ c1Nγ ∀ t > 0.

(17)

The following result shows that the susceptible host S(t, x) persists uniformly in
x ∈ �.
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Lemma 3.1 There is a positive constant C∗, depending only on �, such that

S(t + t ′, x) ≥ C∗e−tβ

|�|
{ ∫

�
S(0, x) + γ N

γ + β
(1 − e−(γ+β)t ′

)
}
, t ′ > 0, t ≥ 1

dS
, x ∈ �.

Hence,

lim inf
t→∞ min

x∈�

S(t, x) ≥ M∗ := γ NC∗e
− β

dS

|�|(γ + β)
.

Proof First, observe from (13) that

d

dt

∫

�

S =
∫

�

k∑

i=1

γi Ii −
∫

�

S

∑k
i=1 βi Ii

S +∑k
i=1 Ii

≥ γ

∫

�

k∑

i=1

Ii − β

∫

�

S = Nγ − (γ + β)

∫

�

S.

Hence, by the comparison principle for ODE,

∫

�

S(t, x)dx ≥
∫

�

S(0, x)dx + γ N

γ + β
(1 − e−(γ+β)t ) ∀ t > 0. (18)

Next, since

∂t S(t) ≥ dS�S −
∥
∥
∥

∑k
i=1 βi Ii

S +∑k
j=1 I j

∥
∥
∥∞S ≥ dS�S − βS, ∀ t > 0,

then

S(t + t0) ≥ e−tβetdS�S(t0) ∀ t > 0, t0 > 0, (19)

by the comparison principle for parabolic equations. Recalling the Harnack inequality
(Húska 2006, Theorem 2.5) , we know that there is a positive constant C∗ depending
on � such that

(
et�φ

)
(x) ≥ C∗(et�φ)(y) ∀ t ≥ 1, y, x ∈ �, φ ∈ C+(�),

which together with (19) yield that

S (t + t0, x) ≥ C∗

|�|e−βt‖S(t0)‖L1(�), t0 > 0, t ≥ 1

dS
, x ∈ �.

Whence, in view of (18), we deduce the assertion of the lemma. ��
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Next, for each i = 1, . . . , k, let λ∗(di , βi − γi ) denote the principal eigenvalue of
the linear elliptic eigenvalue problem

{
0 = di�ψ + (βi − γi )ψ + λψ x ∈ �,
∂ψ
∂ �n = 0 x ∈ ∂�.

(20)

It is well known that 1−R0,i and λ∗(di , βi − γi ) have the same sign (see Allen et al.
2008). Thanks to (16) and Lemma 3.1, we can present a proof of Theorem 2.1.

Proof of Theorem 2.1 (i) Let i ∈ {1, . . . , k} such thatR0,i ≤ 1 and λ∗
i := λ∗(di , βi −

γi ) be the eigenvalue of (20). Let ψ∗
i be the corresponding eigenfunction satisfying∫

�
ψ∗

i = 1. Multiplying the equation satisfied by Ii (t, x) by ψ∗
i and integrate it by

parts on �, we get

d

dt

∫

�

Ii ψ
∗
i = −di

∫

�

∇ψ∗
i ∇ Ii +

∫

�

(βi − γi ) ψ∗
i Ii −

∫

�

βi

∑k
j=1 I j

S +∑k
j=1 I j

ψ∗
i Ii . (21)

Multiplying the equation of (λ∗
i , ψ

∗
i ) by Ii and integrate it by parts on � yield

−λ∗
i

∫

�

Iiψ
∗
i = −di

∫

�

∇ϕi∇ Ii +
∫

�

(βi − γi ) ψ∗
i Ii .

Hence, by (21),

d

dt

∫

�

Iiψ
∗
i = −λ∗

i

∫

�

Iiψ
∗
i −

∫

�

βi

∑k
j=1 I j

S +∑k
j=1 I j

ψ∗
i Ii . (22)

We integrate this equation to get

∫

�

Ii (0)ψ
∗
i = eλ∗

i t
∫

�

Ii (t)ψ
∗
i +

∫ t

0

∫

�

βi e
λi s

∑k
j=1 I j

S +∑k
j=1 I j

ψ∗
i Ii . (23)

Recalling inequalities (14) and (17), there is some positive constant M such that
S(t, x) +∑k

i=1 Ii (t, x) ≤ M for every t ≥ 0 and x ∈ �, and hence

∫ t

0

∫

�

eλ∗
i sβi

∑k
j=1 I j

S +∑k
j=1 I j

ψ∗
i I ∗

i dxds ≥ 1

M

∫ t

0

∫

�

eλ∗
i sβiψ

∗
i Ii

k∑

i=1

I jdxds

≥minx∈� βi (x)ψ∗
i (x)

M

∫ t

0
eλ∗

i s‖Ii (s)‖2L2(�)
ds
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for every t > 0. Hence, in view of (23), we get

∫

�

Ii (0)ψ
∗
i ≥ eλ∗

i t min
x∈�

ψ∗
i (x)‖Ii (t)‖L1(�) + minx∈� βi (x)ψ∗

i (x)

M

∫ t

0
eλ∗

i s‖Ii (s)‖2L2(�)
ds.

(24)

Since λ∗
i ≥ 0, we then conclude from (11), (15), and (24) that ‖Ii (t)‖∞ → 0 as

t → ∞.
(i i) Suppose thatR0 ≤ 1. By (i), we know that max1≤i≤k ‖Ii‖∞ → 0 as t → ∞.

We can then proceed as in Allen et al. (2008) to derive the desired result.
(i i i) Suppose that R0 > 1 and let J0 = {i ∈ {1, . . . , k} : R0,i > 1}. Hence

λ∗ := min{−λ∗(di , βi − γi ) : i ∈ J0} > 0. By Lemma 3.1, there is m∗ > 0 such
that m∗ ≤ S(t, x) for every x ∈ � and t ≥ 1. Taking n∗ = mini∈J0,x∈� ψ∗

i (x) and
using (22), we obtain that

d

dt

∑

i∈J0

‖ψ∗
i Ii ‖L1(�)

≥ λ∗
∑

i∈J0

‖ψ∗
i Ii ‖L1(�) − β

m∗

∫

�

( ∑

j /∈J0

I j + 1

n∗

∑

j∈J0

ψ∗
j I j
)∑

i∈J0

ψ∗
i Ii

≥
⎛

⎜
⎝λ∗

∑

i∈J0

‖ψ∗
i Ii ‖L1(�) − β

m∗

∑

j /∈J0

‖I j ‖∞
∑

i∈J0

‖ψ∗
i Ii ‖L1(�) − β

m∗n∗

∫

�

⎛

⎝
∑

i∈J0

ψ∗
i Ii

⎞

⎠

2
⎞

⎟
⎠

≥
⎛

⎝λ∗ − β

m∗

∑

j /∈J0

‖I j ‖∞ − β

m∗n∗|�|
∑

i∈J0

‖ψ∗
i Ii ‖L1(�)

⎞

⎠
∑

i∈J0

‖ψ∗
i Ii ‖L1(�), t > 1.

But by (i), we know that
∑

j /∈J0 ‖I j‖∞ → 0 as t → ∞. It then follows from the last
inequality that

lim inf
t→∞

∑

i∈J0

‖ψ∗
i Ii‖L1(�) ≥ λ∗m∗n∗

β
,

which together with (16) yields the desired result. ��
Next, we present a proof of Theorem 2.2. We first introduce the functions

β1,∗ = β1 − max
2≤i≤k

βi and γ1,∗ = min
2≤i≤k

γi − γ1.

Proof of Theorem 2.2 Suppose that d = d1 = · · · = dk .
(i) Suppose σ ∗

1 = minx∈� γ1,∗(x) > 0 and β = β1 = · · · = βk . For every i ≥ 2,
we have
⎧
⎨

⎩

(
e−σ ∗

1 t I1
)

t
≥ d�

(
e−σ ∗

1 t I1
)

− γi

(
e−σ ∗

1 t I1
)

+ βS
S+∑ j I j

(
e−σ ∗

1 t I1
)

x ∈ �,

∂�n
(

e−σ ∗
1 t I1

)
= 0 x ∈ ∂�.
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Hence, since minx∈� I1(1, x) > 0, it follows from the comparison principle that

Me−σ1t I1(t, x) ≥ Ii (t, x) ∀ x ∈ �, t ≥ 1

for some M � 1. Thus, the result follows.
(i i) Suppose that σ ∗

2 = minx∈� β1,∗(x) > 0 and γ = γ1 = · · · = γk . For every
i ≥ 2 and τ > 0, we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
e−τσ ∗

2 t I1
)

t
≥ d�

(
e−τσ ∗

2 t I1
)

− γ
(

e−τσ ∗
2 t I1

)

+βi S(e−τσ∗
2 t I1)

S+∑k
j=1 I j

+ σ ∗
2

(
S

S+∑k
j=1 I j

− τ

)

e−τσ ∗
2 t I1 x ∈ �,

∂�n
(

e−τσ ∗
2 t I1

)
= 0 x ∈ ∂�.

By Lemma 3.1 and estimate (14), we know that inf t≥1,x∈�
S(t,x)

S(t,x)+∑ j I j (t,x)
> 0.

Hence, by choosing 0 < τ � 1, we have that

⎧
⎨

⎩

(
e−τσ ∗

2 t I1
)

t
≥ d�

(
e−τσ ∗

2 t I1
)

− γ
(

e−τσ ∗
2 t I1

)
+ βi S

S+∑ j I j

(
e−τσ ∗

2 t I1
)

x ∈ �,

∂�n
(

e−τσ ∗
2 t I1

)
= 0 x ∈ ∂�.

Since minx∈� I1(1, x) > 0, it then follows from the comparison principle that

Me−τσ ∗
2 t I1(t, x) ≥ Ii (t, x) ∀ x ∈ �, t ≥ 1

for some M � 1. Thus, the result follows.
(i i i) Set ui = 1

β̂i
ln Ii . Then

{
∂t ui = d�ui + dβ̂i |∇ui |2 + g(x)S

S+I − γ̂i

β̂i
h(x) x ∈ �, i = 1 · · · , k

∂�nui = 0 x ∈ ∂�, i = 1, . . . , k.

