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Public summary
= Reveal a systematic landscape of associations among immune features in primary, metastatic, and ICB-treated tumors

= The activation of the immune microenvironment might serve as the biomarker of immunotherapy
= Dynamic alteration of interleukins in patient plasma can accurately predict immunotherapy efficacy

= Provide a noninvasive, cost-effective, and time-efficient approach to predict immunotherapy efficacy
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Immune checkpoint blockade (ICB) therapies exhibit substantial clinical
benefit in different cancers, but relatively low response rates in the majority
of patients highlight the need to understand mutual relationships among im-
mune features. Here, we reveal overall positive correlations among immune
checkpoints and immune cell populations. Clinically, patients benefiting from
ICB exhibited increases for both immune stimulatory and inhibitory features
after initiation of therapy, suggesting that the activation of the immune micro-
environment might serve as the biomarker to predict immune response. As
proof-of-concept, we demonstrated that the immune activation score (IS,)
based on dynamic alteration of interleukins in patient plasma as early as
two cycles (4-6 weeks) after starting immunotherapy can accurately predict
immunotherapy efficacy. Our results reveal a systematic landscape of asso-
ciations among immune features and provide a noninvasive, cost-effective,
and time-efficient approach based on dynamic profiling of pre- and on-treat-
ment plasma to predict immunotherapy efficacy.

INTRODUCTION

Immunotherapy provides remarkable clinical efficacy in multiple cancer types,'
including melanoma® and lung cancer.” Unfortunately, in most cancers, only a
small proportion of patients benefit from immunotherapy.® Stimulatory and inhib-
itory immune checkpoints are critical for maintaining in vivo immune homeosta-
sis and regulating the type, magnitude, and duration of the immune response.®
Inhibitory immune checkpoints, including CTLA-4, PD-1/PD-L1, and LAG-3, which
bind to tumor cells or tumor microenvironment ligands to attenuate T cell activity,
enable tumor cells to evade immunosurveillance.” ° In contrast, stimulatory im-
mune checkpoints, including 0X40, GITR, and ICOS, enhance the activation and
proliferation of effector T cells to eliminate tumors."''° Deeper understanding
of the relationships among immune checkpoint mediators has the potential to
guide identification of effective immunotherapies as well as biomarkers able to
identify patients most likely to benefit from immune checkpoint blockade (ICB)
therapies.

The tumor immune microenvironment (TIME) also plays critical roles in human
tumorigenesis and response to immunotherapy.'*'® TIME involves a wide range
of immune cell populations with tremendous diversity and plasticity, including
numerous innate and adaptive immune cell subpopulations.'® Several immune
cell populations, including activated CD8 T cells, natural killer cells, and CD4 helper
1 T cells, are associated with favorable patient prognosis.?’ % In contrast, other
immune cell populations, including myeloid-derived suppressor cells (MDSCs),*
regulatory T cells (Tregs),>**° and tumor-associated macrophages (TAMs),* are
involved in tumor immune escape”>?’ and associated with worse patient prog-

nosis.”®?%?? A comprehensive understanding of the relationship among tumor-
infiltrating immune cell populations is critical to provide important insights into
the mechanisms underlying immune surveillance and tumor immunotherapy.

