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Abstract: The launch of GRACE satellites has provided a new avenue for studying the terrestrial wa-
ter storage anomalies (TWSA) with unprecedented accuracy. However, the coarse spatial resolution
greatly limits its application in hydrology researches on local scales. To overcome this limitation, this
study develops a machine learning-based fusion model to obtain high-resolution (0.25◦) groundwater
level anomalies (GWLA) by integrating GRACE observations in the North China Plain. Specifically,
the fusion model consists of three modules, namely the downscaling module, the data fusion module,
and the prediction module, respectively. In terms of the downscaling module, the GRACE-Noah
model outperforms traditional data-driven models (multiple linear regression and gradient boosting
decision tree (GBDT)) with the correlation coefficient (CC) values from 0.24 to 0.78. With respect
to the data fusion module, the groundwater level from 12 monitoring wells is incorporated with
climate variables (precipitation, runoff, and evapotranspiration) using the GBDT algorithm, achieving
satisfactory performance (mean values: CC: 0.97, RMSE: 1.10 m, and MAE: 0.87 m). By merging
the downscaled TWSA and fused groundwater level based on the GBDT algorithm, the prediction
module can predict the water level in specified pixels. The predicted groundwater level is validated
against 6 in-situ groundwater level data sets in the study area. Compare to the downscaling module,
there is a significant improvement in terms of CC metrics, on average, from 0.43 to 0.71. This study
provides a feasible and accurate fusion model for downscaling GRACE observations and predicting
groundwater level with improved accuracy.

Keywords: machine learning-based fusion model; GRACE; gradient boosting decision tree; ground-
water level anomalies; statistical downscaling; North China Plain

1. Introduction

As a significant supply source of freshwater resources, groundwater plays a crucial
role in social production and human life [1,2]. Globally, it provides drinking water for
approximately two billion people [3] and irrigation for roughly 40% of areas equipped for
irrigation [4]. Due to extreme climate episodes and anthropogenic actives (e.g., drought
and overuse of irrigation water), groundwater resources are seriously over-exploited
in some typical regions [5,6], leading to a series of environmental issues, such as land
subsidence and seawater intrusion [7,8]. Therefore, understanding the dynamics changes
in groundwater is necessary for the effective utilization and sustainable management of
water resources [2,9].
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The traditional method to monitor groundwater levels is based on ground-based mea-
surements [10,11]. However, it is not applicable to large-scale and remote regions restricted
by national policies, limited stations, and instrument accuracy. The Gravity Recovery
and Climate Experiment (GRACE) satellites, successfully launched in March 2002 [12],
provides a kind of new method for monitoring the global time-variable gravity field with
unprecedented accuracy [13]. Additionally, it can provide continuous terrestrial water
storage anomalies (TWSA) and cover most parts of the world, which is especially beneficial
for areas lacking ground-based measurements. By integrating auxiliary information from
hydrological models, groundwater storage anomalies (GWSA) can be further isolated from
GRACE observations. Previous studies have demonstrated that GRACE missions show
great potential in various fields, e.g., detection of terrestrial water storage [14–16] and
groundwater storage [17,18]. Swenson et al. [14] derived region-scale water storage by
applying averaging kernels to a realistic synthetic GRACE gravity signal within North
American river basins. Results indicated that the accuracy might be better than 1 cm for
regions with 400,000 km2 or larger areas. Rodell et al. [17] simulated groundwater storage
based on GRACE and hydrological modeling system, and the results showed that it was
being depleted at a mean rate of 4.0 ± 1.0 cm/yr equivalent height of water over the Indian
states of Rajasthan, Punjab and Haryana (including Delhi).

Although remarkable achievements have been made in large-scale areas, the applica-
tion of GRACE observations in local areas is very limited due to the coarse spatial resolution
(~200,000 km2) [19]. Consequently, some downscaling methods have been proposed for
providing high-resolution GRACE products, which are mainly divided into two categories:
dynamic downscaling and statistical downscaling [20,21], respectively. Normally, dynamic
downscaling tends to achieve regional downscaling by using the initial boundary condi-
tions of global climate models [22,23] directly. For example, Eicker et al. [24] assimilated
GRACE-derived TWSA into the WaterGAP Global Hydrology Model by introducing a
new Kalman filter method, which can provide reasonable results in the Mississippi river
basin. Although data assimilation methods remain consistent in the physical process, some
shortcomings still require to be considered [25]. The implementation of data assimilation is
relatively complicated [26], and its accuracy is subject to the full error covariance matrix of
GRACE observations and hydrological models [27,28].