Setting l̂ := min{ γ̂ j

β̂ j
: j = 2, . . . , k} >

γ̂1

β̂1
and h := minx∈� h(x) > 0, and choosing

M � 1 such that u1(0, x) + M ≥ ui (0, x) for every x ∈ � and j = 2, . . . , k, we get

∂t

(

u1 − h

(

l̂ − γ̂1

β̂1

)

t + M

)

≥ d�

(

u1 − h(l̂ − γ̂1

β̂1
)t + M

)

+dβ̂i

∣
∣
∣
∣∇
(

u1 − h

(

l̂ − γ̂1

β̂1

)

t + M

)∣
∣
∣
∣

2

+ g(x)S

S + I
− γ̂i

β̂i
h(x)

for every x ∈ � and t > 0 since β̂1 = max{β̂ j : j = 1, . . . , k}. Since ∂�n(u1 −
h(l̂ − γ̂1

γ̂1
)t + M) = ∂�nu1 = ∂�nui = 0 for every t > 0 and i = 2, . . . , k, then by the
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comparison principle for parabolic equations and the choice of M , we obtain

u1(t, x) − h

(

l̂ − γ̂1

β̂1

)

t + M ≥ u j (t, x) ∀ x ∈ �, t > 0, j = 2, . . . , k.

This is equivalent to

eM I1(t, x)e
−h

(

l̂− γ̂1
β̂1

)

t ≥ I j (t, x) ∀ x ∈ �, t > 0, j = 2, . . . , k.

Thus, we conclude that ‖I j‖∞ → 0 as t → ∞ since supt≥0 ‖I1(t)‖∞ < ∞ and

h(l̂ − γ̂1

β̂1
) > 0.

(iv) Now, we suppose that dS = d,Ri is a constant function for each i = 1, . . . , k
with R1 > R∗ := max{R j : j = 2, . . . , k}. We set Z(t, x) :=∑k

j=2 I j (t, x),

I 1 := lim inf
t→∞ min

x∈�

I1(t, x),

I 1 := lim sup
t→∞

max
x∈�

I1(t, x), and Z := lim sup
t→∞

max
x∈�

Z(t, x).

By recalling that

∂t

(

S +
k∑

i=1

Ii

)

= d�

(

S +
k∑

i=1

Ii

)

x ∈ �, t > 0 and
∫

�

(S +
k∑

i=1

Ii ) = N ∀ t ≥ 0,

and ∂�n(S +∑k
i=1 Ii ) = 0, then S +∑k

i=1 Ii → N
|�| as t → ∞ uniformly on �.

Hence, for every 0 < ε � 1, there is tε � 1 such that for each i = 1, . . . , k,

∂t Ii ≤d�Ii + βi |�|
N (1 + ε)

(
N (1 + ε)

|�|
(

1 − 1

Ri

)

− (I1 + Z)

)

Ii t > tε, x ∈ �,

(25)

∂t Ii ≥d�Ii + βi |�|
N (1 − ε)

(
N (1 − ε)

|�|
(

1 − 1

Ri

)

− (I1 + Z)

)

Ii t > tε, x ∈ �,

(26)

and

I1(t, x) ≥ I 1 − ε ∀ x ∈ �, t > tε. (27)

It follows from (25) and (27) that

⎧
⎪⎪⎨

⎪⎪⎩

∂t Z ≤ d�Z + |�|
N (1+ε)

(
N (1+ε)

|�|
(
1 − 1

R∗
)− I 1 + ε − Z

)∑k
j=2 β j I j

∀ t > tε, x ∈ �,

0 = ∂�n Z x ∈ ∂�, t > tε.
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Thus, since βZ ≤∑k
i=2 βi Ii ≤ βZ , we conclude from the comparison principle that

Z ≤
(

N (1 + ε)

|�|
(

1 − 1

R∗

)

− I 1 + ε

)

+
∀ ε > 0,

and letting ε → 0 yields that

Z ≤
(

N

|�|
(
1 − 1

R∗
)− I 1

)

+
, (28)

which together with (26) gives that

I 1 ≥
(

N

|�|
(

1 − 1

R1

)

−
(

N

|�|
(

1 − 1

R∗

)

− I 1

)

+

)

+
. (29)

Now, we claim that
(

N
|�| (1 − 1

R∗ ) − I 1
)

+ = 0. If this were false, then by (29) we

would have

I 1 ≥ N

|�|
(

1

R∗ − 1

R1

)

+ I 1,

which is impossible sinceR1 > R∗. Thus,
(

N
|�| (1− 1

R∗ )− I 1
)

+ = 0 and then Z = 0

and I 1 ≥ N
|�|
(
1− 1

R1

)
by (28) and (29), respectively. On the other hand, it follows from

(25) that I 1 ≤ N
|�|
(
1− 1

R1

)
. So, we have shown that I1(t, ·) → N

|�|
(
1− 1

R1

)
as t → ∞

uniformly in x ∈ �. Next, recalling that S +∑k
i=1 Ii → N

|�| as t → ∞ uniformly in

x ∈ �, we then conclude that (S, I1, I2, . . . , Ik) → ( N
|�|R1

, N
|�|
(
1 − 1

R1

)
, 0, . . . , 0)

as t → ∞ uniformly in x ∈ �. ��
We end this section with the proof of Theorem 2.3.

Proof of Theorem 2.3 Suppose by contradiction that (5) is false. Then there is a
sequence {dSm }m≥1 of positive numbers with dSm → 0 as m → ∞ and a sequence of
positive steady states (Sm, I1,m, . . . , Ik,m) such that either

lim inf
m→∞

k∑

i=1

di

dSm

‖Ii,m‖∞ = ∞ (30)

or

lim sup
m→∞

min
x∈�

k∑

i=1

di

dSm

Ii,m(x) = 0. (31)
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Observe that

0 = �

(

dSm Sm +
k∑

i=1

di Ii,m

)

x ∈ � and
∂
(

dSm Sm +∑k
i=1 di Ii,m

)

∂ �n = 0 ∀ x ∈ ∂� (32)

for every m ≥ 1. Thus, for every m ≥ 1, there is positive constant κm such that

dSm Sm(x) +
k∑

i=1

di Ii,m(x) = κm ∀ x ∈ �. (33)

Now, we will show that there is a subsequence {m1}m≥1 of {m}m≥1 and a positive
number N∗ such that

lim
m→∞

κm1

dSm1

= N∗. (34)

We scale the variables as follows:

S̃m = dSm Sm

κm
and Ĩi,m = di Ii,m

κm
∀ m ≥ 1.

Hence, S̃m = 1 − ∑k
i=1 Ĩi,m for every m ≥ 1 and the function Ĩm := ∑k

j=1 Ĩ j,m

satisfies

⎧
⎪⎨

⎪⎩

0 = � Ĩm +
(
1− Ĩm

)∑k
j=1

β j
d j

Ĩ j,m

(1− Ĩm )+dSm
∑k

j=1
1

d j
Ĩ j,m

−∑k
j=1

γ j
d j

Ĩ j,m x ∈ �,

∂ Ĩm
∂ �n = 0 x ∈ ∂�

(35)

for every m ≥ 1. Observe that ‖ Ĩm‖∞ < 1 and

∥
∥
∥
∥
∥
∥

(
1 − Ĩm

)∑k
j=1

β j
d j

Ĩ j,m

(1 − Ĩm) + dSm

∑k
j=1

1
d j

Ĩ j,m
−

k∑

j=1

γ j

d j
Ĩ j,m

∥
∥
∥
∥
∥
∥∞

≤
k∑

j=1

‖γ j‖∞ + ‖β j‖∞
d j

for every m ≥ 1. Hence, by a priori estimates for elliptic equations, there is Ĩ∞ ∈
C1(�) and a subsequence { Ĩm1}m≥1 of { Ĩm}m≥1 such that Ĩm1 → Ĩ∞ as m → ∞ in
C1(�). We claim that

0 ≤ Ĩ∞(x) < 1 ∀ x ∈ H−. (36)
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Suppose on the contrary that (36) is false. Thus, there is x∗ ∈ H− such that Ĩ∞(x∗) = 1
because ‖ Ĩ∞‖∞ ≤ 1. Choose 0 < r∗ � 1 such that B(x∗, r∗) ⊂ H−. Observe from
(35) that

0 ≤ � Ĩm +
k∑

j=1

(
β j − γ j

)

d j
Ĩ j,m ≤ � Ĩm x ∈ H−, ∀ m ≥ 1,

that is, Ĩm is subharmonic on H−. Hence,

Ĩm1

(
x∗) ≤ 1

|B (x∗, r∗) |
∫

B(x∗,r∗)
Ĩm1(x)dx ∀ m ≥ 1.

Letting m → ∞ and using the fact that 0 ≤ Ĩ∞(x) ≤ 1 for every x ∈ � and the
uniform continuity of Ĩ∞, we obtain that

I∞(x) = 1 ∀ x ∈ B(x∗, r∗). (37)

Next, let ϕ ∈ C∞
c (B(x∗, r∗)) such that ϕ ≥ 0 and ‖ϕ‖∞ > 0. Multiplying (35) by ϕ

and integrating by parts, we obtain

0 ≤
∫

B(x∗,r∗)
Ĩm1�ϕ +

∫

B(x∗,r∗)
L(x)ϕ Ĩm1 ∀ m ≥ 1

where L(x) := max{β j (x)−γ j (x)

d j
: 1 ≤ j ≤ k} < 0 for every x ∈ B(x∗, r∗). Letting

m → ∞ in the previous inequality and recalling that
∫

B(x∗,r∗) �ϕ = 0 and (37), we
get

0 ≤
∫

B(x∗,r∗)
L(x)ϕ(x)dx,

which is impossible. Therefore, we conclude that (36) must hold. Now, observe that

N =
∫

�

⎛

⎝Sm1 +
k∑

j=1

I j,m1

⎞

⎠

= κm1

dSm1

⎛

⎝

∫

�

(1 − Ĩm1) +
∫

�

k∑

j=1

dSm1

d j
Ĩ j,m1

⎞

⎠ ∀ m ≥ 1.

(38)
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Since 0 < ‖ Ĩ j,m‖∞ ≤ 1 for every j = 1, . . . , k, then
∫

�

∑k
j=1

dSm1
d j

Ĩ j,m1 → 0 as

m → ∞. We also note from the definition of Ĩ∞ and (36) that

lim
m→∞

∫

�

(1 − Ĩm1) =
∫

�

(
1 − Ĩ∞

)
∈ (0, |�|).

Hence, letting m → ∞ in (38), we derive (34) with N∗ = N∫

�(1− Ĩ∞)
∈ (0,∞).

By (34) and the fact that ‖ Ĩi,m1‖∞ ≤ 1 for every m ≥ 1, we get

k∑

i=1

di

dSm1

‖Ii,m1‖∞ =
k∑

i=1

κm1

dSm1

‖ Ĩi,m1‖∞ ≤ k
κm1

dSm1

, (39)

which contradicts (30) since limm→∞ k
κm1

dSm1
= k N∗ < ∞.