Previous studies have explored potential biomarkers to predict patient
response to ICB treatment, including the expression of checkpoints (e.g.
CTLA4” PD-1,%° PD-L1,%" PD-L2?), the tumor mutation burden (TMB),** neoanti-
genload, T cell-inflamed gene expression profile (GEP),*® microsatellite instability
(MSI),** and tumor immune clonality.?>® However, recent studies demonstrated
the limitations of these biomarkers.®”*¢ These potential biomarkers have mainly
been assessed in cancer patients before ICB treatment, and it is necessary to
identify powerful biomarkers for immunotherapy. A recent study demonstrated
the significance of dynamic risk profiling during therapy to develop predictive bio-
markers for personalized outcome prediction.** Here, we investigated the rela-
tionships among immune features, including stimulatory and inhibitory check-
points, as well as different tumor-infiltrating immune cell populations in primary
tumors, metastatic tumors, and ICB-treated tumors (Figure 1A). We observed
an overall positive correlation among these immune features (Figure 1B). Impor-
tantly, patients who benefited from ICB treatment exhibited an elevated immune
microenvironment after treatment (Figure 1C). As proof-of-concept, we demon-
strated that the activation of interleukins (ILs) in patient plasma after starting
two cycles of immunotherapy (4-6 weeks) could predict patient response to
immunotherapy (Figure 1D). This timeline is a few weeks before the traditional
computed tomography (CT) (6—12 weeks), which is critical for cancer patients.
Our study highlights the significance of noninvasive dynamic profiling of pre-
and on-treatment biopsies in predicting immunotherapy efficacy early in the
course of therapy.

RESULTS
Dynamic equilibrium of immune checkpoint mediators and cell
populations in primary tumors

To explore the relationship between stimulatory and inhibitory immune
checkpoints (Table S1) in primary tumors, we calculated pairwise correla-
tions among the expression of 14 stimulatory and 20 inhibitory immune
checkpoints®® across 33 cancer types from The Cancer Genome Atlas®!
(TCGA,; Figure 1; Table S2; see online Methods). We observed an overall pos-
itive correlation among checkpoints across most cancer types (|Rs| > 0.3
and false discovery rate [FDR] < 0.05; Figure 2A). The receptor/ligand pairs,
either inhibitory or stimulatory checkpoints, are significantly correlated. For
example, the inhibitory CTLA4/CD80 (receptor/ligand) pair is highly corre-
lated in 32 cancer types, and the stimulatory CD28/CD80 pair is significantly
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correlated in 31 cancer types. Furthermore, other checkpoints beyond recep-
tor/ligand pairs are positively correlated across multiple cancer types no
matter whether they are proposed to be stimulatory or inhibitory mediators
(Figure 2A). For example, inhibitory receptor CTLA4 is positively correlated
with the inhibitory receptor PDCD1 (median Spearman’s correlation [Rs] =
0.73), stimulatory receptor CD27 (median Rs = 0.74), inhibitory ligand
PDCD1LG2 (median Rs = 0.61), and stimulatory ligand CD40LG, in 32, 32,
33, and 33 cancers, respectively. We applied partial correlation to correct tu-
mor purity (Figure STA) or overall immune cell infiltration (Figure S1B) as
confounding factors and observed overall similar pattern. We further ob-
tained forty independent datasets with GEPs across multiple primary tu-
mors, including non-small cell lung cancer (NSCLC), head and neck squa-
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Figure 1. Overview of procedures and clinical insight
of this study (A) Sample collection from primary tu-
mors, metastatic tumors, and patients with ICB
treatment. (B) Relationships among stimulatory and
inhibitory checkpoints and relative abundance of im-
mune cell populations. (C) Clinical impact of dynamic
profiling of patients with ICB treatment through inva-
sive biospecimen. (D) Proof-of-concept evidence for
dynamic profiling in plasma to predict response to

immunotherapy.
Anti-CTLA4
-(Van Allen et al.)

Anti-PD1
(Riaz et al., Pre)

mous cell cancer (HNSCC), clear cell renal
cell carcinoma (ccRCC), pancreatic cancer
(PAAD), breast cancer (BRCA), and colorectal
cancer (CRC) (see online Methods; Table
S3). We observed a consistently overall posi-
tive correlation among immune checkpoints
across different datasets (Figures STC-S1F).

- We also examined the relationship between

cytolytic activity (CYT), a proxy to reflect the
™ ability of T cells to kill cancer cells,*” and im-
N mune checkpoints, and observed an overall
positive correlation (Figure 2B). We demon-
strated that CYT is not only positively corre-
lated with most inhibitory checkpoints, but
also surprisingly positively correlated with
most stimulatory checkpoints.