Compared to dynamic downscaling, statistical downscaling usually establishes the
linear or non-linear relationships between input and target variables, aiming to produce
local-scale information [29,30]. Initially, linear regression models are employed to down-
scale GRACE products [31–33]. For example, Ning et al. [31] achieved the downscaling
of GRACE data in parts of Yunnan by constructing an empirical regression model based
on the water balance equation, and the results indicated the feasibility for downscaling
GRACE data. Yin et al. [33] proposed a new statistical downscaling algorithm by building
the relationship between multi-source evapotranspiration (ET) products and GWSA in
the North China Plain, which obtained desirable downscaled results but limited by the
strong correlation between TWS and ET. Practically, the relationships between predictor
and predictand tend to be non-linear rather than linear. The development of machine learn-
ing algorithms provides effective measures to quantify the complicated relationship by
constructing non-linear models. Artificial neural networks (ANNs) have the capabilities of
simulating complex hydrological characteristics to an arbitrary degree of accuracy [34,35].
This makes ANN becomes an attractive measure in the downscaling researches, which
have been applied to some typical regions, e.g., the Northern High Plains [36], California’s
Central Valley [34], and the Lower Peninsula of Michigan [26]. Similarly, some tree-based
machine learning algorithms (e.g., random forest (RF) and gradient boosting decision
tree (GBDT)) become popular in regression tasks with the advantages of simplicity and
effectiveness. The RF algorithm has been utilized to downscale GRACE observations
and obtained satisfactory results in some areas [37,38]. As a kind of ensemble machine
learning algorithm, GBDT performs well in constructing non-linear regression models,
which is often employed to forecast ET [39] and urban flood [40,41], but rarely in GWLA.
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Furthermore, the multi-stage machine learning algorithm may have more powerful expres-
sive performance than a single algorithm in downscaling GRACE products. For example,
Seyoum et al. [42] designed a two-layer boosted regression trees (BRT) model by utilizing
GRACE data and hydrological variables in a glacial aquifer system of the United States,
which can predict groundwater level anomalies (GWLA) with a high spatial resolution.

The North China Plain (NCP), which is the political, economic, and cultural center of
China [43], has been suffering from water shortage and over-exploitation of groundwater
for a long period [44–46]. Some downscaling researches have been conducted in the area,
aiming to provide high-resolution water storage estimates [33,37,47]. Water resources
managers are often more concerned with information about water levels at specified
locations, while few studies are conducted with respect to this aspect. To overcome
this limitation, this study proposes a machine learning-based fusion model, aiming to
downscale GRACE-derived TWSA to higher spatial resolution products and predict higher-
accuracy groundwater level anomalies (GWLA). The structure of this study is organized
as follows. The overview of the NCP and the data sources are introduced in Section 2.
Section 3 describes the structure and construction of the machine learning-based fusion
model. Section 4 provides the results of the downscaling and prediction module in the
NCP. The discussions and conclusions are presented in Sections 5 and 6, respectively.

2. Study Area and Data
2.1. Study Area

The North China Plain, located in the eastern coastal region of China, lies between
latitude 35◦ N–41◦ N and longitude 113◦ E–120◦ E (Figure 1). It is one of the three great
plains in China, covering an area of approximately 140,000 km2 [48]. The NCP is a central
agricultural area in China, which produces about one-fourth of the country’s total grain
yield [10]. The main crops include winter wheat and summer maize, and the NCP supplies
more than 50% of the wheat and approximately 33% of the maize production in China [49].
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Figure 1. Location and digital elevation model map of the NCP. The blue and magenta dots represent the training and
testing wells, respectively.

The NCP belongs to a continental monsoon climate with an annual average tempera-
ture between 8 and 15 ◦C [33,50]. The annual precipitation, most of which occurs during
the growth period of summer maize, ranges from 500 to 600 mm, and annual evaporation
is 900–1400 mm [51,52]. The NCP contains a shallow unconfined aquifer (40–60 m) and
three confined aquifers of different depths (120–170 m, 250–360 m, and 400–600 m) [53].
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2.2. Data

The fusion model, proposed in this study, is designed based on the water balance
principle and machine learning methods (i.e., multiple linear regression and GBDT). Several
datasets (terrestrial water storage anomalies, precipitation, runoff, evapotranspiration, soil
moisture, snow water equivalent, and groundwater level) are chosen to owe to their close
relationship with groundwater storage changes, as shown in Figure 2.
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Figure 2. Summary of variable information (resolutions, units, processing, and sources) employed in the fusion model.

