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Background: Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is

one of the nine polyglutamine (polyQ) diseases and is caused by a CAG repeat expansion

within the coding sequence of the ATXN3 gene. Few multimodal imaging analyses of the

macro- and micro-structural changes have been performed.

Methods: In the present study, we recruited 31 genetically-confirmed symptomatic

SCA3/MJD patients and 31 healthy subjects as controls for a multimodal neuroimaging

study using structural magnetic resonance imaging (sMRI), proton magnetic resonance

spectroscopy (1H-MRS) and diffusion tensor imaging (DTI).

Results: The SCA3/MJD patients displayed a significantly reduced of gray matter

volume in the cerebellum, pons, midbrain andmedulla, as well as inferior frontal gyrus and

insula, and left superior frontal gyrus. The total International Cooperative Ataxia Rating

Scale (ICARS) score was inversely correlated with the gray matter volume in the cerebellar

culmen, pons and midbrain. The numbers of CAG repeats in the expanded alleles were

inversely correlated with the gray matter in the cerebellar culmen. NAA/Cr and NAA/Cho

ratio in themiddle cerebellar peduncles, dentate nucleus, cerebellar vermis, and thalamus

in the SCA3/MJD patients were significantly reduced when compared to that in the

normal controls, suggesting neurochemical alterations in cerebellum in the SCA3/MJD

patients. Tract-Based Spatial Statistics (TBSS) analysis revealed significant lower volume

and mean FA values of the cerebellar peduncles, which inversely correlated with the total

scores of ICARS in our patients.

Conclusions: In this study, we demonstrated cerebellar degeneration in SCA3/MJD

based on tissue volume, neurochemistry, and tissue microstructure. Moreover, the

associations between the clinical measures, cerebellar degeneration and genetic

variation support a distinct genotype-phenotype relationship in SCA3/MJD.
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INTRODUCTION

Spinocerebellar ataxia (SCA) is a group of autosomal dominant
neurodegenerative disorders with obviously clinical and genetic
heterogeneity that is characterized by progressive loss of balance
and coordination (1). To date, spinocerebellar ataxia type
3/Machado-Joseph disease (SCA3/MJD) is the most common
SCA subtypes with an approximate frequency of 62.64% in
mainland China (2–4). SCA3/MJD is caused by an unstable and
expanded (CAG)n trinucleotide repeats within the coding region
of the ATXN3 genes (5, 6). The CAG trinucleotide repeats range
from 52 to 91 repeats in the SCA3/MJD patients, and<45 repeats
in the normal people (7, 8). The neurological manifestations
of SCA3/MJD include cerebellar ataxia, as well as pyramidal
and extrapyramidal signs, nystagmus, dysarthria, and peripheral
neuropathy etc. (9).

So far, neuroimaging study has shown widespread
degeneration in CNS of SCA3/MJD patients, including the pons,
cerebellar vermis and hemispheres, basal ganglia, midbrain,
medulla oblongata, and cerebral cortex (10). Furthermore, MRI
analysis of gray matter indicated that atrophy in the pons and
vermis is especially obvious in SCA3/MJD patients, as well as
the white matter surrounding the dentate nucleus and in the
cerebellar peduncles (11). In addition, glucose utilization deficits
in cerebellum, brainstem, and cerebral cortex can be observed in
SCA3/MJD carriers even in the pre-symptomatic (12).

Although many studies on macrostructural atrophy in
cerebral regions of SCA3/MJD patients have been performed,
there was little understanding of the changes in microstructure
and the relationship between the clinical and genetic assessments
(11, 13). In this study, we performed a cross-sectional study
of multimodal imaging, including sMRI, 1HMRS, and DT-
MRI in SCA3/MJD patients to investigate the changes of the
microstructure underlying the neurodegenerative process.

MATERIALS AND METHODS

Subjects
In this study, 31 SCA3/MJD patients, which were diagnosed with
Harding criteria, were recruited from the Neurodegenerative
Disorders Clinic of the Departments of Neurology of the Xiangya
Hospital of Central South University in the People’s Republic of
China. In this exploratory study, patient recruitment depended
on their willingness to give informed consent and the availability
of MRI scanning and genetic test. Furthermore, each patient
was evaluated according to a standardized clinical examination
procedure that includes systematic physical and neurological
examinations. The ataxia severity was assessed by using the
ICARS (14). The number of CAG repeats was calculated by
genetic analysis of expanded allele in ATXN3 gene. 31 controls
that were sex- and age-matched to the patients were recruited
from the community. Exclusion criteria for all participants
were as follows: (1) younger than 18 years old; (2) pregnancy
or breastfeed; (3) neurological diseases, psychiatric deficits,
metabolic diseases and tumors; (4) any contraindications for
MRI examination. The workflow of recruitment was illustrated
in Figure 1.