The TIME involves a wide range of immune
cell populations. To understand the relation-
ship among immune cell populations in the
microenvironment of primary tumors, we
calculated the relative abundance of immune
cell populations by gene set variation analysis
(GSVA)*® based on their gene signatures (Ta-
ble ST; see online Methods). We found that
most immune cell populations are positively
correlated, regardless if they are inhibitory
cell populations (e.g., MDSCs, Tregs, TAMS)
or stimulatory cell populations (e.g., active
CD4/CD8 T cells [Act CD4/CD8], effective
memory CD4/CD8 T cells [Tem CD4/CD8§],
natural killing cells [NKs], natural killing
T cells [NKTs]) (Figure 2C). For example, Act
CD8, the stimulatory cell population, is highly
correlated with stimulatory cell populations,
including NKTs in 32 cancers (median Rs =
0.61) and type 1 helper T cell (Th1) in 32 can-
cers (median Rs = 0.62). However, Act CD8 is
also correlated with inhibitory cell popula-
tions, including Treg in 31 cancers (median
Rs = 0.50) and MDSC in 32 cancers (median
Rs = 0.70). Treg is highly correlated with
inhibitory cell populations, including MDSC
in 33 cancers (median Rs = 0.85) and TAM
in 33 cancers (median Rs = 0.82). It is also
highly correlated with stimulatory cell populations, including NK in 33 can-
cers (median Rs = 0.74) and Th1 in 33 cancers (median Rs = 0.84). The
overall similar pattern was observed when we applied partial correlation
to correct tumor purity (Figure S2A) or overall immune cell infiltration (Fig-
ure S2B) as confounding factors. These results were validated indepen-
dently from other immune gene signatures, which are used to estimate
the relative abundance of immune cell populations (Figures S2C and
S2D), including 24 immune cell populations,** 11 immune cell populations
and four immune features (MHC class |, CYT, type | IFN response, and type
Il IFN response).*“° We further used MCP-counter® and TIMER,*” two de-
convolution methods, and observed a similar pattern (Figures S2E and
S2F). Furthermore, CYT is highly correlated with both stimulatory and
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Figure 2. Correlation between stimulatory and inhibitory features in TCGA primary tumors (A) The proportion of cancer types with positive (Rs > 0.2 and FDR < 0.05 in red) or
negative (Rs < —0.2 and FDR < 0.05 in blue) correlation for expression of pairwise stimulatory (red) and inhibitory (blue) checkpoints in 33 cancer types. (B) The Spearman’s correlation
of cytotoxic activity and the expression of checkpoints in cancers. (C) The proportion of cancer types with positive correlation (Rs > 0.2 and FDR < 0.05 in orange) or negative
correlation (Rs < —0.2 and FDR < 0.05 in purple) for relative abundance (GSVA scores) of the 28 immune cells in 33 cancer types. (D) The Spearman'’s correlation of cytotoxic activity
and relative abundance of immune cell populations in cancer. The sample size is listed in Table S2.

inhibitory populations (Figure 2D). Taken together, our results revealed an
unexpected positive correlation among inhibitory and stimulatory immune
features and immune cell populations in primary tumors, suggesting the
co-regulation of stimulatory and inhibitory immune signaling pathways to
maintain the dynamic equilibrium of immune microenvironment in primary
tumors. Alternatively, they may reflect the coordinate recruitment of acti-
vated lymphocytes as well as populations of cells designed to maintain im-
mune equilibrium.