Specifically, some variables should be resampled from 0.25◦ to 1◦ for matching the
spatial availability of GRACE products, and the study period covers from January 2005 to
December 2014, with a total of 120 months. The schematic diagram of the water balance
principle is shown in Figure 3.Sensors 2020, 20, x FOR PEER REVIEW 5 of 20 
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2.2.1. GRACE TWSA

The GRACE gravity satellites, jointly developed by NASA (National Aeronautics
and Space Administration) and DLR (German Aerospace Center), were launched in 2002
and successfully completed its missions in 2017 [13]. They were designed to track global
mass changes or gravity variations using the K-band ranging system and low-low satellite
tracking satellite mode [13,54]. In this study, GRACE observations are provided by the Jet
Propulsion Laboratory (JPL), Center for Space Research (CSR), and GeoForschungsZentrum
Potsdam (GFZ), respectively. The gridded-gain factors are utilized to reduce the leakage
error [55], which are available at [56]. Some discrepancies exist among these three solutions
due to different processing strategies and tuning parameters [57]. Therefore, we utilize
the ensemble average of different solutions as the representative TWS estimates in the
following discussion.

2.2.2. TRMM Precipitation

The Tropical Rainfall Measurement Mission (TRMM) is a joint project of NASA and
Japan Aerospace Exploration Agency (JAXA), aiming to analyze the impact of rainfall data
on weather and climate [58]. The monthly precipitation products (2003–2015) used in this
study are the TRMM 3b43 with the spatial resolution of 0.25◦ × 0.25◦. The dataset can be
obtained from the Goddard Earth Sciences Data and Information Services Center (GES
DISC) [59]. Previous studies [16] have demonstrated that TRMM data match well with
gauged stations compared to other remotes sensing products, thus utilized in this study.

2.2.3. GLDAS Data

The Global Land Data Assimilation System (GLDAS) is developed by the Goddard
Space Flight Center (GSFC). The primary goal of the GLDAS is to ingest satellite- and
ground-based observational data products, using advanced land surface modeling and
data assimilation techniques, in order to generate optimal fields of land surface states
and fluxes [60]. Up to now, there have been four land surface models (LSM), namely
Mosaic [61], Community Land Model (CLM) [62], Noah [63], and Variable Infiltration
Capacity (VIC) [64], respectively. The Noah model is selected to provide some water-
budget variables, including runoff (R), soil moisture (SM), and snow water equivalent
(SWE). The runoff includes surface runoff and underground runoff, and soil moisture is
the sum of four soil water layers. The datasets from the Noah model include two kinds of
temporal resolutions (3-h and monthly scale) and spatial resolutions (0.25◦ × 0.25◦ and
1◦ × 1◦). Monthly datasets are chosen in this study, with the resolutions of 0.25◦ and 1◦,
which are available at [65].

2.2.4. GLEAM Product

GLEAM (Global Land Evaporation Amsterdam Model) is a set of algorithms dedi-
cated to estimating global evapotranspiration by combining satellite observations and the
Priestley and Taylor equation [66]. It has been continuously revised and updated since
2011, and the third version of the model was released in 2017 [67]. The latest version
GLEAM v3.3 contains two kinds of data sets (v3.3a and v3.3b), differing in their forcing and
temporal coverage [68]. In this study, the GLEAM v3.3a is employed to provide monthly
estimates in evapotranspiration, spanning the 36 years from 1980 to 2018.

2.2.5. Groundwater Level

Monthly groundwater level, collected from the Haihe River Basin Water Resources
Bulletin [69], is used to validate the accuracy of the downscaled TWSA and predicted
water level. Groundwater monitoring wells are unevenly distributed across the NCP, and
there are abnormal jumps, data gaps, and outliers in some wells. Therefore, the collected
data require pre-processing as follows: (1) ignore the wells with more missing months
and obvious errors; (2) aggregate the groundwater level to pixels values on 0.25◦ cells by
using the simple average of groundwater observations within the pixel; (3) remove the
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mean value to obtain the groundwater level anomalies data. A total of 18 wells are selected
for this study (Figure 1), and 12 wells are used to train the downscaled model, while the
remaining 6 wells are used to test the performance of models.

3. Methods
3.1. Gradient Boosting Decision Tree

The gradient boosting decision tree is an algorithm that combines a series of weak
learners into one strong learner [70]. Although the GBDT algorithm can be used for both
classification and regression tasks, we only consider the latter in this study. Gradient boost-
ing of regression trees can produce competitive, highly robust, interpretable procedures for
all models, especially appropriate for mining less than clean data [70]. Different from other
traditional regression methods, the GBDT algorithm obtains the global convergence by
following the direction of the negative gradient, which will decrease the running time for
getting the results [71]. The calculation core of GBDT is to learn and forecast by continually
passing the residual sum of the conclusions of all the previous decision trees until the sum
of the predicted values, and the input target residuals are minimized. Consequently, this
study tries to develop the downscaling and prediction models based on the regression
function of the ensemble algorithm.