Images Acquisition
Images acquisition was performed using a Siemens Sonata
1.5-tesla MRI scanner (Siemens Medical Systems, Erlangen,
Germany) at Xiangya Hospital Imaging Center.

First, high-resolution whole-brain T1-weighted images were
obtained using the MPRAGE sequence with the following
parameters: TR/TE = 1,900/4.38ms, flip angle = 30◦C and
isotropic voxel size 1× 1× 1 mm3.

Second, 3 dimensional T1-weighted images (TR/TE =

450/10ms, field of view = 26 cm, matrix = 256 × 256, 5mm
thickness and 1.5mm gap for axial images, 6mm thickness
and 1.5mm gap for sagital and coronal images) and axial T2-
weighted images (TR/TE = 4,200/98ms, field of view = 24 cm,
matrix = 256 × 256, 5mm thickness and 1.5mm gap) of the
whole brain were acquired via spin-echo and fast spin-echo
sequences, respectively. Then, 1HMRS data were acquired using
a standard PRESS sequence (TR/TE = 1,500/135ms) from two
axial slices, which were paralleled to the anterior commissure-
posterior commissure (AC-PC) plane (Figure 2). The first slice
that included the cerebellum and the pons was defined by
referring to the midpoint of the pons in the sagittal view of the
T1 images. The second plane was defined across the basal ganglia
and thalamus. 1HMRS data were obtained from four regions
of interest (ROIs) (i.e., the middle cerebellar peduncle, dentate
nucleus, cerebellar vermis, and cerebellar cortex) in the first
slice and two ROIs in the second slice. Each ROI was examined
bilaterally for the presence of lateralization.

Third, diffusion weighted images along the AC-PC plane were
acquired via a single-shot echo planar imaging sequence using the
following parameters: TR/TE = 9,900/99ms, field of view = 256
× 256 mm2, matrix = 128× 128, slice thickness= 2mm and 60
continuous axial slices without a gap. The diffusion sensitizing
gradients were applied to 12 non-linear directions (b = 1,000
s/mm2), together with an acquisition image without diffusion
weighting (b= 0 s/mm2).

Data Processing and Statistical Analysis
sMRI Images Analysis
Voxel-based morphometry (VBM) was performed to explore
the difference in gray matter intensity between the SCA3/MJD
patients and controls. VBM analysis was performed using the
Statistical Parametric Mapping (SPM5) software (http://www.
fil.ion.ucl.ac.uk/spm/) according to the following steps. (1)
After removing the scalp tissue, skull, and dural venous sinus
voxels, the brain was segmented into gray matter, white matter
and cerebrospinal fluid partitions (in native space). (2) The
gray matter partitions were spatially normalized using a 12-
parameter affine transformation and 7 × 8 × 8 basis functions.
The normalized gray images were averaged and smoothed,
respectively, by applying a Gaussian kernel of 8mm full width
at half maximum (FWHM) to generate customized gray matter
templates. (3) The deformation parameters resulting from the
above normalization were applied to the original whole-brain
images to produce optimally normalized images, which were
then segmented into gray matter images using the unified
segmentation model (15) followed by a hidden Markov random
field model clean-up step. To increase classification accuracy, we
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FIGURE 1 | Flow-chart of the study. Seventy participants (including 36 SCA3/MJD patients and 34 normal controls) volunteered and were screened for inclusion and

exclusion criteria. Five SCA3/MJD patients had to be excluded because they were younger than 18 years old. Three normal controls had to be excluded because they

had neurological or psychiatric deficits. Sixty-two participants (including 31 SCA3/MJD patients and 31 normal controls) were enrolled in the study.

adapted no priors option during segmentation to avoid deviation
of the tissue in our samples from the ICBM gray matter priors,
which were generated from a sample with a mean age of 25 years.
(4) A Jacobian modulation step was applied to the segmented
images to preserve the volume of gray matter within each voxel.
The modulated images were then smoothed using a kernel with a
FWHM of 10mm for further analysis.