Next, we want to derive a contradiction with (31). By Theorem 2.1, R0,i > 1 for
every i ∈ {1, . . . , k}. We claim that there exist a subsequent {Sm2}m≥1 of {Sm1} and
x2 ∈ � such that

Sm2(x2) → 0 as m → ∞. (40)

Indeed, let us first rewrite (33) as

κm1

dSm1

= Sm1 +
k∑

j=1

d j

dSm1

I j,m1 ∀ m ≥ 1, (41)

and introduce the variable

Î j,m1 := d j

dSm1

I j,m = κm1

dSm1

Ĩ j,m1 m ≥ 1,

where Ĩ j,m1 are introduced above. Since 0 < Ĩ j,m < 1 for every m ≥ 1 and j =
1, . . . , k, by a priori estimates for elliptic equations, we may suppose that there exist
( Ĩ1,∞, . . . , Ĩk,∞) ∈ [C1(�)]k and a subsequence {m2}m≥1 of {m1}m≥1 such that

(
Ĩ1,m2 , · · · , Ĩk,m2

)
→
(

Ĩ1,∞, . . . , Ĩk,∞
)

as m → ∞

in [C1(�)]k . As a result, by recalling (34), we conclude that Î j,m2 → N∗ Ĩ j,∞ as
m → ∞ in C1(�) for each j = 1, . . . , k. This in turn, along with (34) and (41),
imply that there is S∞ ∈ C1(�) such that Sm2 → S∞ as m → ∞ in C1(�). Now, we
claim that the set

{x ∈ � : S∞(x) = 0} �= ∅. (42)
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If this were false, then by observing that

⎧
⎨

⎩

0 = d1�
(

I1,m2‖I1,m2‖∞

)
− γ1

I1,m2‖I1,m2‖∞ + β1Sm2

Sm2+∑k
j=1 I j,m2

(
I1,m2‖I1,m2‖∞

)
x ∈ �

∂�n
I1,m2‖I1,m2‖∞ = 0 x ∈ ∂�

for every m ≥ 1 and
Sm2

Sm2+∑k
j=1 I j,m2

→ S∞
S∞ ≡ 1 in C1(�) as m → ∞ (note that

∑k
j=1 I j,m2 → 0 as m → ∞ in C1(�) since (39) holds), using a priori estimates

for elliptic equations, there is ϕ1 ∈ C2(�) with ϕ1 ≥ 0 and ‖ϕ1‖∞ = 1, and a

subsequence {I1,m3}m≥1 of {I1,m2} such that I1,m3‖I1,m3‖∞ → ϕ1 as m → ∞ in C1(�) and

ϕ1 is a solution of

0 = d1�ϕ1 + (β1 − γ1) ϕ1 x ∈ �, and ∂�nϕ1 = 0 x ∈ ∂�.

By the strong maximum principle, we deduce that ϕ1(x) > 0 for every x ∈ �. This
implies that we must have R0,1 ≤ 1, which is a contradiction. Therefore (42) must
hold, which yields that (40) also holds. Now, by (40), (41) and (34), we have

lim
m→∞

k∑

i=1

di

dSm

Ii,m(x2) = N∗ ∈ (0,∞). (43)

Using theHarnack inequality for elliptic equations, we know that there exists a positive
constant ν that

min
x∈�

Ii,m ≥ ν‖Ii,m‖∞ ∀ m ≥ 1, i = 1, . . . , k.

This shows that (43) contradicts (31). The proof is complete. ��

Appendix B: Proofs of Theorems 2.4 and 2.9

In this section, we study the existence of EE for (1) and prove Theorems 2.4 and 2.9 .

4.1 B.1 Proof of Theorem 2.9

We let k = 2 and set di = εDi for each i = 1, 2, where D1 and D2 are fixed positive
numbers. Let us introduce a few notations. Define

Q (x, I1) := γ̃2(x) (1 − I1) + γ̃1(x)I1

β̃2(x) (1 − I1) + β̃1(x)I1
for every 0 ≤ I1 ≤ 1, (44)

123



10 Page 26 of 47 Y. Lou, R. B. Salako

where (β̃i , γ̃i ) = (
βi
Di

,
γi
Di

) for each i = 1, 2. Next we consider the elliptic equation

⎧
⎪⎪⎨

⎪⎪⎩

0 = ε� Ĩ1 +
(
β̃1Q(x, Ĩ1) − γ̃1

)
Ĩ1, x ∈ �,

∂�n Ĩ1 = 0 x ∈ ∂�,

0 < Ĩ1 < 1 x ∈ �.

(45)

Observe that β̃1Q(·, 1) − γ̃1 ≡ 0. The following result holds.

Lemma 4.2 Suppose that R1−R2 changes sign on �. Then there is some ε∗ > 0 such
that for every 0 < ε < ε∗, (45) has at least one positive solution. Furthermore, if β1

β2
is a constant, then (45) has a unique positive solution, which is also linearly stable.

Proof Denote by λ0,ε the principal eigenvalue of (45) linearized at I1 ≡ 0, that
is λ0,ε = λ∗(ε, β̃1Q(·, 0) − γ̃1). Observe that β̃1Q(·, 0) − γ̃1 = γ̃1

(R1
R2

− 1
)

changes sign on �. Since the function ε �→ λ0,ε is strictly decreasing with λ0,ε →
−maxx∈�{β̃1(x)Q(x, 0) − γ̃1(x)} < 0 (see Allen et al. 2008), there is ε∗

1 > 0 such
that λ0,ε < 0 for every 0 < ε < ε∗

1 . For every 0 < ε < ε∗
1 , let ϕ∗

0,ε be an associated
positive eigenfunction of λ0,ε with maxx ϕ∗

0,ε = 1. Next, we denote by λ1,ε the princi-

pal eigenvalue of (45) linearized at I1 ≡ 1, that is λ1,ε = λ∗(ε, β̃1∂IQ(·, 1)). Observe
that β̃1∂I1Q(·, 1) = γ̃2

(R2
R1

− 1
)
changes sign on �. Similarly as in the above, there

is ε∗
2 > 0 such that λ1,ε < 0 for every 0 < ε < ε∗

2 . For every 0 < ε < ε∗
2 , let ϕ∗

1,ε
be an associated eigenfunction of λ1,ε with maxx ϕ∗

1,ε = 1. We set ε∗ = min{ε∗
1, ε

∗
2}.

Direct computations show that for every 0 < ε < ε∗, there is 0 < τε � 1 such that

⎧
⎨

⎩

0 < ε�
(
τεϕ

∗
0,ε

)
+
(
β̃1Q(·, τεϕ

∗
0,ε) − γ̃1

) (
τεϕ

∗
0,ε

)
x ∈ �

∂�n
(
τεϕ

∗
0,ε

)
= 0 x ∈ ∂�

and

⎧
⎨

⎩

0 > ε�
(
1 − τεϕ

∗
1,ε

)
+
(
β̃1Q(·, 1 − τεϕ

∗
1,ε) − γ̃1

) (
1 − τεϕ

∗
1,ε

)
x ∈ �

∂�n
(
1 − τεϕ

∗
1,ε

)
= 0 x ∈ ∂�,

that is τεϕ
∗
0,ε and 1 − τεϕ

∗
1,ε are subsolution and supersolution of (45), respectively.

Thus, by the sub-super solution method, there is a solution Ĩ ∗
1 (x, ε) of (45) with

τεϕ
∗
0,ε < Ĩ ∗

1 (·, ε) < 1 − τεϕ
∗
1,ε. This completes the proof of the existence part. Next

observe that

(
β̃1Q(x, I ) − γ̃1

)
I = γ̃1

(
R1

R2
− 1

)(

1 − I

I + d1β2
d2β1

(1 − I )

)

I

∀ x ∈ �, I ∈ [0, 1]
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and that the function

I �→
(

1 − I

I + d1β2
d2β1

(1 − I )

)

I

is strictly concave down, hence it follows from (Hess 1991, Theorem 0.1, Lemma 0.2),
that any non-constant positive solution of (45) is unique and linearly stable if β1

β2
is

constant. ��
Throughout the rest of this subsection, we shall suppose that the assumptions of

Lemma 4.2 hold. Let ε∗ be given by Lemma 4.2. For every 0 < ε < ε∗, let Ĩ ∗
1 (·, ε) be a

solution of (45) given by Lemma 45 and set Ĩ ∗
2 (·, ε) = 1− Ĩ ∗

1 (·, ε). Direct computation
shows that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 = ε� Ĩ ∗
i +

(

β̃i

∑2
j=1 γ̃ j Ĩ ∗

j
∑2

j=1 β̃ j Ĩ ∗
j

− γ̃i

)

Ĩi
∗

x ∈ �, i = 1, 2,

0 = ∂�n Ĩ ∗
i x ∈ ∂�, i = 1, 2,

1 =∑2
j=1 Ĩ ∗

j .

(46)

Lemma 4.3 Suppose that � = {R > 1} in addition to the hypotheses of Lemma 4.2.
Let ( Ĩ ∗

1 (·, ε), Ĩ ∗
2 (·, ε)) be given above for every 0 < ε < ε∗. Then there is 0 < ε̃∗ < ε∗

such that for every 0 < ε < ε̃∗, the set �∗
ε defined by

�∗
ε := {x ∈ � :

2∑

i=1

(
β̃i (x) − γ̃i (x)

)
Ĩ ∗
i (x, ε) ≤ 0}

is empty. Furthermore, by setting S̃∗ :=
∑2

i=1 γ̃i Ĩ ∗
i

∑2
j=1

Ĩ∗j
d j

∑2
i=1(β̃i −γ̃i ) Ĩ ∗

i
, it holds that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 = ε� Ĩ ∗
i +

⎛

⎝β̃i
S̃∗

S̃∗+∑2
j=1

Ĩ∗j
d j

− γ̃i

⎞

⎠ Ĩi
∗

x ∈ �, i = 1, 2,

0 = ∂�n Ĩ ∗
i x ∈ ∂�, i = 1, 2,

1 =∑2
j=1 Ĩ ∗

j

(47)

for 0 < ε < ε̃∗.

Proof Recall that Ĩ ∗
i (·, ε) satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 = ε� Ĩ ∗
i + γ̃1

(
R1
R2

− 1
)
(

1 − Ĩ ∗
i

Ĩ ∗
i + d1β2

d2β1

(
1− Ĩ ∗

i

)

)

Ĩ ∗
i x ∈ �,

0 = ∂�n Ĩ ∗
i x ∈ ∂�,

0 < Ĩ ∗
i < 1.
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Then, it follows from Cantrell and Cosner (2003) that

lim
ε→0

Ĩ ∗
i (x, ε) = 0 uniformly on compact subsets of {R j > Ri } (48)

for every i �= j in {1, 2}. Since 1 = Ĩ ∗
1 + Ĩ ∗

2 , we conclude from (48) that

lim
ε→0

Ĩ ∗
i (x, ε) = 1 uniformly on compact subsets of {Ri < R j },

i �= j, i, j = 1, 2. (49)

Now, since � = {R > 1}, then {Ri ≤ 1} ⊂ {R j > 1} for every i �= j , i, j = 1, 2.
Hence, there are open sets Oi such that {Ri ≤ 1} ⊂ Oi ⊂ Oi ⊂ {R j > 1} for every
i �= j , i, j = 1, 2. By (48) and (49),

lim inf
ε→0

min
x∈O1∪O2

2∑

i=1

(β̃i (x) − γ̃i (x)) Ĩ ∗
i (x, ε) > 0.