3.2. Downscaling Approach Based on the Noah Model

The GRACE-derived TWSA includes plenty of water storage information (e.g., ground-
water storage, soil moisture, and snow water equivalent), and part of these variables can
also be simulated by the GLDAS-Noah model. Consequently, we can obtain two kinds
of TWSA products from GRACE missions and the Noah model, respectively. Some dis-
crepancies will exist in these products due to the absence of groundwater storage and
anthropogenic factor in the Noah model. In order to obtain finer-resolution and higher-
accuracy TWSA products, a regression model (called GRACE-Noah model for short) is
employed to downscale GRACE data in this study, which can incorporate GRACE products
and the Noah model [32,72]. In the GRACE-Noah model, the simulated TWSA is treated
as “truth”, and the bias can be calculated by the following formula:

B = TWSA1
Noah,i − TWSA1

GRACE,i, (1)

where B is the bias of two kinds of TWSA products on the 1◦ grid; TWSA1
Noah,i is the

normalized TWSA simulated by the Noah model; TWSA1
GRACE,i is the normalized TWSA

derived from GRACE. The subscript 1 represents the 1 degree. Then, the GRACE products
can be downscaled from 1◦ to 0.25◦ by the formula:

TWSA0.25
end,i = TWSA0.25

Noah,i −
B× A× TWSA0.25

Noah_pre,i

∑
(

TWSA0.25
Noah_pre,i × ai

) , (2)

where TWSA0.25
end,i is the downscaled GRACE TWSA with the 0.25◦ spatial resolution,

TWSA0.25
Noah,i is the normalized TWSA simulated form the Noah model, B is the bias obtained

by Formula (1), A is the area of the 1◦ grid (m2), TWSA0.25
Noah_pre,i is the pre-normalized

TWSA simulated from the Noah model, ai is the area of the 0.25◦ grid (m2).

3.3. Multiple Linear Regression

Multiple Linear Regression (MLR) is a regression modeling method with multiple
independent and dependent variables [73,74]. The essential parameter estimation method
is the least squares method, which is used mainly to find the best function by minimizing
the sum of squares of errors. Compared to the single regression model, the multiple
linear regression model is more practical and accurate in simulating the relationship
between independent and dependent variables, which can better achieve the prediction
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and estimation of TWSA products. The following formula can describe the MLR method
used in this study:

y = a0 + a1x1 + a2x2 + · · ·+ anxn, (3)

where y is the dependent variable (TWSA), x1, x2, · · · , xn represent the independent vari-
ables (e.g., P, R, and ET), a0 is the constant value, a1, a2, · · · , an are the weights of n variables.

3.4. Fusion Model Design

To obtain high-resolution and high-accuracy GWLA, the machine learning-based
fusion model is developed within the NCP, which mainly consists of three modules. Specif-
ically, Module #1 is used to downscale GRACE-derived TWSA from 1◦ to 0.25◦ by using
different algorithms (MLR, GBDT, and GRACE-Noah), which is also called the downscaling
module. Module #2 is employed to incorporate climate variables with in-situ levels based
on the GBDT algorithm, which is also named as the data fusion module. With respect to
Module #3, it accepts the downscaled TWSA from Module #1 and the fused GWLA from
Module #2. Then, these variables are integrated into a big model for obtaining GWLA in
the whole study area, and as module is named the prediction module. The conceptual map
of the fusion model is shown in Figure 4.
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3.4.1. Module #1 for Downscaling

This study utilizes two traditional machine learning models (MLR and GBDT) and
one hydrological model (GLDAS-Noah) to downscale GRACE-derived TWSA into the
higher resolution, as shown in Figure 4a. The detailed process of this module is described
as follows:

Step 1: Climate variables (P, R, and ET) are chosen as the predictor based on the water
balance equation, and GRACE-derived TWSA is selected as the predictand. The climate
variables are resampled from 0.25◦ to 1◦ in accordance with that of GRACE products.

Step 2: Under the coarse resolution, these downscaling models are developed for
each 1◦ grid based on the input variables (P, R, and ET) and the output variable (TWSA).
Each model is continuously trained and tested by adjusting the core parameters until it
can achieve satisfactory metrics (e.g., root mean square error (RMSE) [75], Nash-Sutcliffe
efficiency coefficient (NSE) [76,77], and correlation coefficient (CC) [78]), and the mean
absolute error (MAE) [79].

Step 3: The relationship is constructed between predictors and predictands at the
resolution of 1◦. It is assumed that the relationship is still accurate under different spatial
resolutions. The downscaled TWSA can be obtained in the study area by employing
higher-resolution variables into these models.