Dynamic equilibrium of immune features in metastatic cancers

Currently, most ICB treatments are applied in the metastatic/advanced tumor
environment, while the TCGA sample set is composed of mainly of patients at pri-
mary diagnosis. To investigate whether the correlations among immune features
are also observed in metastatic cancers, we obtained transcriptional profiles from
~1,000 metastatic tumors’® (Table S4) and combined all metastatic samples
into one cohort due to the limited sample size in each cancer type. We observed
that most receptor/ligand or other checkpoint pairs are highly correlated in

uolbAoOuU| 3Y |

@ CelPress Partner Journal

The Innovation 3(1): 100194, January 25, 2022 3




www.the-innovation.org

A

CD28
TNFRSF4
TNFRSF18
TNFRSF9
CD27
TNFRSF14
ICOS
TNFRSF12A
CD40
CD40LG
TNFRSF25
IL2RB
TNFSF4
TNFSF9
IDO1
PDCD1LG2
CD274
CTLA4
PDCD1
HAVCR2
BTLA
VSIR
TIGIT
LAG3
ADORA2A
CD200
CD200R1
CD276
CD80
CD86
CEACAM1
LGALS3
LAIR1
PVR

ICOS

TNFRSF12A
IDO1

CD28
TNFRSF4
TNFRSF18
TNFRSF9
CD27
TNFRSF14
CD40
CD40LG
TNFRSF25
IL2RB
TNFSF4
TNFSF9
PDCD1LG2
CD274
CTLA4
PDCD1
HAVCR2
BTLA
VSIR
TIGIT
LAG3
ADORA2A
CD200
CD200R1
CD276
CD80

G
|

FDR e 005 ® 10 @

1
o
(&3]
o
o
(&3]

CD86
CEACAM1

<107

LGALS3

LAIR1

PVR

Act CD8
Tcm CD8
Tem CD8
Act CD4
Tcem CD4

Tem CD4
ActB
Mem B
Imm B
Tth
Tgd
Th1
Th17
Th2
NK
NKT
CD56bright
CD56dim
Act DC
pDC
Imm DC
Mast
Monocyte
Eosinophil
Neutrophil
Macrophage
Treg
MDSC

Rs
-1 0 1

FDR + 0.05 ® 10 @ <10%

Rs of immune cell enrichment and CYT ©

0.8

0.6

0.4

0.2

0.0

Rs of check points and CYT

Rs of check points and CYT

0.8

0.6

0.4

0.2

0.0

0.8 4

0.6 7

0.4 1

0.2 1

0.0 1

Stimulatory checkpoints

TNFRSF25

TNFSF4

TNFRSF18

TNFSF9

TNFRSF4

TNFRSF14

Inhibitory checkpoints

CD28

CD40

TNFRSF9

CD27

CD40LG

ICOS

IL2RB

LGALS3

ADORA2A

LAG3

CD80

CD274

IDO1

PDCD1LG2

VSIR

HAVCR2

CD200R1

CD86

PDCD1

BTLA

LAIR1

CTLA4

TIGIT

Th17
Tcm CD4

NKT

Eosinophil

Tem CD4
Monocyte

Th2

CD56bright

Imm DC

Act CD8

Mem B
Macrophage

Act DC
Neutrophil

Act CD4

Tfh
Tcm CD8

Mast

NK
Tem CD8

Treg
ActB

Th1
MDSC

Imm B

Figure 3. Correlation among immune features in metastatic tumor (A) Spearman’s correlation of pairwise checkpoints in pan-metastatic tumors. (B) Spearman’s correlation of
cytotoxic activity and the expression of stimulatory checkpoints (upper panel) and inhibitory checkpoints (bottom panel). (C) The Spearman’s correlation for the relative abundance
between pairwise immune cell populations in pan metastatic tumors. (D) The Spearman’s correlation between cytotoxic activity and the relative abundance of immune cell populations.