Thus, since minx∈�\(O1∪O2)
min{β̃1 − γ̃1, β̃2 − γ̃2} > 0, we conclude that the set �∗

ε

is empty for 0 < ε � 1. (47) can be easily checked by inspection. ��

Proof of Theorem 2.9 Suppose that dS = 0. Observe that�1 and�2 are both nonempty
if and only if R1 − R2 changes sign on �. Observe also that R0 > 1 if and only if{

x ∈ � : R > 1
} = �. Let ε̃∗ > 0 be given by Lemma 4.3. For every 0 < ε < ε̃∗, let

(S̃∗(·, ε), Ĩ ∗
1 (·, ε), Ĩ ∗

2 (·, ε)) be the unique positive solution of (47) given by Lemma 4.3
and set κ̃∗

ε = N
∫

�(S̃∗(·,ε)+∑2
i=1

Ĩ∗i (·,ε)
di

)

. A direct computation shows that

(
S∗(x, ε), I ∗

1 (x, ε), I ∗
2 (x, ε)

) = (κ̃∗
ε S̃∗(x, ε), κ̃∗

ε Ĩ ∗
1 (x, ε), k̃∗

ε Ĩ ∗
2 (x, ε))

x ∈ �, 0 < ε < ε̃∗

is a coexistence EE solution of (1) when dS = 0.Moreover, if β1
β2

is constant, if follows
from Lemma 4.2 that (1) with dS = 0 has a unique coexistence EE solution. ��

4.2 B.2 Proof of Theorem 2.4

We prove a general result for the multi-strain model and derive Theorem 2.4 as a
corollary for k = 2. Let k ≥ 2 and suppose that βi , γi ∈ C2(�) for each i = 1, . . . , k.
For every (I1, . . . , Ik−1) ∈ [0, 1]k−1 satisfying

∑k−1
i=1 Ii ≤ 1, define

Q (I1, . . . , Ik−1) = γ̃k(1 −∑k−1
i=1 Ii ) +∑k−1

i=1 γ̃i Ii

β̃k(1 −∑k−1
i=1 Ii ) +∑k−1

i=1 β̃i Ii
, (50)
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where (β̃i , γ̃i ) = (
βi
Di

,
γi
Di

) for each i = 1, . . . , k. Note that (50) is consistent with
(44) when k = 2. Let ε > 0 be fixed and consider the elliptic system

⎧
⎪⎪⎨

⎪⎪⎩

0 = ε� Ĩi +
(
β̃iQ( Ĩ1, . . . , Ĩk−1) − γ̃i

)
Ĩi , x ∈ �, i = 1, . . . , k − 1,

∂�n Ĩi = 0 x ∈ ∂�, i = 1, . . . , k − 1,

0 <
∑k−1

i=1 Ĩi < 1 x ∈ �.

(51)

Let ( Ĩ ∗
1 (·, ε), . . . , Ĩ ∗

k−1(·, ε)) be a positive solution of (51) and set Ĩ ∗
k (·, ε) = 1 −

∑k−1
i=1 Ĩ ∗

i . For the moment, we shall suppose that

k∑

i=1

(
β̃i − γ̃i

)
Ĩ ∗
i (x, ε) > 0 for x ∈ �, (52)

and then set

S̃∗(·, ε) =
∑k

i=1
Ĩ ∗
i (·,ε)

di

∑k
j=1 γ̃ j Ĩ ∗

j (·, ε)
∑k

i=1(β̃i − γ̃i ) Ĩ ∗
i (·, ε) and κ̃∗

ε = N
∫

�
(S̃∗(·, ε) +∑k

i=1
Ĩ ∗
i (·,ε)

di
)

.

(53)

A direct computation shows that

Q( Ĩ ∗
1 (·, ε) , . . . , Ĩ ∗

k−1(·, ε)) = S̃∗(·, ε)
S̃∗(·, ε) +∑k

i=1
Ĩ ∗
i (·,ε)

di

. (54)

Note that Lemmas 4.2 and 4.3 provide sufficient conditions for the existence of a pos-
itive coexistence solution of (51) satisfying (52) when k = 2 and 0 < ε � 1. Denote
byLε the linear operator given by the linearization of (51) at ( Ĩ ∗

1 (·, ε), . . . , Ĩ ∗
k−1(·, ε)),

that is Lε : [W 2,p
n (�)]k−1 → [L p(�)]k−1 with

Lε(I1, . . . , Ik−1) =
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ε�I1 +
(
β̃1Q∗ + β̃1 Ĩ ∗

1 ∂I1Q∗ − γ̃1

)
I1 + β̃1 Ĩ ∗

1

∑k−1
j=1, j �=1 ∂I j Q∗ I j

ε�I2 +
(
β̃2Q∗ + β̃2 Ĩ ∗

2 ∂I2Q∗ − γ̃2

)
I2 + β̃2 Ĩ ∗

2

∑k−1
j=1, j �=2 ∂I j Q∗ I j

.

.

.

ε�Ik−1 +
(
β̃k−1Q∗ + β̃k−1 I ∗

k−1∂Ik−1Q∗ − γ̃k−1

)
Ik−1 + β̃k−1 Ĩ ∗

k−1

∑k−2
j=1 ∂I j Q∗ I j

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

where W 2,p
n (�) = {u ∈ W 2,p(�) : ∂�nu = 0 on ∂�}, Q∗ := Q( Ĩ ∗

1 (·, ε),
. . . , Ĩ ∗

k−1(·, ε)), ∂I jQ∗ := ∂I jQ( Ĩ ∗
1 (·, ε), . . . , Ĩ ∗

k−1(·, ε)), j = 1, . . . , k−1 and p � 1
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is fixed. When k = 2, the operator Lε reduces to the single equation

Lε(I1) = ε�I1 +
(
β̃1Q

(
Ĩ ∗
1

)
+ β̃1 Ĩ ∗

1 ∂I1Q
(

Ĩ ∗
1

)
− γ̃1

)
I1 ∀ I1 ∈ W 2,p

n (�).

Next, consider the Banach spaces X := R × W 2,p
n (�) × [W 2,p

n (�)]k and Y :=
R × W 2,p

n (�) × [L p(�)]k and the open subset U := {(κ, S, I1, . . . , Ik) ∈ X : κ >

0, S > 0, Ii > 0, i = 1, . . . , k} of X . For every ε > 0, define a mapping Fε from
R × U → Y by

Fε (dS, κ, S, I1, . . . , Ik) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

N − κ

∫

�

(

S +
k∑

i=1

Ii

di

)

1 − dSS −
k∑

i=1

Ii

ε�I1 +
(
β̃1R(S, I1, . . . , Ik) − γ̃1

)
I1

ε�I2 +
(
β̃2R(S, I1, . . . , Ik) − γ̃2

)
I2

...

ε�Ik + (β̃k R(S, I1, . . . , Ik) − γ̃k)Ik

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (55)

where R(S, I1, . . . , Ik) = S

S+∑k
i=1

Ii
di

. For the sake of clarity in the presentation of the

arguments, we introduce the notations:

R∗ = R(S̃∗(·, ε), Ĩ ∗
1 (·, ε), . . . , Ĩ ∗

k (·, ε)) and ∂y R∗ = ∂y R(S̃∗(·, ε), Ĩ ∗
1 (·, ε), . . . , Ĩ ∗

k (·, ε))

for each y ∈ {S, I1, . . . , Ik}. By (54),

R∗ = Q∗ and ∂I jQ∗ =
(γ̃i − γ̃k) −

(
β̃i − β̃k

)
R∗

∑k
i=1 β̃i Ĩ ∗

i (·, ε) i = 1, . . . , k − 1. (56)

One easily checks that

Ẽ∗
ε := (0, κ̃∗

ε , S̃∗(·, ε), Ĩ ∗
1 (·, ε), . . . , Ĩ ∗

k (·, ε)) ∈ R × U and Fε

(
Ẽ∗

ε

)
= (0, 0, 0, . . . , 0)T .
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Moreover, the mapping Fε is Frechet differentiable and

D(κ,S,I1,...,Ik )Fε

(
Ẽ∗

ε

)
(κ, S, I1, . . . , Ik) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−κ
∫

�
(S̃∗ +∑k

i=1
Ĩ ∗
i

di
) − κ̃∗

ε

∫

�
(S +∑k

i=1
Ii
di

)

−∑k
i=1 Ii

ε�I1 + (β̃1R∗ + β̃1 Ĩ ∗
1 ∂I1 R∗ − γ̃1

)
I1 + β̃1 Ĩ ∗

1

∑k
j=1, j �=1 ∂I j R∗ I j + β̃1 Ĩ ∗

1 ∂∗
SRS

...

ε�Ik + (β̃k R∗ + β̃k Ĩ ∗
k ∂Ik R∗ − γ̃k

)
Ik + β̃k Ĩ ∗

k

∑k
j=1, j �=k ∂I j R∗ I j + β̃k Ĩ ∗

k ∂∗
SRS

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The next lemma shows that if the linear operator Lε is invertible, so is the linear
operator D(κ,S,I1,...,Ik )Fε(Ẽ∗

ε ).

Lemma 4.4 If the linear operator Lε : [W 2,p
n (�)]k−1 → [L p(�)]k−1 is invertible,

so is the linear operator D(κ,S,I1,...,Ik )Fε(Ẽ∗
ε ) : X → Y .