Step 4: The bias of simulated TWSA and GRACE-derived TWSA is calculated at the
resolution of 1◦ for each grid. Then, these values are resampled to 0.25 based on the Kriging
interpolation [80] and assigned to the corresponding grid.

Step 5: GWSA can be isolated from the downscaled TWSA based on the auxiliary
information provided by the Noah model. Then, the downscaling performance of the
machine learning (MLR and GBDT) can be validate by comparing the downscaled GWSA
with the groundwater measurements.

3.4.2. Module #2 for Data Fusion

The data fusion model is proposed to incorporate some climate variables (P, R, and ET)
information with the in-situ well measurements, which are utilized to control other grids
in the Module #3. Monthly groundwater level data of 18 observation wells are collected
from the Haihe River Basin Water Resources Bulletin. In this module, we select 12 wells
as the control wells based on the distribution of shadow groundwater wells. As for each
well, the corresponding shuffled dataset, used in the data fusion model, is divided into
two parts for training (70%) and testing (30%). At last, we determine 12 most reasonable
models by continuously adjusting the structure of the GBDT model based on these metrics
(e.g., RMSE, NSE, and CC). The model design flowchart is shown in Figure 4b (Module #2).

3.4.3. Module #3 for Prediction

To get high-quality GWLA products, the prediction module is developed by using
the results from the first two modules and other climate variables (e.g., SM, SWE, and
in-situ measurements), as shown in Figure 4c (Module #3). In the module, 12 observation
wells are selected as the training wells, and the remaining 6 wells are used to evaluate the
performance of the prediction model. In order to construct the prediction model, we select
15 characteristics as the predictors, including four kinds of variables. As for each training
well, we construct a sub-dataset, which includes 12 fixed variables (12 fused GWLA) and
3 changed water-budget variables (SM, SWE, and TWSA). Then, 12 sub-datasets are stacked
into a training matrix with the dimensions of 1440 × 15. By continuous adjusting and
training, an ideal prediction model is developed in the NCP. It assumes that the model is
applicable within all study areas; we can obtain all GWLA by constructing and employing
sub-datasets into the model for each grid.
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3.5. Model Evaluation and Data Analysis Standards

In order to evaluate the performance of the fusion model, four indices are used as the
evaluation criteria, namely, RMSE, MAE, NSE and CC. The specific expressions are as follows:

RMSE =

√
1
n

n

∑
i=1

(Yi − Xi)
2, (4)

MAE =
1
n

n

∑
i=1
|Yi − Xi|, (5)

NSE = 1− ∑n
i=1(Yi − Xi)

2

∑n
i=1
(
Xi − X

)2 , (6)

CC =
∑n

i=1
(
Xi − X

)(
Yi −Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1
(
Yi −Y

)2
, (7)

where Xi and Yi represent two independent datasets with the mean values of X and Y,
Xi represents the simulated value, Yi represents the measured value, n means the total
number of samples. As for the RMSE and MAE, the smaller the values are, the higher the
accuracy of the model. Similarly, the closer the values of CC and NSE are to 1, the more
consistent the simulated and measured values are.

4. Results
4.1. Evaluation of Downscaling Models

The performance of three downscaling models is evaluated from two perspectives,
which are spatial and temporal resolution. The detailed descriptions and results are as
follows:

4.1.1. Spatial Resolution

Figure 5 shows the long-term trends of GRACE-derived TWSA and three downscaled
results in the NCP. It can be found that the spatial distribution characteristics of TWSA are
basically consistent with that of downscaled results. In general, the downscaled results can
capture the sub-grid heterogeneity, while preserving the TWSA characteristic at the original
scale. An obvious downtrend is observed in the southwestern region of the NCP, which
is located in the conjunction area of Hebei and Henan province. This is mainly caused
by intensive agricultural activities, which is in accordance with previous studies [16,81].
Furthermore, the downtrend becomes serious from the northern to the southern parts, with
the trend of −4.96 mm/yr and −18.87 mm/yr, respectively. Additionally, there are some
outlier values near the Bohai region in the GRACE-Noah model. The possible reason is
that there are large uncertainties in the forcing data of the GLDAS-Noah model.