The two-sample t-test within the General Linear Model in
SPM5 was used to evaluate the difference in gray matter intensity
between the SCA3/MJD patient and control groups. Moreover,
the associations between the gray matter volume and the total
ICARS scores or the numbers of CAG repeats in expanded alleles
of SCA3/MJD patients were evaluated via a multiple regression
using a threshold of p < 0.05 (FDR corrected).

1H-MRS Image Analysis
1HMRS image preprocessing included zero-filling, Gaussian
apodization, Fourier transformation, water reference processing,
frequency shift correction, and phase and baseline correction
using Functool software (2.6.4b version). The spectral quality

was reflected by the FWHM in parts-per-million of the proton
frequency of 63.8 MHz. Spectra of poor quality were discarded
prior to statistical analysis. The peak integral values were
determined by using the curve-fitting software provided by the
manufacturer. NAA was assigned to be 2.02 ppm, Cho was
assigned to be 3.2 ppm, and Cr assigned to be 3.02 ppm. The
NAA/Cr and NAA/Cho ratios were calculated from voxels in the
aforementioned six pairs of ROIs.

Metabolic group differences for each ROI between groups
were evaluated via the independent-samples t-test. Pearson
correlation was used to determine the associations between the
metabolic indices for each ROI and the total ICARS scores or
the numbers of CAG repeats in the expanded alleles in the
SCA3/MJD patients group. P-values were Bonferroni corrected
for six tests.

DTI-MRI Image Analysis
First, the difference in the FA between the two groups were
evaluated using the voxel-based approach. For each subject,
the unweighted diffusion image (b = 0) was normalized

Frontiers in Neurology | www.frontiersin.org 3 September 2019 | Volume 10 | Article 1025

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Peng et al. A Case-Controlled Imaging-Genetic Study

FIGURE 2 | The anatomically defined ROIs in the 1HMRS images. 1 = MCP; 2 = dentate nucleus; 3 = cerebellar vermis; 4 = cerebellar cortex; 5 = putamen; 6 =

thalamus.

FIGURE 3 | ROIs of the cerebellar peduncles in the color-coded FA maps. The anatomically defined ROIs of the cerebellar peduncles in the color-coded FA maps

(superior row) and their resulting fiber tracts (inferior row). SCP, superior cerebellar peduncle; MCP, middle cerebellar peduncle; ICP, inferior cerebellar peduncle.

first normalized to the EPI template of the SPM5 in
standard Montreal Neurological Institute (MNI) space. This
normalization consists of a 12 degree-of-freedom linear
transformation and a non-linear transformation using 7 × 8
× 7 basis functions. Then, the transformation parameters were
applied to normalize the FA image into standard MNI space.
Finally, the normalized FA images were spatially smoothed using
an 8 × 8 × 8-mm3 FWHM Gaussian kernel (16). The resulting
image was superimposed onto the average normalized FA images
of all subjects for visualization.

Second, tractography was performed using the DTI-studio
software (Version 2.40) (Johns Hopkins University). The
superior cerebellar peduncles, middle cerebellar peduncles and
inferior cerebellar peduncles (SCP, MCP, and ICP, respectively)
were reconstructed individually for controls based on the “fiber
assignment by continuous tracking” method (17). All of the
fiber tracts were reconstructed using voxels FA values >0.1.
Tractography was terminated at an angle >50◦ or at voxel FA
value <0.1. The SCP, MCP, and ICP were defined according
to ROI-based tractography in the directionally color-coded FA
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images according to anatomical knowledge (18) (Figure 3).
Fibers passing through two anatomically selected ROIs were
regarded as the corresponding fiber tracts. The SCP was
determined based on the two ROIs of the cerebellum and
the midbrain; the two MCP was determined based on the
ROIs of the left and right lateral pontine tegmentum; and
ICP was determined based on the ROIs of the medullar and
cerebellum. Because of the patients’ cerebellar peduncles were less
reliably identified, we used the probability maps of the cerebellar
peduncles of the controls group to calculate the diffusion indices
of the corresponding fiber tracts in the patient group.

TABLE 1 | Demography and clinical assessments of the controls and SCA/MJD

subjects.