Proof Suppose that the linear operator Lε is invertible. The proof is in two steps. In
the first step, we show that D(κ,S,I1,...,Ik )Fε(Ẽ∗

ε ) is one-to-one. In the second step, we
show that it is onto.
Step1 The linear operator D(κ,S,I1,...,Ik )Fε(Ẽ∗

ε ) is one-to-one. Indeed,
let (κ, S, I1, . . . , Ik) ∈ N (D(κ,S,I1,...,Ik )Fε(Ẽ∗

ε )), that is

D(κ,S,I1,...,Ik )Fε

(
Ẽ∗

ε

)
(κ, S, I1, . . . , Ik) = (0, 0, 0, . . . , 0)T . (57)

From the second equation in (57), we get Ik = −∑k−1
i=1 Ii . For each i ∈ {1, . . . , k−1},

inserting Ik = −∑k−1
j=1 I j in the equation satisfied by Ii in (57) gives

0 = ε�Ii +
[
β̃i R∗ + β̃i Ĩ ∗

i (∂Ii R∗ − ∂Ik R∗) − γ̃i

]
Ii

+β̃i Ĩ ∗
i

k−1∑

j=1, j �=i

[
∂I j R∗ − ∂Ik R∗] I j + β̃i Ĩ ∗

i S∂SR∗. (58)

Inserting Ik = −∑k−1
i=1 Ii in the last equation of (57) gives

0 = −ε�

k−1∑

i=1

Ii −
[
β̃k R∗ + β̃k Ĩ ∗

k ∂Ik R∗ − γ̃k

] k−1∑

i=1

Ii + β̃k Ĩ ∗
k

k−1∑

i=1

∂Ii R∗ Ii + β̃k Ĩ ∗
k S∂∗

SR.

(59)

Summing up Eqs. (58) and (59) side-by-side gives

0 =
k−1∑

i=1

Li Ii + S∂∗
SR

k∑

i=1

β̃i Ĩ ∗
i , (60)
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where

Li =
(
β̃i − β̃k

)
R∗ − (γ̃i − γ̃k) +

[
β̃i Ĩ ∗

i + β̃k Ĩ ∗
k

]
∂Ii R∗

−
[
β̃i Ĩ ∗

i + β̃k Ĩ ∗
k

]
∂Ik R∗ +

k−1∑

j=1, j �=i

β̃ j Ĩ ∗
j

(
∂Ii R∗ − ∂Ii R∗)

=
(
β̃i − β̃k

)
R∗ − (γ̃i − γ̃k) + [∂Ii R∗ − ∂Ik R∗]

k∑

j=1

β̃ j Ĩ ∗
j . (61)

Solving for S∂SR∗ in (60), we get

S∂SR∗ = −
k−1∑

i=1

Li Ii
∑k

j=1 β̃ j Ĩ ∗
j

. (62)

Finally combining (62) and (58), we obtain

0 =ε�Ii +
[

β̃i R∗ + β̃i Ĩ ∗
i

(

∂Ii R∗ − ∂Ik R∗ − Li
∑k

j=1 β̃ j Ĩ ∗
j

)

− γ̃i

]

Ii

+ β̃i Ĩ ∗
i

k−1∑

j=1, j �=i

[

∂I j R∗ − ∂Ik R∗ − L j
∑k

j=1 β̃ j Ĩ ∗
j

]

I j (63)

for each i = 1, . . . , k − 1. But, by (56) and (61), we have

∂I j R∗ − ∂Ik R∗ − L j
∑k

j=1 β̃ j Ĩ ∗
j

= ∂I jQ∗

for every j = 1, . . . , k − 1. As a result, it follows from (63) and the definition of the
operator Lε that Lε(I1, . . . , Ik−1) = 0, which implies that (I1, . . . , Ik−1) = 0, since
the operator Lε is invertible. Recalling that Ik = −∑k−1

i=1 Ii and Eq. (62), we also get
that Ik = 0 and S = 0. It then follows from the first equation in (57) that κ = 0. This
completes the proof of step 1.
Step2 The linear operator D(κ,S,I1,...,Ik )Fε(Ẽ∗

ε ) is onto. Indeed,
let Y = (κ̂, Ŝ, Î1, . . . , Îk) ∈ Y and we show that there is X = (κ, S, I1, . . . , Ik) ∈ X
satisfying
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D(κ,S,I1,...,Ik )Fε(Ẽ∗
ε )(X) = Y , that is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ̂ = −κ
∫

�
(S̃∗ +∑k

i=1
Ĩ ∗
i

di
) − κ̃∗ ∫

�
(S +∑k

i=1
Ii
di

)

Ŝ = −∑k
i=1 Ii

Î1 = ε�I1 +
(
β̃1R∗ + β̃1 Ĩ ∗

1 ∂I1 R∗ − γ̃1

)
I1 + β̃1 Ĩ ∗

1

∑k
j=1, j �=1 ∂I j R∗ I j + β̃1 Ĩ ∗

1 ∂∗
SRS

Î2 = ε�I2 +
(
β̃2R∗ + β̃2 Ĩ ∗

2 ∂I2 R∗ − γ̃2

)
I2 + β̃2 Ĩ ∗

2

∑k
j=1, j �=2 ∂I j R∗ I j + β̃2 Ĩ ∗

2 ∂∗
SRS

.

.

.

Îk = ε�Ik +
(
β̃k R∗ + β̃k Ĩ ∗

k ∂Ik R∗ − γ̃k

)
Ik + β̃k Ĩ ∗

k

∑k
j=1, j �=k ∂I j R∗ I j + β̃k Ĩ ∗

k ∂∗
SRS.

(64)

Solving for Ik in the second equation of (64) yields Ik = −(Ŝ +∑k−1
i=1 Ii ). Inserting

this in the last k-equations of (64), for each i = 1 · · · , k − 1, we get

Îi + β̃i Ĩ ∗
i Ŝ∂Ik R∗ = ε�Ii +

(
β̃i R∗ + β̃i Ĩ ∗

i

(
∂Ii R∗ − ∂Ik R∗)− γ̃i

)
Ii

+ β̃i Ĩ ∗
i

k−1∑

j=1, j �=i

(
∂I j R∗ − ∂Ik R∗) I j + β̃i Ĩ ∗

i ∂∗
SRS, (65)

and the last equation in (64) becomes

Îk + ε�Ŝ +
(
β̃k R∗ + β̃k Ĩ ∗

k ∂Ik R∗ − γ̃k

)
Ŝ

= −ε�

k−1∑

i=1

Ii −
[
β̃k R∗ + β̃k Ĩ ∗

k ∂Ik R∗ − γ̃k

] k−1∑

i=1

Ii

+ β̃k Ĩ ∗
k

k−1∑

i=1

∂Ii R∗ Ii + β̃k Ĩ ∗
k S∂∗

SR. (66)

Note the similarity between Eqs. (58) and (65) and between Eqs. (59) and (66). Hence,
recalling the expression of Li , i = 1, . . . , k − 1, from (65), by adding up the k − 1
equations in (65) with Eq. (66), we obtain

k∑

i=1

Îi + ε�Ŝ +
(

β̃k R∗ + ∂Ik R∗
k∑

i=1

β̃i Ĩ ∗
i − γ̃k

)

Ŝ

=
k−1∑

i=1

Li Ii + S∂SR∗
k∑

i=1

β̃k Ĩ ∗
k . (67)

Setting

Ẑ :=
∑k

i=1 Îi + ε�Ŝ +
(
β̃k R∗ + ∂Ik R∗∑k

i=1 β̃i Ĩ ∗
i − γ̃k

)
Ŝ

∑k
j=1 β̃ j Ĩ ∗

j
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and solving for S∂∗
SR in (67) yield

S∂∗
SR = Ẑ −

k−1∑

i=1

Li
∑k

j=1 β̃ j Ĩ ∗
j

Ii . (68)

Hence, inserting this expression in (65) and recalling (56), we obtain

(
Ẑ1, . . . , Ẑk−1

)
= Lε (I1, . . . , Ik−1) , (69)

where Ẑi = Îi + β̃i Ĩ ∗
i (Ŝ∂Ik R∗ − Ẑ) ∈ L p(�) for each i = 1, . . . , k − 1. Since the

operator Lε is invertible, there is a unique (I1, . . . , Ik−1) ∈ [W 2,p
n (�)]k−1 solving

(69). Note also that Ik is uniquely determined by Ik = −(Ŝ +∑k−1
i=1 Ii ) and that S is

uniquely determined by Eq. (68) since

∂SR∗ =
∑k

i=1
Ĩ ∗
i (·,ε)

di

S̃∗(·, ε) +∑k
i=1

Ĩ ∗
i (·,ε)

di

> 0.

Now, with (S, I1, . . . , Ik) obtained, we can solve for κ from the first equation in (64).
This completes the proof. ��

Now, we can state our main result on the existence of coexistence endemic equi-
librium for dS > 0.

Theorem 4.5 Let k ≥ 2, ε > 0, and di = εDi ,
i=1, . . . , k. Let ( Ĩ ∗

1 (·, ε), . . . , Ĩ ∗
k−1(·, ε)) be a positive coexistence solution of (51)

satisfying (52) and define (S̃∗(·, ε), κ̃∗
ε ) by (53). Suppose that the linearized operator

Lε of (51) at ( Ĩ ∗
1 (·, ε), . . . , Ĩ ∗

k−1(·, ε)) is invertible. Then there is 0 < dS,ε � 1
such that for every 0 < dS < dS,ε, (1) has a coexistence steady-state solu-
tion (S∗(·; dS, ε), I ∗

1 (·, dS, ε), . . . , I ∗
k (·, dS, ε)). Moreover, for every dS ∈ (0, dS,ε),

(S∗(·; dS, ε), I ∗
1 (·, dS, ε), . . . , I ∗

k (·, dS, ε)) is an isolated coexistent steady-state solu-
tion and

lim
dS→0

(
S∗ (·; dS, ε) , I ∗

1 (·, dS, ε) , . . . , I ∗
k (·, dS, ε)

) = (S∗(·; ε), I ∗
1 (·, ε), . . . , I ∗

k (·, ε)) ,

where (S∗(·; ε), I ∗
1 (·, ε), . . . , I ∗

k (·, ε)) is also an isolated coexistent steady-state solu-
tion of (1) for dS = 0.

Proof By Lemma 4.4 and the implicit function theorem, there exist 0 < d∗
ε � 1, an

open subset U∗
ε of (κ̃∗

ε , S̃∗(·, ε), Ĩ ∗
1 (·, ε), . . . , Ĩ ∗

k (·, ε)) in U and a C1 function

(−d∗
ε , d∗

ε

) � dS �→
(
κ̃∗
ε (dS), S̃∗ (·; dS, ε) , Ĩ ∗

1 (·; dS, ε) , . . . , Ĩ ∗
k (·; dS, ε)

)
∈ U∗

ε
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such that for each 0<dS<d∗
ε , (dS, κ̃

∗
ε (dS), S̃∗(·; dS, ε), Ĩ ∗

1 (·; dS, ε), . . . , Ĩ ∗
k (·; dS, ε))

is the unique solution of the equationFε(dS, κ, S, I1, . . . , Ik) = 0 in (−d∗
ε , d∗

ε )×U∗
ε .