Sample information is listed in Table S4.

metastatic tumors (Figure 3A). For example, CD86 is the receptor of both the
inhibitory ligand CTLA4 and the stimulatory ligand CD28. CTLA4 is highly corre-
lated with CD86 (Rs = 0.68), and CD28 is highly correlated with CD86 (Rs =
0.60). However, inhibitory receptor PDCD1 is not only correlated with other inhib-
itory receptors (e.g., CTLA4,Rs = 0.73; TIGIT, Rs = 0.71) and inhibitory ligands (e.g.,
CD80, Rs = 0.47; CD86, Rs = 0.57), but also correlated with stimulatory receptors
(e.g, IL2RB, Rs = 0.72;ICOS, Rs = 0.74) and stimulatory ligands (e.g., CD40LG, Rs =
0.73; TNFSF9, Rs = 0.39). Both inhibitory/stimulatory checkpoints are highly
correlated with CYT, Rs ranging from 0.3 for TNFSF4to 0.75 for TIGIT (Figure 3B).

We observed similar pattern in BRCA samples (n = 160), BRCA samples metas-
tasized to liver (n = 68), and BRCA samples metastasized to lymph node (n = 36)
(Figures S3A-S3C).
Furthermore, immune cell populations are highly correlated across the pan-
cancer cohort of metastatic tumors (Figure 3C). For example, Act CD8 is not
only positively correlated with immuno-stimulatory cell populations, such as
Act CD4 (Rs = 0.59), NK (Rs = 0.33), and NKT (Rs = 0.64), but also positively corre-
lated with immunosuppressive cell populations, such as Treg (Rs = 0.57), MDSC
(Rs = 0.62), and TAM (Rs = 0.58). CYT is positively correlated with different
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Figure 4. Correlation of immune checkpoints in metastatic tumors with ICB treatment (A and B) The Spearman'’s correlation of pairwise immune checkpoints in metastatic mel-
anomas with anti-PD-1 in pre-treatment samples (A) and on-treatment samples (B). (C) The Spearman'’s correlation of CYT and expression of checkpoints in five ICB pre-treatment

datasets. Sample information is listed in Table S5.

immune cell populations, including MDSC (Rs = 0.64), Act CD4 (Rs = 0.45), and
Th1 (Rs = 0.54) (Figure 3D). We observed the similar pattern in metastatic sam-
ples derived from one cancer type (Figures S3D-S3F). The positive correlations
among immune cell populations in metastatic samples were validated indepen-
dently from other immune gene signatures, which are used to estimate the rela-
tive abundance of immune cell populations (Figures S3G—-S3H). Taken together,
our results demonstrated a positive correlation among inhibitory and stimulatory
immune features and immune cell populations in metastatic tumors, further sug-
gesting a co-regulation of stimulatory and inhibitory immune signaling pathways
to maintain a dynamic equilibrium of the immune microenvironment in metasta-
tic tumors.

Dynamic equilibrium of immune checkpoints persists after ICB treatment
We further assessed the relationship among immune checkpoints in pa-
tients with metastatic cancer who underwent ICB treatment in five indepen-
dent immunotherapy datasets (Table S5; see online Methods). We
observed a strong positive correlation among stimulatory and inhibitory im-
mune checkpoint mediators in metastatic melanoma from ICB pre-treat-
ment patient samples.® The inhibitory immune checkpoints are not only
correlated with other inhibitory immune checkpoints, but also correlated
with stimulatory immune checkpoints in anti-PD-1 pre-treatment samples
(Figures 4A and S4). Stimulatory immune checkpoints are also correlated
with both stimulatory and inhibitory immune checkpoints in anti-PD-1

pre-treatment samples (Figures 4A and S4A). In addition, we observed a
similar positive correlation pattern for checkpoints in another four datasets
(Figure S4). CYT is also highly correlated with most checkpoints in pre-
treatment samples (Figure 4C). These results are consistent with our
observations in primary and metastatic tumors without ICB treatment.