Controls SCA3/MJD patients

Sex (male/female) 15/16 15/16

Age (year)a 37.53 ± 10.18 38.91 ± 7.38

Age of onset (year)a NA 34.88 ± 6.64

Duration of disease (year) a NA 4.81 ± 3.63

ICARS total scorea NA 26.81 ± 10.82

CAG trinucleotide repeats length a NA 71.84 ± 2.61

aExpressed as mean ± SD. NA, not applicable.

The SCP probability map was obtained as follows: First, the
b= 0 images were normalized into the standard MNI space, and
the voxels were resampled as 2× 2× 2mm3. The transformation
parameters were then applied to the coordinates of the curves
forming the fiber bundles. After the three-dimensional SCPmask
was created via ROI-based tractography, a SCP probability map
was obtained by averaging the SCP masks of all controls. The
value of each voxel in the probability map was regarded as the
probability that the voxel was part of the SCP. After the SCP
probability map was generated, the indices of the SCP were

TABLE 2 | Reduced gray matter volume in the SCA3/MJD patients via the

voxel-based morphometry.

Regions Cluster size T-value Centroid voxel

Lobes Labels x y z

Cerebellum Right cerebellar culmen 171,811 14.40 0 −51 −27

Left cerebellar culmen 12.53 −13 −16 −22

Sub lobar Left Insula 1,051 5.37 −34 −23 9

Right Insula 542 4.24 40 −5 9

Frontal lobe Left Inferior frontal gyrus 337 4.56 −36 25 −19

Right Inferior frontal gyrus 144 4.40 22 19 −21

Left Superior frontal gyrus 352 4.70 −5 52 37

FIGURE 4 | Reduced white matter volume in the SCA3/MJD patients. Reduced gray matter volume in the SCA3/MJD patients compared with the controls based on

voxel-based morphometry (p < 0.05). The color bar refers to the T-values.
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calculated according to following procedure. The b = 0 image
was normalized for each subject, and the resulting transformation
parameters were applied to normalize the FA images, the indices
of the SCP were obtained by superimposing the probability map
on the normalized diffusion images. The FA and MD values of
the MCP and the ICP for each subject were obtained in the
same manner.

Two-sample t-tests were performed to evaluate the differences
in the FA values of the cerebellar peduncles between the
two groups. Pearson correlations were used to evaluate the
associations between the FA values of the cerebellar peduncles
and total ICARS scores or the numbers of CAG repeats in
expanded alleles of the SCA3/MJD patients. P-values were
Bonferroni corrected for three tests.

TABLE 3 | The ICARS total scores or CAG was correlated with the gray matter

volume in the SCA3/MJD patients.

Indices Gray matter regions Cluster

size

T-value MNI coordinate (x, y, z)

ICARS Left cerebellar culmen 246 4.64 −5 62 −9

Right pons 1,215 4.02 14 −26 −40

Left midbrain 264 3.67 −2 −42 −21

Left cerebellar lingual −2 −42 −15

CAG Right cerebellar culmen 215 2.89 25 −42 −22

TABLE 4 | Neurochemistry of the 1HMRS images in the controls and patient

group.

Regions of

interest

Metabolic

ratios

Controls

(mean ± SD)

SCA3/MJD

patients

(mean ± SD)