By direct computations, for every 0 < dS < d∗
ε , by defining

S∗ (·; dS, ε) = κ̃∗
ε (dS)S̃∗ (·; dS, ε) and I ∗

i (·; dS, ε) = κ̃∗
ε (dS)

di
Ĩ ∗
i (·; dS, ε) , i = 1, . . . , k,

then (S∗(·; dS, ε), I ∗
1 (·; dS, ε), . . . , I ∗

k (·; dS, ε)) satisfies the assertion of the theorem.
��

As a corollary of Theorem 4.5, we deduce Theorem 2.4.

Proof of Theorem 2.4 Suppose that k = 2. By Lemmas 4.2 and 4.3, we know that
there is ε̃∗ > 0 such that for 0 < ε < ε̃∗, (45) (equivalently (51)) has a solution
satisfying (52), with Ĩ ∗

1 (·; dS, ε) being linearly stable. Hence, the result follows from
Theorem 4.5. ��

Appendix C: Proofs of Theorems 2.5, 2.6 and 2.8

In the current section, we fix dS = 0 and present the proofs of Theorems 2.5, 2.6 and
2.8. First, we study the stability of the disease-free equilibrium and prove Theorem 2.6.

Lemma 5.6 Suppose k ≥ 1, dS = 0, | ∩k
i=1 � \ H+

i | > 0 and let
(S(t, x), I1(t, x), . . . , Ik(t, x)) be a positive classical solution of (1). Then
‖∑k

i=1 Ii (t, ·)‖∞ → 0 as t → ∞. Furthermore, if R0 < 1, there is S∗ ∈ C(�)

such that S(t, ·) → S∗(·) as t → ∞ uniformly in x ∈ �.

Proof The proof is divided into two steps.
Step 1 In this step, we shall show that ‖∑k

i=1 Ii (t, ·)‖∞ → 0 as t → ∞ and that there
exists S∗− : ∩k

i=1(� \ H+
i ) → (0,∞) such that ‖S(t, ·) − S∗−‖L1(∩k

i=1(�\H+
i )) → 0

as t → ∞. Indeed, observe that any solution (S(t, x), I1(t, x), . . . , Ik(t, x)) of (1)
satisfies

∂t S(t, x) =
∑k

i=1 (γi − βi ) Ii S +∑k
i=1 γi Ii

∑k
j=1 I j

S +∑k
j=1 I j

≥
γ
(
miny∈�

∑k
i=1 Ii (t, y)

)2

S(t, x) + miny∈�

∑
i=1 Ii (t, y)

∀ t > 0, (70)

for every x ∈ ∩k
i=1(� \ H+

i ), where γ = minx∈� min{γi (x) : i = 1 · · · , k}.
Note that we have used the fact that the function (0,∞) � τ �→ τ 2

a+τ
is increasing

for every a ≥ 0. Hence, the function t �→ S(t, x) is strictly increasing for every
x ∈ ∩k

i=1(� \ H+
i ). Thus, S(t, ·) converges to some function S∗−(·) on ∩k

i=1(� \ H+
i )

123



10 Page 36 of 47 Y. Lou, R. B. Salako

as t → ∞. Since S(t, x) ≥ 0 for every x ∈ �, the Lebesgue monotone convergence
theorem implies that

lim
t→∞

∫

∩k
i=1

(
�\H+

i

) S(t, x) =
∫

∩k
i=1

(
�\H+

i

) S∗−(x)dx . (71)

But, by (13),

N =
∫

�

(

S(t, x) +
k∑

i=1

Ii (t, x)

)

dx ≥
∫

∩k
i=1

(
�\H+

i

) S(t, x)dx ∀ t ≥ 0.

Whence, by (71), S∗− ∈ L1(∩k
i=1(� \ H+

i )) and

lim
t→∞ ‖S(t, ·) − S∗−‖L1

(∩k
i=1

(
�\H+

i

)) = 0.

Next, recalling that | ∩k
i=1 (� \ H+

i )| > 0 and ‖S∗−‖L1(∩k
i=1(�\H+

i )) ≤ N < ∞, we

deduce that S∗− is finite almost everywhere on ∩k
i=1(� \ H+

i ). So we can choose
x0 ∈ ∩k

i=1(� \ H+
i ) such that S∗−(x0) ∈ (0,∞). This together with inequalities (70),

(14) and (16) give that

S∗−(x0) ≥S(0, x0) + γ

∫ ∞

0

[miny∈�

∑k
i=1 Ii (t, y)]2

S∗−(x0) + miny∈�

∑k
i=1 Ii (t, y)

dt

≥S(0, x0) + γ

c̃1(S(x0) + c1N )

∫ ∞

1
‖

k∑

i=1

Ii (t)‖2∞dt . (72)

Therefore, since the map [1,∞) �→ ‖∑k
i=1 Ii (t)‖∞ is uniformly continuous, it fol-

lows from (15) that

lim
t→∞ ‖

k∑

i=1

Ii (t, ·)‖2∞ = 0, (73)

which yields that limt→∞ ‖∑k
i=1 Ii (t, ·)‖∞ = 0. It is also clear from (70) that

S∗−(x) > S(0, x) ≥ 0 for every x ∈ ∩k
i=1(� \ H+

i ).
Step 2 In this step, we suppose that R0 < 1 and then show that

∫ ∞

0
‖St (t, ·)‖∞dt < ∞.

Since R0 < 1, then H− has positive measure. So the point x0 above can be chosen
such that x0 ∈ H−, since H− ⊂ ∩k

i=1(� \ H+
i ) and S∗− is finite almost everywhere
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on ∩k
i=1(� \ H+

i ). Observe that

St (·, x0) =
k∑

i=1

(

(γi (x0) − βi (x0)) + βi (x0)
∑k

j=1 I j (t, x0)

S(t, x0) +∑k
j=1 I j (t, x0)

)

Ii (t, x0)

> min
i=1,...,k

(γi (x0) − βi (x0))
k∑

i=1

Ii (t, x0) t > 0.

Hence, by (16), there is a positive constant C > 0 such that

S∗−(x0) ≥ S(0, x0) + C min
1≤i≤k

(γi (x0) − βi (x0))
∫ ∞

0
‖

k∑

i=1

I (t, ·)‖∞dt,

which implies that
∫∞
0 ‖∑k

i=1 Ii (t, ·)‖∞ < ∞. As a result, we conclude that

∫ ∞

0
‖St (t, ·)‖∞dt ≤

k∑

i=1

‖2βi + γi‖∞
∫ ∞

0
‖

k∑

i=1

Ii (t, ·)‖∞ < ∞.

Whence

lim
t→∞

∥
∥
∥
∥S(t, ·) − S0(·) −

∫ ∞

0
St (s, ·)ds

∥
∥
∥
∥∞

= 0,

that is S(t, ·) → S∗(x) := S0(x) + ∫∞
0 St (s, x)ds ∈ C(�) as t → ∞ uniformly on

�. ��
Next, for each i = 1, . . . , k, let ψ∗

i be a positive eigenfunction of λ∗(di , βi − γi )

satisfying maxx∈� ψ∗
i (x) = 1. Recall that 1−R0,i and λ∗(di , βi − γi ) have the same

sign. We can now complete the proof of Theorems 2.5 and 2.6 .

Proof of Theorem 2.5 Thanks to Lemma 5.6, we know that there exists S∗(·) such that
‖S(t, ·) − S∗(·)‖∞ +∑k

i=1 ‖Ii (t, ·)‖∞ → 0 as t → ∞. It clearly follows from (13)
that

∫

�
S∗ = N . Now, set J+ := {x ∈ � : S∗(x) = 0} and we show that (i) − (i i)

hold. First, it follows from the proof of Lemma 5.6 that S∗(x) > S(0, x) > 0 for
every x ∈ ∩k

i=1(� \ H+
i ) = � \ ∪k

i=1H+
i . Hence, J+ ⊂ ∪i H+

i .
(i) Suppose that R0 > 1. Since R0 > 1, without loss of generality, we may suppose
thatR0,1 > 1 and we proceed to show that |J+| is positive. Let (λ∗(d1, β1 −γ1), ψ

∗
1 )

be given above. Since R0,1 > 1, we know that λ∗(d1, β1 − γ1) < 0. For any ε > 0,
define

�ε := {x ∈ � : S∗(x) > 2ε}.

It is easy to see that J+ := ∩ε>0(�\�ε) and |J+| = limε→0 |�\�ε|. Recalling that
(S(t, ·), I1(t, ·), . . . , Ik(t, ·)) → (S∗(·), 0, . . . , 0) as t → ∞ uniformly in x ∈ �,
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then for every ε > 0, there is tε � 1 such that

S(t, x) > ε and ‖
k∑

i=1

Ii (t, ·)‖∞ ≤ ε2 ∀ x ∈ �ε, t ≥ tε.

Letting C = c̃1‖ψ∗‖∞
|�|2 minx∈� ψ∗(x)

, where c̃1 is the positive constant of (16), it holds for

every t ≥ tε that

∫

�

β1
∑k

i=1 Ii (t)
∑k

i=1 Ii (t) + S(t)
I1(t)ψ

∗
1

=
∫

�ε

β1
∑k

i=1 Ii (t)
∑k

i=1 Ii (t) + S(t)
I1(t)ψ

∗
1 +

∫

�\�ε

β1
∑k

i=1 Ii (t)
∑k

i=1 Ii (t) + S(t)
I1(t)ψ

∗
1

≤ ‖β1‖∞
∫

�ε

∑k
i=1 Ii (t)

S(t)
I1(t)ψ

∗
1 + ‖β1‖∞|� \ �ε|‖I1(t)‖∞‖ψ∗

1 ‖∞

≤ ε‖β1‖∞
∫

�ε

I1(t)ψ
∗
1 + C‖β1‖∞|� \ �ε|

∫

�

I1(t)ψ
∗
1

≤ ‖β1‖∞(ε + C |� \ �ε|)
∫

�

I1(t)ψ
∗
1 .

Multiplying the second equation of (1) by ψ∗
1 and integrating by parts, we get

d

dt

∫

�

I1(t)ψ
∗
1 = − d1

∫

�

∇ψ∗
1∇ I1(t)

+
∫

�

(

β1 − γ1 − β1
∑k

i=1 Ii (t)

S(t) +∑k
i=1 Ii (t)

)

I1(t)ψ
∗
1

≥ − d1

∫

�

∇ψ∗
1∇ I1(t)

+
∫

�

(β1 − γ1) I1(t)ψ
∗
1 − ‖β1‖∞(ε + C |� \ �ε|)

∫

�

I1(t)ψ
∗
1

(74)

for every t ≥ tε. On the other hand, multiplying (20) by I1(t, x) and integrating by
parts, we get

−λ∗(d1, β1 − γ1)

∫

�

I1(t)ψ
∗
1= − d1

∫

�

∇ψ∗
1∇ I1(t) +

∫

�

(β1 − γ1)I1(t)ψ
∗
1∀ t > 0.