Additionally, the long-term trends of GRACE-based and downscaled GWSA are
shown in Figure 6 during the period from 2005 to 2015. The larger decreasing trend is
also detected in the Southern regions, which is consistent with that of TWSA. It is worth
noting that the range of trends varies from −16.61 mm/yr to −1.41 mm/yr, which is only
a bit smaller than that of TWSA (from −29.70 mm/yr to −2.08 mm/yr), indicating that the
slope of TWSA is mainly caused by GWSA estimates. What is more, we can find that the
East Central Plain is the most serious region, and it may be due to the over-exploitati6on of
deep groundwater storage [82].
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4.1.2. Temporal Resolution

In order to evaluate the downscaled results more intuitively, the time series of TWSA
and GWSA are plotted in Figure 7. Similar decreasing trends can be observed in TWSA
and GWSA from 2005 to 2015, with the trend of −9.89 mm/yr and −8.45 mm/yr, respec-
tively. With respect to GWSA, the downtrend intensifies with the slope increasing from
−5.94 mm/yr to −10.21 mm/yr. The downscaled water storage estimates based on the
GLDAS-Noah model are well correlated with the results at the original resolution, with
the correlation up to 0.99, and the acceptable RMSE value of 1.49 mm (Table 1). The worse
performance can be found in the MLR model, and the possible reason is that there is some
information missing during the process of downscaling. Based on these above discussions,
we choose the downscaled results of GRACE-Noah as representative values, thus used in
the following discussions.Sensors 2020, 20, x FOR PEER REVIEW 12 of 20 

 

 

Figure 7. Time-series trends of TWSA and GWSA before and after downscaling in the whole NCP. The black line shows 

the time-series trend of GRACE-derived products, while grey, blue, and red lines represent downscaled results (MLR, 

GBDT, and GRACE-Noah). 

Table 1. Performance of downscaling models (RMSE, MAE, NSE, and CC). 

 Models RMSE (mm) MAE (mm) NSE CC 

TWSA 

GRACE-Noah 1.49 1.17 0.99 0.99 

GBDT 18.00 10.20 0.85 0.93 

MLR 28.32 16.84 0.67 0.79 

GWSA 

GRACE-Noah 1.24 0.81 0.99 0.99 

GBDT 17.08 9.78 0.75 0.87 

MLR 27.23 15.81 0.36 0.68 

The performance of models and time-series comparison results before and after fu-

sion are shown in Table 2 and Figure 8, respectively. It can be found in Table 2 that 12 data 

fusion models show good performances with the average RMSE, MAE, NSE, and CC val-

ues of 1.10 m, 0.87 m, 0.91, and 0.97, respectively.  

Table 2. Performances of 12 GBDT models (RMSE, MAE, NSE, and CC). 

Model Grid RMSE (m) MAE (m) NSE CC 

M01 T1 0.72 0.59 0.85 0.95 

M02 T2 0.55 0.44 0.91 0.97 

M03 T3 0.23 0.18 0.93 0.98 

M04 T4 0.85 0.68 0.90 0.97 

M05 T5 0.74 0.57 0.90 0.96 

M06 T6 1.58 1.20 0.94 0.98 

M07 T7 3.03 2.38 0.94 0.98 

M08 T8 1.40 1.16 0.87 0.96 

M09 T9 0.61 0.47 0.91 0.97 

M10 T10 1.26 1.05 0.95 0.97 

M11 T11 0.72 0.58 0.88 0.96 

Figure 7. Time-series trends of (a) TWSA and (b) GWSA before and after downscaling in the whole NCP. The black line
shows the time-series trend of GRACE-derived products, while grey, blue, and red lines repBresent downscaled results
(MLR, GBDT, and GRACE-Noah).

Table 1. Performance of downscaling models (RMSE, MAE, NSE, and CC).

Models RMSE (mm) MAE (mm) NSE CC

TWSA
GRACE-Noah 1.49 1.17 0.99 0.99

GBDT 18.00 10.20 0.85 0.93
MLR 28.32 16.84 0.67 0.79

GWSA
GRACE-Noah 1.24 0.81 0.99 0.99

GBDT 17.08 9.78 0.75 0.87
MLR 27.23 15.81 0.36 0.68

4.2. Results of Data Fusion

Based on previous studies, the GBDT algorithm is employed to construct the regression
model with the advantages of robustness, efficiency, and simplicity [42,70]. Specifically,
the GBDT model is designed for 12 in-situ wells, which are selected based on their spatial
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distribution and data quality. Each model is developed for incorporating some climate
variables (P, R, and ET) into in-situ observations.

The performance of models and time-series comparison results before and after fusion
are shown in Table 2 and Figure 8, respectively. It can be found in Table 2 that 12 data fusion
models show good performances with the average RMSE, MAE, NSE, and CC values of
1.10 m, 0.87 m, 0.91, and 0.97, respectively.

Table 2. Performances of 12 GBDT models (RMSE, MAE, NSE, and CC).