P-value

Middle cerebellar

peduncle

NAA/Cr 2.21 ± 0.59 1.41 ± 0.44 P = 0.00*

Cho/Cr 1.18 ± 0.29 1.10 ± 0.34 P = 0.22

NAA/Cho 1.91 ± 0.41 1.31 ± 0.36 P = 0.00*

Dentate nucleus NAA/Cr 1.32 ± 0.24 1.07 ± 0.22 P = 0.00*

Cho/Cr 1.07 ± 0.18 1.01 ± 0.20 P = 0.06

NAA/Cho 1.25 ± 0.20 1.07 ± 0.19 P = 0.00*

Cerebellar

vermis

NAA/Cr 1.22 ± 0.23 0.96 ± 0.25 P = 0.00*

Cho/Cr 1.00 ± 0.18 0.88 ± 0.23 P = 0.002*

NAA/Cho 1.24 ± 0.23 1.12 ± 0.28 P = 0.01

Cerebellar cortex NAA/Cr 1.17 ± 0.33 1.02 ± 0.27 P = 0.008*

Cho/Cr 0.92 ± 0.24 0.88 ± 0.23 P = 0.37

NAA/Cho 1.31 ± 0.34 1.23 ± 0.37 P = 0.23

Putamen NAA/Cr 1.22 ± 0.27 1.23 ± 0.34 P = 0.81

Cho/Cr 0.87 ± 0.30 0.95 ± 0.31 P = 0.16

NAA/Cho 1.48 ± 0.44 1.37 ± 0.43 P = 0.15

Thalamus NAA/Cr 1.68 ± 0.37 1.47 ± 0.47 P = 0.008*

Cho/Cr 1.05 ± 0.29 0.99 ± 0.34 P = 0.18

NAA/Cho 1.63 ± 0.35 1.47 ± 0.24 P = 0.003*

*After Bonferroni adjustment for multiple testing, p ≤ 0.008 was considered as significant

in the correlation analysis (six tests).

NAA, N-acetyl-aspartate; Ch, choline-containing compounds; Cr, creatine

and phosphocreatine.

RESULTS

VBM Analysis Between SCA3/MJD
Patients and Normal Control
The demographic and clinical characteristics of the participants
are presented in Table 1. There was no significant difference in
age or gender between the SCA3/MJD patients and the controls
(p > 0.05). Compared with the controls, the SCA3/MJD patients
displayed a significant reduction in gray matter volume in the
cerebellum, pons, midbrain and medulla, as well as inferior
frontal gyrus and insula, and left superior frontal gyrus (p< 0.05,
FDR corrected) (Figure 4, Table 2).

Moreover, correlation analysis of the SCA3/MJD patients
group revealed that the total ICARS score and disease duration
were inversely correlated to the gray matter volume of cerebellar
culmen, pons, andmidbrain (p< 0.005), and the number of CAG
repeats in expanded alleles was inversely correlated to the gray
matter volume of cerebellar culmen (p < 0.01) (Table 3).

1H-MRS Analysis Between SCA3/MJD
Patients and Normal Control
We found that the values of NAA/Cr and NAA/Cho ratio were
significantly reduced in the MCP, dentate nucleus, cerebellar
vermis, and thalamus in the SCA3/MJD patients compared to
that in the normal controls (p < 0.001, MCP; p < 0.001,
dentate nucleus; p < 0.001, cerebellar vermis), whereas only
NAA/Cr ratio in cerebellar cortex was significantly decreased (p
< 0.01, cerebellar cortex). There was a significant difference of

TABLE 5 | Relationship between 1H-MRS and clinic variable in SCA3/MJD group.

Regions of interest Metabolic ratios ICARS

(r)

Duration of

disease (r)

Middle cerebellar

peduncle

NAA/Cr −0.45** −0.54**

Cho/Cr −0.27 −0.27

NAA/Cho −0.27 −0.23

Dentate nucleus NAA/Cr −0.50** −0.57**

Cho/Cr −0.37** −0.51**

NAA/Cho −0.003 0.06

Cerebellar vermis NAA/Cr −0.28 −0.34

Cho/Cr −0.26 −0.45**

NAA/Cho 0.01 0.14

Cerebellar cortex NAA/Cr 0.01 −0.12

Cho/Cr 0.14 −0.07

NAA/Cho 0.05 −0.06

Putamen NAA/Cr −0.16 −0.18

Cho/Cr −0.22 −0.11

NAA/Cho 0.09 −0.02

Thalamus NAA/Cr −0.18 0.04

Cho/Cr −0.20 −0.05

NAA/Cho −0.02 0.01

**p < 0.001. After Bonferroni adjustment for multiple testing, p ≤ 0.008 was considered

as significant in the correlation analysis (six tests).

NAA, N-acetyl-aspartate; Ch, choline-containing compounds; Cr, creatine

and phosphocreatine.
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Cho/Cr ratio in cerebellar vermis between SCA3/MJD patients
and controls (p < 0.01). In addition, no significant difference
of NAA/Cr, Cho/Cr, and NAA/Cho ratio were observed in
the putamen between the SCA3/MJD group and the control
group (Table 4).

In SCA3/MJD patients, the total of ICARS score and disease
durationwere inversely correlated with theNAA/Cr ratio inMCP
and the dentate nucleus, as well as Cho/Cr ratio in the dentate
nucleus, respectively. In addition, the longer disease durations
in SCA3/MJD patients were associated with decreased Cho/Cr
ratio in cerebellar vermis (Table 5). Furthermore, the NAA/Cr
ratio in cerebellar cortex and the NAA/Cho ratio in the cerebellar
vermis were inversely correlated to the length of CAG repeats in
expanded alleles of the SCA3/MJD group (r = −0.400, p < 0.05;
r =−0.409, p < 0.05, respectively).