We further examined the relationship among these immune checkpoints in
metastatic melanoma from patients after ICB treatment.® Surprisingly, these
checkpoints remained positively correlated in on-treatment samples (Figure 4B).
For example, PDCD1, the inhibitory checkpoint, is correlated with 15 inhibitory
checkpoints, including TIGIT (Rs = 0.95) and LAG3 (Rs = 0.94), and is correlated
with 17 stimulatory checkpoints, including IL2RB (Rs = 0.96) and CD27 (Rs =
0.94). The stimulatory checkpoint mediator ICOS is correlated with 11 other stim-
ulatory checkpoints, including IL2RB (Rs = 0.87) and CD27 (Rs = 0.85), and is
correlated with 15 inhibitory checkpoints, including TIGIT (Rs = 0.91) and
PDCD1 (Rs = 0.88). We further observed a positive correlation between both inhib-
itory and stimulatory checkpoints and CYT in ICB on-treatment patient samples
(Figure 4C). For example, CYT is correlated with inhibitory checkpoint PDCD1
(Rs = 0.91) and also correlated with stimulatory checkpoint CD27 in anti-PD-1
on-treatment samples (Rs = 0.89). Taken together, our results demonstrated
that positive correlation among inhibitory and stimulatory immune checkpoints
features persists during ICB treatment, suggesting a strong co-regulation of im-
mune signaling pathways to maintain a dynamic equilibrium of the immune
microenvironment.
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Figure 5. The relative abundance of immune cell populations in metastatic tumors with ICB treatment (A and B) The Spearman’s correlation of pairwise immune cell populations in
metastatic melanomas with anti-PD-1 in pre-treatment samples (A) and on-treatment samples (B). (C) The Spearman’s correlation of CYT and the relative abundance of immune cell

populations in five ICB pre-treatment datasets. Sample information is listed in Table S5.

Dynamic equilibrium of immune cell populations remains after ICB
treatment

We further assessed relationship among immune cell populations in patients
with metastatic cancer who underwent ICB treatment. Both immunosuppressive
cell populations and immunostimulatory cell populations are highly correlated in
pre-treatment samples (Figure 5A), which is consistent with our analysis in TCGA
primary tumors and metastasis tumors. These positive correlations were
observed in ICB pre-treatment samples of metastatic melanoma in four other in-
dependent datasets (Figure S5). We observed similar positive correlations using
Bindea et al. gene signatures (Figure S6) and Fantom5 gene signatures (Fig-
ure S7) for immune cell populations. Further, we found that most stimulatory
and inhibitory immune cell populations are also highly correlated with CYT in
samples with anti-CTLA-4 plus anti-PD-1 treatment, anti-CTLA-4 treatment, and
anti-PD-1 pre-treatment (Figure 5C).

Importantly these immune cell populations remained positively correlated in
ICB on-treatment samples.® Immunosuppressive cell populations, including
MDSCs, Tregs, and TAMs, are highly correlated with each other (Figure 5B). Im-
mune-stimulatory cell populations, including Act CD4/CD8, Tem CD4/CD8, NK,
and NKT, are highly correlated with each other (Figure 5B). For example, MDSC
is correlated with Treg in anti-PD-1 on-treatment samples (Rs = 0.92), and Act
CD8iis correlated with NKT in anti-PD-1 on-treatment samples (Rs = 0.74). In addi-
tion, the immunosuppressive cell populations and immune-stimulatory cell pop-
ulations are also highly correlated, instead of anti-correlated. For example, MDSC
is correlated with Act CD8 in anti-PD-1 on-treatment samples (Rs = 0.79). We
further observed positive correlation between both stimulatory and immunosup-
pressive cell populations and CYT in ICB on-treatment samples (Figure 5C). For

example, CYT correlated with the stimulatory immune cell NKT (Rs = 0.76) and
also correlated with suppressed immune cell MDSC in anti-PD-1 on-treatment
samples (Rs = 0.76). Taken together, our results demonstrated positive correla-
tions among the relative abundance of stimulatory and immunosuppressive
cell populations in ICB on-treatment tumor samples, suggesting the dynamic
equilibrium of immune cell populations in the immune microenvironment.