Model Grid RMSE (m) MAE (m) NSE CC

M01 T1 0.72 0.59 0.85 0.95
M02 T2 0.55 0.44 0.91 0.97
M03 T3 0.23 0.18 0.93 0.98
M04 T4 0.85 0.68 0.90 0.97
M05 T5 0.74 0.57 0.90 0.96
M06 T6 1.58 1.20 0.94 0.98
M07 T7 3.03 2.38 0.94 0.98
M08 T8 1.40 1.16 0.87 0.96
M09 T9 0.61 0.47 0.91 0.97
M10 T10 1.26 1.05 0.95 0.97
M11 T11 0.72 0.58 0.88 0.96
M12 T12 1.51 1.19 0.88 0.96

Mean 1.10 0.87 0.91 0.97
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Six monitoring wells are utilized to evaluate the applicability of the fusion model from
the time series trend, and the verification results indicate that all of them perform ideal CC
values (0.95, 0.97, 0.98, 0.97, 0.96, and 0.98). Then, the fused GWLA data of 12 wells are
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regarded as the control wells and used as the input variables of the prediction model in the
Module #3.

4.3. Prediction Performance Analysis

Based on the downscaled TWSA and 12 control wells, the prediction model is developed
to forecast the groundwater level at the 0.25◦ pixel scale. The remaining six wells are utilized
to evaluate the accuracy of the prediction model, as shown in Figure 9. Results reveal that
the predicted GWLA is reasonable in the first five wells but worse in the last one. This is
attributed to the fact that the P6 well is close to the Bohai region with poor quality of in-situ
measurements. On the whole, there will be a certain deviation between the predicted value
and the in-situ value of all wells, but the overall trend is basically the same.Sensors 2020, 20, x FOR PEER REVIEW 14 of 20 
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4.4. Verification of In-Situ Observations

To further explore the applicability of the machine learning-based fusion model,
18 monitoring wells are collected to evaluate the simulated results, and the comparison
is shown in Table 3 and Figure 10. The verification includes two parts, which are the
verification of downscaled results and the verification of predicted results.
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Table 3. Performances of the machine learning-based fusion model (CC).

Downscaled Results Predicted Results

Wells MLR GBDT GRACE-Noah GBDT-Pre

T1 0.60 0.56 0.78 0.82
T2 0.35 0.74 0.75 0.78
T3 0.43 0.63 0.65 0.78
T4 0.67 0.73 0.75 0.87
T5 0.51 0.55 0.69 0.87
T6 0.26 0.42 0.56 0.93
T7 0.22 0.52 0.67 0.95
T8 0.75 0.65 0.59 0.92
T9 0.38 0.45 0.61 0.83

T10 −0.46 0.30 0.41 0.79
T11 0.42 0.45 0.55 0.83
T12 0.43 0.38 0.41 0.83
P1 0.34 0.52 0.55 0.69
P2 0.33 0.49 0.38 0.76
P3 0.09 0.37 0.46 0.83
P4 0.76 0.55 0.58 0.81
P5 −0.07 0.06 0.24 0.50
P6 0.38 0.46 0.36 0.67

Mean 0.36 0.49 0.56 0.80
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As for downscaled results, all of 18 total wells are utilized to evaluate the performance
of models, and three downscaling models present reasonable results with the mean CC
values of 0.36 (MLR), 0.49 (GBDT), and 0.56 (GRACE-Noah), respectively. Although the
MLR and GRR models may show better performance in several wells, such as P2, P4, and
P6 wells, the values are close to the GRACE-Noah model. Moreover, other wells show
obviously better performances in the GRACE-Noah model, especially in the T10 well with
the CC values of −0.46 (MLR), 0.30 (GBDT), and 0.41 (GRACE-Noah). Consequently, the
GRACE-Noah model is considered to be the optimum downscaling model in this study,
followed by the GBDT model, which is consistent with the result Section 4.1. Therefore, the
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groundwater estimates based on the GRACE-Noah model are used to compare with the
predicted products.

As for the predicted results, the CC values before and after prediction are compared
in Figure 10. The light blue areas on the left represent the results of 12 control wells, while
the light yellow areas stand for the results of 6 predicted wells. It can be seen that the mean
CC between GRACE-derived GWSA (GRACE-Noah) and observed GWLA is 0.43, while
the predicted results increase to 0.71 against downscaled values. Moreover, all of the CC
values between the predicted results and in-situ GWLA are better than the downscaled
results, especially in the P6 well, whose performance is higher than the expected result
with the CC value of 0.67 (Figures 9f and 10). Overall, the prediction model presents
an excellent performance in simulating the changing trend but may be insufficient in
numerical prediction.