White Matter Differences Between
SCA3/MJD Patients and Normal Control
TBSS analysis revealed significantly lower volume and mean FA
values in the cerebellar peduncles of the SCA3/MJD patients (p<

0.001). Significant differences in FA andMD between SCA3/MJD
patients and healthy controls were identified in the SCP, MCP,
and ICP (p < 0.001) (Figure 5, Tables 6, 7). Furthermore, the
correlation analysis was conducted between the FA/MD values
and disease duration, the ICARS, and CAGs. The total ICARS
score was inversely correlated to the FA values in all three
cerebellar peduncles of the patients (SCP: r =−0.644, p < 0.001;
MCP: r = −0.421, p < 0.05; ICP: r = −0.602, p < 0.001,
respectively). However, the total ICARS score was inversely
correlated with MD only in the SCP. Similarly, the disease
duration was inversely correlated with FA in three cerebellar
peduncles (r = −0.50∼ −0.70, p < 0.001), and correlated with
MD in the SCP (r = 0.63, p < 0.01) (Table 8). However, no

significant correlation was found between the FA values in the
three cerebellar peduncles and the numbers of CAG repeats in
expanded alleles in our study.

DISCUSSION

The study revealed cerebellum and related region degenerations
in Chinese SCA3/MJD patients bymultimodal neuroimaging and

TABLE 6 | Reduced fractional anisotropy in the cerebellar peduncles of the

SCA3/MJD patients.

Regions of interest Controls

(mean ± SD)

SCA3/MJD patients

(mean ± SD)

Superior cerebellar peduncle 0.37 ± 0.02 0.28 ± 0.03**

Middle cerebellar peduncle 0.38 ± 0.03 0.29 ± 0.03**

Inferior cerebellar peduncle 0.34 ± 0.04 0.23 ± 0.03**

**p < 0.0001. After Bonferroni adjustment for multiple testing, p ≤ 0.01 was considered

as significant in the correlation analysis (three tests).

TABLE 7 | Increase mean diffusivity in the cerebellar peduncles of the SCA3/MJD

patients.

Regions of interest Controls

(mean ± SD)

SCA3/MJD patients

(mean ± SD)

Superior cerebellar peduncle 0.74 ± 0.04 0.86 ± 0.07**

Middle cerebellar peduncle 0.69 ± 0.03 0.76 ± 0.06**

Inferior cerebellar peduncle 0.75 ± 0.09 0.92 ± 0.10**

**p < 0.0001. After Bonferroni adjustment for multiple testing, p ≤ 0.01 was considered

as significant in the correlation analysis (three tests).

FIGURE 5 | Tractography of the cerebellar peduncles. Tractography of the cerebellar peduncles in a control (upper row) and a SCA3/MJD patient (lower row).
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TABLE 8 | Relationship between FA and MD and clinic variable in SCA3/MJD group.

Superior cerebellar peduncle Middle cerebellar peduncle Inferior cerebellar peduncle

FA MD FA MD FA MD

ICARS −0.64** 0.56** −0.42* 0.44* −0.60** 0.34

Duration −0.68** 0.63** −0.53** 0.43* −0.69** 0.32

**p < 0.001. After Bonferroni adjustment for multiple testing, p ≤ 0.01 was considered as significant in the correlation analysis (three tests).

also demonstrated their correlation between the degenerations
and clinical measures as well as CAG abnormal expansions.

The cerebellum lesion was not the whole story, other regions
were also involved. Interestingly, we observed significant gray
matter volume loss in the frontal gyrus and insula and left
superior frontal gyrus of SCA3/MJD patients, which is consistent
with other studies showing that gray matter volume was not only
significantly reduced in the pons and the vermis, but also in
supratentorial regions including the frontal lobe, temporal lobe,
parietal lobe, occipital lobe, putamen, and caudate (19, 20). One
reason for the cortical area was involved is that structural lesion
in SCA3/MJD begins in the spinal cord, cerebellar peduncles, as
well as substantia nigra and progresses to cerebral areas in the
long term (21). Another study reported that pallidal atrophy may
be observed in SCA3/MJD patients with disease duration over 10
years (22). Thus, no obvious involvement of basal ganglia in our
study might be attributed to relative short duration (mean± SD,
4.81± 3.63).