Patients with activation of the immune microenvironment benefited from
ICB treatment

To examine whether dynamic molecule profiles provide useful clinical insight,
we next sought to compare alterations of immune microenvironment between
pre-treatment and on-treatment biopsies in patients treated with anti-PD-1 treat-
ment.® Thirteen inhibitory checkpoints, including PDCD1, LAG3, and IDO1, and
eight stimulatory checkpoints, including TNFRSF4, ICOS, and TNFRSF9, showed
significant upregulation in the benefit group defined as partial/complete re-
sponders (PR/CR) or stable disease (SD). In contrast, no checkpoint showed
upregulation in the non-benefit group defined as progressive disease (PD) (Fig-
ure 6A). We further evaluated the inhibitory and stimulatory checkpoints between
on-treatment and pre-treatment tumor samples for different ICB treatments (Ta-
ble S5). We consistently observed activation of both stimulatory and inhibitory
checkpoints among the group of patients who benefited from ICB therapy, while
there is no significant activation among the non-benefit group (Figure 6A). We
next sought to determine whether this difference exist in pre-treatment samples.
Strikingly, we did not observe any significant difference between the benefit and
non-benefit groups before ICB treatment (Figure 6B), suggesting a similar base-
line expression level of checkpoints in both groups of patients. In contrast, most
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checkpoints, including PDCD1, ICOS, IL2RB, and CD27, are significantly higher in
the benefit group than in the non-benefit group among ICB on-treatment samples
taken 23-29 days following the commencement of immunotherapy (Figure 6C).
Another dataset taken from tumors treated 7—14 days following the commence-
ment of ICB also demonstrated that the majority of immune checkpoints are
significantly higher in the benefit group than non-benefit group (Figure S8A). To
be noticed, in the pre-treatment of this dataset and other datasets, we found
most immune checkpoints showed nonsignificant difference of MRNA expres-
sion between the benefit and non-benefit groups (Figure S8B), suggesting the
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Figure 6. Clinical impact of dynamic profiling of im-
mune features in pre-treatment and on-treatment
patients (A) Alterations of checkpoint expression be-
tween on-treatment and pre-treatment samples in
benefit group (upper panel) and non-benefit group
(bottom panel) in six ICB treatment datasets. Text
label (red: stimulatory checkpoint; blue: inhibitory
checkpoints). Black box of dots indicates the signifi-
cant difference (FDR < 0.2). (B and C) The differential
expression of inhibitory and stimulatory immune
checkpoints between benefit group and non-benefit
group in pre-treatment (B) and on-treatment (C). Black
circle of dots indicates significant difference (FDR <
0.2). Benefit group denotes patients with PR/CR and
SD under ICB treatment, and non-benefit group de-
notes patients with PD under ICB treatment. (D) The
alteration of relative abundance of 28 immune cell
populations between on-treatment and pre-treat-
ment samples in benefit group (upper panel) and
non-benefit group (bottom panel) in five ICB treat-
ment datasets. Black box of dots indicates the sig-
nificant difference (FDR < 0.2). (E and F) Difference
of relative abundance of immune cell populations
between benefit group and non-benefit group in pre-
treatment (E) and on-treatment (F). Black circle of
dots indicates the significant difference (FDR < 0.2).
Statistical analysis is performed by two-sided
Student’s t test.

mMRNA level of these checkpoints may not be a
good biomarker in the pre-treatment samples.
We also found previous biomarkers, including
TMB, neoantigen load, and GEP, only show signif-
icant difference between the benefit and non-
benefit groups in limited datasets (Figure S9),
suggesting the necessity to identify powerful bio-
markers for immunotherapy. Therefore, the upre-
gulation of immune checkpoints at early time
points may serve as a potential biomarker to
identify patients who will benefit from ICB
treatment.