5. Discussion
5.1. Efficacy of the Fusion Model

Performance metrics from the downscaled and the predicted modules indicate that the
machine learning-based fusion model can successfully achieve the purpose of downscaling
GRACE-derived TWSA and predicting GWLA. In the Module #1, three kinds of methods
are employed to downscale GRACE observations into 0.25◦, which are GBDT, MLR, and
GRACE-Noah, respectively. Results indicate that the GRACE-Noah model outperforms
the other two models, especially in terms of temporal scales (Figure 7). The possible reason
may be that the downscaled algorithm based on the Noah model can effectively assign the
discrepancies between GRACE and hydrological model into the pixel at higher resolution,
thereby preserving the integrity of climate information at the coarse resolution. With
respect to the Module #2, it incorporates the information of variables (P, R, and ET) into
GWLA based on the 12 models, which are built for each control well using the GBDT
machine learning method. As shown in Table 3, each model reveals excellent performance
with the CC values ranging from 0.95 to 0.98. In the Module #3, the downscaled TWSA
from the Module #1 and fused GWLA from the Module #2 are taken into account in the
prediction model. It can be seen in Figure 10 that the prediction model performs reasonably
in simulating dynamic changes in GWLA, with the CC values ranging from 0.50 to 0.95.
In general, the fusion model developed in this study present satisfactory performance in
downscaling and prediction phases within the NCP.

5.2. Limitations and Outlook

Based on these above discussion, the developed fusion model can effectively down-
scale GRACE observations and predict high-quality GWLA at pixel scales. However, the
highest resolution of predicted results is mainly determined by the resolution of climate
variables (Module #1) and water storage estimates (Module #3). The water balance variables
are the most widely used in previous studies [31,37], provided at the maximum resolution
of 0.25◦. Similarly, the water storage components are obtained from the GLDAS-Noah
model, which provides simulated outputs at the resolutions of 1◦ and 0.25◦. Consequently,
the target resolution of downscaled is 0.25◦ in this study.

Although the fusion method performs promise in this study, we will make improve-
ments from the following aspects in the future. On the one hand, only three kinds of
climate variables are taken into account in the downscaling module. Theoretically, more
input variables have the potential to improve the accuracy of downscaling results, such
as temperature and normalized difference vegetation index. What is more, this study
only selects 12 groundwater levels as the control well, restricted by the limited in-situ
measurements. If more observed data are obtained, the fusion model may perform better
than it does now. Of course, the performance of the fusion model is also limited the actual
situation of different study areas.
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6. Conclusions

Based on TWSA products derived from GRACE gravity satellites, fruitful results in
research on groundwater levels have been achieved in large-scale areas. However, due
to the coarse spatial resolution of GRACE observations, the ability to study the changes
in groundwater levels is limited in small-scale areas. Consequently, this study conduct
meaningful research on downscaling GRACE-derived TWSA and predicting high-quality
GWLA based on the machine learning algorithms, and the results are summarized as follows:

(1) The machine learning-based fusion model, including three modules (downscaling
module, data fusion module, and prediction module), is proposed in the NCP based
on the empirical relationships between GRACE and climate drivers. These modules
are both independent and integrated because the first two modules provide input
variables for the prediction module while exhibiting their functions.

(2) GRACE-derived TWSA is downscaled from 1◦ to 0.25◦ by utilizing three downscaling
models (MLR, GBDT, and GRACE-Noah models). From the spatial resolution and
temporal resolution, we compare the performances of downscaling models, and the
findings indicate that the GRACE-Noah model performs the best performance, with
the CC value of 0.99 and RMSE value of 1.49 mm in the whole study area. What is
more, the verification results with in-situ observations of 18 wells also indicate the
same result, with acceptable CC values ranging from 0.24 to 0.78.

(3) Based on the downscaled and fused results, the prediction model is developed to
obtain the GWLA within the whole NCP, and the verification results (CC values
ranging from 0.50 to 0.95) indicate that the performance in simulating the long-term
trend is ideal but may be insufficient in numerical prediction. Further, the average
CC values of 6 test wells are calculated after prediction, which performs that the
predicted result (0.71) is 65.12% higher than the downscaled result (0.43).

Overall, the proposed fusion model can effectively implement the downscaling of
GRACE products and the prediction of high-accuracy GWLA in the NCP. To some extent,
the fusion model can provide some suggestions to obtain and understand the dynamics of
water resources for some areas with no or less in-situ measurements. However, the output
spatial resolution and accuracy of the fusion model are limited by the climate variables and
the water storage components. If higher-resolution and higher-precision climate variables
can be obtained in the future, the fusion model may have the potential to obtain higher
quality products (TWSA and GWLA).
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