(75)

By (74) and (75),

dt

dt

∫

�

I1(t)ψ
∗
1 ≥ − (λ∗ (d1, β1 − γ1) + ‖β1‖∞ (ε + C |� \ �ε|)

)
∫

�

I1(t)ψ
∗
1
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for every t ≥ tε. Thus,

1

t
ln

(‖I1(t + tε)ψ∗
1 ‖L1(�)

‖I1(tε)ψ∗
1 ‖L1(�)

)

≥ − (λ∗ (d1, β1 − γ1) + ‖β1‖∞ (ε + C |� \ �ε|)
) ∀ t > 0, ε > 0.

Since supt≥0 ‖I1(t)‖∞ < ∞, we derive from the last inequality that

ε + C |� \ �ε| ≥ −λ∗ (d1, β1 − γ1)

‖β1‖∞
ε > 0.

Letting ε → 0 yields that |J+| ≥ −λ∗(d1,β1−γ1)
‖β1‖∞C > 0. Hence, J+ has a positive

measure. It is easy to see that if x ∈ �\∪k
i=1H+

i the function t �→ S(t, x) is increasing,
and hence x ∈ �\J+. This shows that J+ is contained in∪k

i=1(�∩H+
i ). Next, observe

that J+ is a closed subset of � and that ∪k
i=1(�∩ H+

i ) is an open subset of �. Hence,
if J+ = ∪k

i=1(� ∩ H+
i ), we would then have that � = J+ = ∪k

i=1(� ∩ H+
i ), since

� is a connected set. And hence S∗ ≡ 0, which is impossible since
∫

�
S∗ = N > 0.

Whence, we must have that J+
� ∪k

i=1(� ∩ H+
i ), that is ∪k

i=1(� ∩ H+
i ) \ J+ is a

nonempty open subset of �. So, we can conclude that the set ∪k
i=1(� ∩ H+

i ) \ J+
also has a positive measure being a nonempty open set.

(i i) Assume that R0 < 1. Let (λ∗(di , βi − γi ), ψ
∗
i ) be given above for each

i = 1, . . . , k. We know that λ∗(di , βi − γi ) > 0 for each i = 1, . . . , k. It is easy to
see that

∂t Ii ≤ di�Ii + (βi − γi ) Ii x ∈ �, t > 0.

So, by the comparison principle for parabolic equations,

Ii (t, x) ≤ ‖Ii (0, ·)‖e−λ∗(di ,βi −γi )t
ψ∗

i (x)

minz∈� ψ∗
i (z)

∀ x ∈ �, t > 0, i = 1 · · · , k.

Taking M =∑k
i=1

1
minz∈� ψ∗

i (z) , we obtain that

∫ ∞

0
‖St (s, ·)‖∞ds ≤M

k∑

i=1

‖βi+γi‖∞‖
k∑

i=1

Ii (0, ·)‖∞
∫ ∞

0
e−min1≤i≤k λ∗(di ,βi −γi )sds

= M

min1≤i≤k λ∗(di , βi − γi )

k∑

i=1

‖βi + γi‖∞‖
k∑

i=1

Ii (0, ·)‖∞.

123



10 Page 40 of 47 Y. Lou, R. B. Salako

Hence, ∀ x ∈ �,

S∗(x) ≥S(0, x) − M

min1≤i≤k λ∗ (di , βi − γi )

k∑

i=1

‖βi + γi‖∞‖
k∑

i=1

Ii (0, ·)‖∞

≥min
z∈�

S(0, z) − M

min1≤i≤k λ∗ (di , βi − γi )

k∑

i=1

‖βi + γi‖∞‖
k∑

i=1

Ii (0, ·)‖∞.

We may take m0 =
[

M
min1≤i≤k λ∗(di ,βi −γi )

∑k
i=1 ‖βi + γi‖∞

]−1
and obtain from the

above inequality that J+ = ∅ whenever ‖∑k
i=1 Ii (0, ·)‖∞ < m0S(0, ·). ��

Proof of Theorem 2.6 Suppose that k = 1. (i) It is easy to check given any S∗ ∈ C(�)

satisfying (8), (S∗(x), 0) is always a solution of (1). Next, let (S(x), I1(x)) be a
steady-state solution of (1). The maximum principle implies that I1(x) > 0 for every
x ∈ �. Hence, it follows from the equation satisfied by S(x) that either I1(x) ≡ 0 or
I1(x)γ1(x) = (β1(x) − γ1(x))S(x) for every x ∈ �. It is clear that I1(x) ≡ 0 implies
that S(x)must satisfy (8). In the second case, that is, I1(x)γ1(x) = (β1(x)−γ1(x))S(x)

for every x ∈ �, since R0 < 1 and hence H− is nonempty, then there is an element
x0 ∈ � such that I1(x0) = 0. As a result, we must have that I1(x) ≡ 0, so we are back
to the first case. This completes the proof of (i).

(i i) Suppose that R0 > 1, and hence β1(x) > γ1(x) for every x ∈ �. It is easy
to check that (Se(x), Ie(x)) defined by (9) is a steady state solution of (1). Next, let
(S(x), I1(x)) be a steady-state solution of (1) for which I1(x) > 0 for every x ∈ �.
Hence, from the equation satisfied by S(x), we must have

S(x) = γ1(x)

β1(x) − γ1(x)
I1(x) = I1(x)

R1(x) − 1
∀ x ∈ �.

Thus, I1(x) must satisfy

{
0 = d1�I1 x ∈ �

∂�n I = 0 x ∈ ∂�,

which implies that I1(x) = constant . This togetherwith the equation N = ∫
�
(I1(x)+

S(x)) yields that

N =
∫

�

(

1 + γ1(x)

β1(x) − γ1(x)

)

I1dx = I1

∫

�

R1(x)

R1(x) − 1
dx .

Solving for I1 in the last equation, we obtain that I1 = Ie. ��
Suppose that k = 1 and that R0 > 1 and we present the proof of Theorem 2.8.

To this end, we first study the large time behavior of solution of the following related
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system:

⎧
⎪⎪⎨

⎪⎪⎩

S̃t =
(

Ĩ − S̃
)

ρ1(x) Ĩ
ρ(x)S̃+ Ĩ

x ∈ �

Ĩt = d1� Ĩ + (S̃ − Ĩ ) ρ2(x) Ĩ
ρ(x)S̃+ Ĩ

x ∈ �

∂�n Ĩ = 0 x ∈ �,

(76)

where ρ, ρ1, ρ2 ∈ Cα(�), minx∈� ρ(x) > 0 and minx∈� ρi (x) > 0 for each
i = 1, 2. Given positive initial functions (S̃0(x), Ĩ0(x)) ∈ [C(�)]2, we denote by
(S̃(t, x; S̃0, Ĩ0), Ĩ (t, x; S̃0, Ĩ0)) the unique classical solution of (76). By the com-
parison principle, it holds that S̃(t, x) > 0 and Ĩ (t, x) > 0 for every t > 0 and
x ∈ �. Moreover, supt≥0 ‖S̃(t, ·) + Ĩ (t, ·)‖∞ < ∞. It is easy to see that (76) has
infinitely many steady state solutions which are all constant functions of the form
(S̃(t, x), Ĩ (t, x)) ≡ (c, c) where c is some positive constant. Our aim is first to study
the large time behavior of solutions to (76) and next deduce the asymptotic behavior
of solutions to (1) when H+

1 = �. The following result holds for (76).

Lemma 5.7 Let (S̃(t, x; S̃0, Ĩ0), Ĩ (t, x; S̃0, Ĩ0)) be a classical solution of (76) with
(S̃0, Ĩ0) ∈ [C(�)]2 and Ĩ0(x) > 0 and S̃0(x) > 0 for every x ∈ �, and define

c(t) = min{min
x∈�

S̃(t, x; S̃0, Ĩ0),min
x∈�

Ĩ (t, x; S̃0, Ĩ0)} ∀ t ≥ 0

and

c(t) = max{max
x∈�

S̃(t, x; S̃0, Ĩ0),max
x∈�

Ĩ (t, x; S̃0, Ĩ0)} ∀ t ≥ 0.

Then, the following conclusions hold:

(i) The map t �→ c(t) is monotone increasing and the map t �→ c(t) is monotone
decreasing.

(ii) If we denote by c = limt→∞ c(t) and c = limt→∞ c(t) then

lim inf
t→∞ min

x∈�

S̃(t, x; S̃0, Ĩ0) = lim inf
t→∞ min

x∈�

Ĩ
(

t, x; S̃0, Ĩ0
)

= c

and

lim sup
t→∞

max
x∈�

S̃(t, x; S̃0, Ĩ0) = lim sup
t→∞

max
x∈�

Ĩ
(

t, x; S̃0, Ĩ0
)

= c.

Proof (i) Define the functions

Fi (t, x) =
ρi (x) Ĩ

(
t, x; S̃0, Ĩ0

)

Ĩ
(

t, x; S̃0, Ĩ0
)

+ ρ(x)S̃
(

t, x; S̃0, Ĩ0
)

123



10 Page 42 of 47 Y. Lou, R. B. Salako

for every i = 1, 2, we have that Fi (t, x) > 0 for every x ∈ �, t ≥ 0 and i = 1, 2.
Moreover, (S̃(t, x; S̃0, Ĩ0), Ĩ (t, x; S̃0, Ĩ0)) is a classical solution of the cooperative
system

⎧
⎪⎨

⎪⎩

∂t S = (I − S)F1(t, x) x ∈ �

∂t I = d1�I + (S − I )F2(t, x) x ∈ �

∂�n I = 0 x ∈ ∂�.

(77)

Next, for every t0 ≥ 0, both the constant functions (c(t0), c(t0)) and (c(t0), c(t0)) are
classical solutions of (77) on � × (t0,∞) satisfying

(
c(t0), c(t0)

) ≤
(

S̃
(

t0, x; S̃0, Ĩ0
)

, Ĩ (t0, x; S̃0, Ĩ0)
)

≤ (c(t0), c(t0)) ∀ x ∈ �,

where the inequalities hold component-wise. Hence, by the comparison principle for
cooperative systems, it holds that

(
c(t0), c(t0)

) ≤
(

S̃
(

t, x; S̃0, Ĩ0
)

, Ĩ
(

t, x; S̃0, Ĩ0
))

≤ (c(t0), c(t0)) ∀ x ∈ �, t ≥ t0.