In addition, we also observed significant lower volume and
mean FA values in the cerebellar peduncles of the SCA3/MJD
patients, which might indicate abnormal microstructure changes
in these tracts, possibly providing new clues for pathological
studies. The result was consistent with SCA3/MJD pathological
studies that revealed neuron loss in the cerebellar dentate nucleus
with myelin loss (23). Moreover, we also found that the decrease
of NAA/Cr and NAA/Cho ratio in the MCP, dentate nucleus,
cerebellar vermis, and thalamus in present study, suggesting
SCA3/MJD mainly affected the middle cerebellar peduncle and
dentate, where the degree of neuronal dysfunction accompanied
by comparable cerebellar ataxia and disease duration. Many
studies have showed a decrease in the NAA/Cr ratio or in the
concentration of NAA in cerebellar regions in polyQ diseases,
such as SCA1, SCA2, SCA3/MJD, and SCA6 (24, 25). These
results indicated the atrophy of the cerebellum and brainstem
was related to the predominant clinical features in SCA3/MJD
patients. Gray matter and white matter were both involved,
although the cerebellar nuclei may be the mainly involved region.

In this study, we demonstrated that there might be a
correlation between the atrophy profile and clinical and genetic
features (i.e., ICARS total score and the size of the abnormal
CAG repeats lengths). Specifically, the volume changes in the
cerebellar culmen, pons, and midbrain inversely correlated with
the total ICARS score, suggesting that cerebellum and brainstem
is related to predominant clinical features in SCA3/MJD patients.
In addition, we also found an inverse correlation between FA
values in the cerebellar peduncles and ICARS total score. The

ICP mainly contains afferent fibers receiving information from
movement centers, and a variety of sensory information related
to movement. The MCP mainly is composed of fibers from
the pons nucleus to the cerebellum. The SCP contains most
of the efferent fibers projecting directly, or indirectly through
the thalami, to the frontal cortex (26). There was significant
degeneration in all three cerebellar peduncles in SCA3/MJD. The
reduced white matter integrity in all three cerebellar peduncles
were correlated with cerebellar ataxia symptoms and disease
duration. Similar findings were also identified in other polyQ
diseases, such as SCA1, SCA2, SCA7, and DRPLA (27–29),
and revealed that white matter tract abnormalities in the whole
brain across polyQ diseases, which is possibly owing to similar
pathological mechanisms. Furthermore, we also found that FA
values of SCP, MCP, and ICP had an inverse relationship with
disease duration of SCA3/MJD. Previous study reported that
white matter tracts across the whole brain were impaired in
the asymptomatic stages of SCA3/MJD, and abnormal white
matter tracts were closely related to SCA3/MJD disease severity,
including movement disorder and cognitive dysfunction (30).

Additionally, in our cohort, we found the numbers of CAG
repeats in expanded alleles were inversely correlated with the
atrophy of the cerebellar culmen and cerebellar cortex. Some
studies demonstrated significant correlation between the atrophy
of brainstem, cerebellar, and tegmentum of pons and the
CAG repeats length (31–33), whereas some failed to indicate
the correlation between the CAG repeats expansion and the
anatomical changes in the cerebellum or brainstem (34–36).
The disease progression and ethnic difference might be the
potential reasons for these controversial findings, suggesting
further studies across with different regions with large cohort
need to be implemented.

In terms of potential limitations, this study is a clinic-based
and cross-sectional study, instead of a population-based and
longitudinal study. In particular, the sample size is relatively small
and the information of asymptomatic mutation carriers was not
available, which makes it difficult to acquire a comprehensive
understanding from asymptomatic to symptomatic status. On the
other hand, the present study confirmed previous findings using
multiple neuroimaging modalities.

In conclusion, this is an imaging-genetic study to explore
the degeneration of cerebellar and its correlation with ATXN3
gene in Chinese SCA3/MJD patients. The macrostructural
and microstructural changes showed by reduction of
gray matter volume, neurochemical alterations, and white
matter degeneration in the brain of our patients provided
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converging evidence of neurodegeneration for SCA3/MJD,
which supported the genotype-phenotype relationship in
such disease.
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