Since t0 is arbitrary given, we conclude that (i) holds.
(i i) We note from (i) that infx,∈�,t≥0 Fi (t, x) > 0 for every i = 1, 2. So, we can

employ comparison principle to deduce (i i) from (i). ��

Lemma 5.8 Let (S̃(t, x; S̃0, Ĩ0), Ĩ (t, x; S̃0, Ĩ0)) be a classical solution of (76) with
(S̃0, Ĩ0) ∈ [C(�)]2 and Ĩ0(x) > 0 and S̃0(x) > 0 for every x ∈ �. Then

1

2

d

dt

{∫

�

ρ2(x)

ρ1(x)
S̃2(t, x)dx +

∫

�

Ĩ 2(t, x)dx

}

= −

⎧
⎪⎨

⎪⎩

∫

�

(
S̃(t) − Ĩ (t)

)2
Ĩ (t, x)ρ2(x)

ρ(x)S̃(t, x) + Ĩ (t, x)
dx + d1

∫

�

|∇ Ĩ (t, x)|2dx

⎫
⎪⎬

⎪⎭
∀ t > 0.

(78)

Proof Using (76) and integration by parts, we get

1

2

d

dt

∫

�

ρ2(x)

ρ1(x)
S̃2dx =

∫

�

ρ2(x)

ρ1(x)
S̃ S̃t =

∫

�

ρ2(x)( Ĩ − S̃) Ĩ S̃

Ĩ + ρ(x)S̃
(79)
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and

1

2

d

dt

∫

�

Ĩ 2dx =
∫

�

Ĩt Ĩ

=
∫

�

Ĩ

(

dI � Ĩ +
(

S̃ − Ĩ
) ρ2(x) Ĩ

ρ(x)S̃ + Ĩ

)

= − d1

∫

�

|∇ Ĩ |2 −
∫

�

ρ2(x)
(

Ĩ − S̃
)

Ĩ 2

ρ(x)S̃ + Ĩ
. (80)

Adding up both (79) and (80) yield (78). ��

Thanks to Lemma 5.8, the large time behavior of solutions to (76) can be studied.

Theorem 5.9 Let (S̃(t, x; S̃0, Ĩ0), Ĩ (t, x; S̃0, Ĩ0)) be a classical solution of (76) with
(S̃0, Ĩ0) ∈ [C(�)]2 and Ĩ0(x) > 0 and S̃0(x) > 0 for every x ∈ �. Then

lim
t→∞ ‖S̃(t, ·; S̃0, Ĩ0) − c‖L2(�) = lim

t→∞ ‖ Ĩ
(

t, ·; S̃0, Ĩ0
)

− c‖∞ = 0, (81)

where the constant c is uniquely determined by

c = 1
∫

�

(
ρ2(x)
ρ1(x)

+ 1
)

dx

∫

�

[
ρ2(x)

ρ1(x)
S̃0(x) + Ĩ0(x)

]

dx . (82)

Proof The proof is divided into two steps.
Step 1 In this step, we show that

lim
t→∞

{∫

�

(
S̃(t, x) − Ĩ (t, x))2dx +

∫

�

|∇ Ĩ (t, x)|2dx

}

= 0. (83)

We recall from Lemma 5.7 that there are positive constants 0 < c∗ < c∗ such that
c∗ ≤ Ĩ (t, x), S̃(t, x) ≤ c∗ for every x ∈ � and t ≥ 0. Thus,

∫

�

(
S̃(t, x) − Ĩ (t, x)

)2
Ĩ (t, x)ρ2(x)

ρ(x)S̃(t, x) + Ĩ (t, x)
dx ≥ m

∫

�

(
S̃(t) − Ĩ (t)

)2
dx ∀ t ≥ 0,(84)

where m := c∗ minx∈� ρ2(x)

c∗(1+minx∈� ρ(x))
> 0. Observe from (78) that

∫ ∞

0

⎧
⎪⎨

⎪⎩

∫

�

(
S̃(t, x) − Ĩ (t, x)

)2
Ĩ (t, x)ρ2(x)

ρ(x)S̃(t, x) + Ĩ (t, x)
dx + d1

∫

�

|∇ Ĩ (t, x)|2dx

⎫
⎪⎬

⎪⎭
dt < ∞.
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Whence, by (84), we also get that

∫ ∞

0

{∫

�

(S̃(t, x) − Ĩ (t, x))2dx +
∫

�

|∇ Ĩ (t, x)|2dx

}

dt < ∞. (85)

Now, note that supt≥0,x∈�
|S̃(t,x)− Ĩ (t,x)|ρ2(x)

ρ(x)S̃(t,x)+ Ĩ (t,x)
≤ 2c∗‖ρ2‖∞

(1+minx∈� ρ(x))c∗ < ∞. Thanks to

regularity theory for parabolic equations, we have that the map

[1,∞) � t �→ ‖ Ĩ‖C1(�)

is uniformly Hölder continuous. This in turn implies that the map

[1,∞) � t �→ ‖∇ Ĩ ||L2(�)

is uniformly Hölder continuous. Thus, since

∫ ∞

0

∫

�

|∇ Ĩ (t, x)|2dxdt < ∞, (see(85))

we deduce that

lim
t→∞

∫

�

|∇ Ĩ (t, x)|2dx = 0. (86)

Next, taking G(t) = ‖ ˜I (t, ·) − S̃(t, ·)‖2
L2(�)

for every t ≥ 0 and M =
supt≥0,x∈� |S̃t (t, x)| ≤ 2c∗‖ρ2‖∞

(1+minx∈� ρ(x))c∗ < ∞, we get

|G(t + h) − G(t)| ≤4c∗
∫

�

(
| Ĩ (t + h, x) − Ĩ (t, x)| + |S̃(t + h, x) − S̃(t, x)|

)
dx

≤4c∗
∫

�

(
| Ĩ (t + h, x) − Ĩ (t, x)| + M |h|

)
dx ∀ t ≥ 1, h > 0.

(87)

Similarly, using the fact that the map [1,∞) � t �→ ‖ Ĩ‖C1(�) is uniformly Hölder
continuous, so there is ν ∈ (0, 1), there is Mν > 0 such that

‖ Ĩ (t + h, ·) − Ĩ (t, ·)‖∞ ≤ Mν |h|ν.

Whence, inequality (87) can be improved to

|G(t + h) − G(t)| ≤ 4c∗|�|(Mν |h|ν + M |h|), ∀ t ≥ 1, h ≥ 0.
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Therefore, since
∫∞
0 G(t)dt < ∞ by (85) and, G(t) ≥ 0 for every t ≥ 0, we conclude

that

lim
t→∞ G(t) = 0.

This together with (86) yields (83).
Step 2 In this step, we show that

lim
t→∞ ‖ Ĩ (t, ·) − c‖∞ = 0 (88)

where c is given by (82). We proceed by contradiction to show (88). So, suppose that
there is some sequence {tn}n≥1 with tn → ∞ such that

inf
n≥1

‖ Ĩ (tn, ·) − c‖∞ > 0. (89)

Since the function Ĩ (t, ·) is uniformly Hölder continuous on [1,∞) with respect to
‖·‖C1(�) with supt≥1 ‖ Ĩ (t, ·)‖C1(�) < ∞, then by the Arzella-Ascoli’s theorem, there

is a subsequence {tn,1} of {tn}n≥1 such that Ĩ (tn,1, ·) → I ∗(·) in C1(�) as n → ∞.
In particular, it holds that Ĩ (tn,1, ·) → I ∗(·) as n → ∞ in W 1,2(�). Thus, by Step
1, we conclude that ‖|∇ I ∗|‖L2(�) = 0 and ‖S̃(tn,1, ·) − I ∗‖L2(�) → 0 as n → ∞.

Hence I ∗ =constant and (S̃(tn,1, ·), Ĩ (tn,1, ·)) → (I ∗, I ∗) as n → ∞ in L2(�). This
implies that

lim
n→∞

∫

�

(
ρ2(x)

ρ1(x)
S̃(tn,1, x) + Ĩ (tn,1, x)

)

dx = I ∗
∫

�

(
ρ2(x)

ρ1(x)
+ 1

)

dx (90)

Next, it is easy to see that

d

dt

∫

�

[
ρ2(x)

ρ1(x)
S̃(t, x) + Ĩ (t, x)

]

dx = 0 ∀ t > 0.

Thus,

∫

�

[
ρ2(x)

ρ1(x)
S̃0(x) + Ĩ0(x)

]

dx =
∫

�

[
ρ2(x)

ρ1(x)
S̃(t, x) + Ĩ (t, x)

]

dx ∀ t ≥ 0. (91)

Combining (90) and (91), we obtain that the constant I ∗ is given by (82). Thus, we
conclude that ‖ Ĩ (tn,1, ·) − c‖∞ = 0, which contradicts (89). Thus, the statement (88)
holds. Now, we can easily derive both (81) and (82) from Steps 1 and 2. ��

Now, using Theorem 5.9, we are able to complete the proof of Theorem 2.8.

Proof of Theorem 2.8 Define

S̃(t, x) = S(t, x)

Se(x)
and Ĩ (t, x) = I (t, x)

Ie
∀ x ∈ �, t ≥ 0. (92)
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Taking ρ(x) = Se(x)
Ie

, ρ1(x) = γ1(x)Ie
Se(x)

and ρ2(x) = γ1(x) and noticing that β1(x) −
γ1(x) = Ieγ1(x)

Se(x)
for every x ∈ �, one easily checks that (S̃(t, x), Ĩ (t, x)) solves (76).

Hence, we may apply Theorem 5.9 to conclude that there is some constant c such that

lim
t→∞[‖S̃(t, ·) − c‖L2(�) + ‖ Ĩ (t, ·) − c‖∞] = 0.

This is equivalent to saying that

lim
t→∞[‖S(t, ·) − cSe(·)‖L2(�) + ‖I (t, ·) − cIe‖∞] = 0

where the constant c in (82) is

c =
∫

�

[
ρ2
ρ1

S̃(0, ·) + Ĩ (0, ·)
]

∫

�

(
ρ2
ρ1

+ 1
)

=
∫

�

[
γ1Se
γ1 Ie

S(0,x)
Se

+ I (0,x)
Ie(x)

]
dx

∫

�

(
γ1Se
γ1 Ie

+ 1
) =

∫

�
(S(0, ·) + I (0, ·))
∫

� (Se + Ie)
= N

N
= 1.

Next, we show that S̃(t, x) → 1 as t → ∞ uniformly in x ∈ �. First, observe from
Lemma 5.7(ii) and the fact that ‖ Ĩ (t, ·) − 1‖∞ → 0 as t → ∞, we obtain that

lim inf
t→∞ min

x∈�

S̃(t, x) = lim sup
t→∞

max
x∈�

S̃(t, x) = 1,

that is ‖S̃(t, ·) − 1‖∞ → 0 as t → ∞, which completes the proof. ��
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