Furthermore, the relative abundance of im-
mune cell populations increased significantly in
on-treatment samples compared with paired
pre-treatment samples in the benefit group for
active immune cell populations, including Act
CD8, NK, and Tem CD8, and suppressive immune
cell populations, including TAM, MDSC, and Treg.
Very little significant change was observed in the
non-benefit group (Figure 6D). This dynamic
change inimmune cell populations was validated
by four other independent datasets, including
one dataset with anti-CTLA-4 plus anti-PD-1
treatment,”® two other datasets with anti-PD-1
treatment,*>*° and one dataset with anti-PD-1
treatment®' (Figure 6D). The relative abundance
of immune cell populations quantified by two
other independent gene signatures demon-
strated a similar pattern (Figures ST0A and
S10B). Interestingly, in pre-treatment samples,
there is not a significant difference in the relative
abundance of either the stimulatory or inhibitory
immune cell populations between the patients

who did and did not benefit from anti-PD-1 treatment (Figure 6E). In on-treatment
samples, taken 23-29 days following the commencement of immunotherapy,
stimulatory immune cell populations, including Act B, Act CD8, NK, and Th17,
and suppressive immune cell populations, including Treg and MDSC, are signifi-
cantly higher in the benefit group than the non-benefit group (Figure 6F). In addi-
tion, the majority of immune cell populations showed significantly upregulated
relative abundance in the benefit group compared with the non-benefit group in
ICB early on-treatment samples” (Figure S10C). Most of the stimulatory or inhib-
itory immune cell populations showed nonsignificant difference in the relative
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abundance between the benefit patients and non-benefit patients, suggesting the
individual cell populations may not be a good biomarker in pre-treatment samples
(Figure S10D). Our results demonstrated that the dynamic infiltration of multiple
types of immune cell populations during immunotherapy may be a key biomarker
of immunotherapy benefit.

A proof-of-concept study of noninvasive profiling to predict
immunotherapy benefit in NSCLC patients

Through above comprehensive analysis, we demonstrated that these immune
checkpoints and cell populations are highly correlated, suggesting that the activa-
tion of the immune microenvironment, instead of individual immune checkpoints
and/or immune cell populations, might serve as the biomarker to predict immune
response. Our observation aligns well with previous studies to demonstrate the
fundamental immunologic mechanisms that activating immune pathways track
with immune infiltration,”>>~>* but from a novel perspective of comprehensive
relationships among immune checkpoints and immune cell populations. Based
on this knowledge, we aim to develop a simple, rapid, and cost-effective approach
to evaluate the activation of immune microenvironment. To further prove our find-
ings that dynamic alteration of immune features during immunotherapy can
accurately predict immunotherapy benefit, we collected a cohort of 22 NSCLC
patients with anti-PD-1 treatment (cohort 1, Table S6). Despite the recent emer-
gence of PD-L1 protein expression as a predictive biomarker in cancer immuno-
therapy,”>*° it could not predict the response in our cohort (Figure S12).

To develop a noninvasive approach, we aim to identify potential biomarkers to
reflect the activation of immune microenvironment. We collected plasma from
these patients 1 day before each cycle of anti-PD-1 therapy (Figure 7A). We
focused on the protein expression levels of four ILs, IL-2, IL-4, IL-6, and IL-10,
for the reason that immune cells produce a wide spectrum of ILs during the stim-
ulation of immune system.*” € Gene set enrichment analysis (GSEA)*° revealed
that the IL gene set was significantly enriched in on-treatment samples compared
with paired pre-treatment samples in the benefit group in four independent ICB
treatment cohorts (Figure ST1A). In addition, ILs are highly positively correlated
with checkpoints and CYT (Figures S11B and S11C). More importantly, the
four ILs are included in the Human Th1/2/17 Cytokine kit, which is a very standard
cytokine kit that is widely used for patients.”>”" During the anti-PD-1 therapy, we
observed the overall activation of IL proteins at cycles 1 and 2 of anti-PD-1 treat-
ment in anti-PD-1 responders, while there was almost no change for ILs in non-
responders (Figures ST1A and S11B). Indeed, all four IL proteins showed signifi-
cant upregulation at cycle 2 of anti-PD-1 therapy in responders (Figure 7B).
Furthermore, upregulation of each IL protein during anti-PD-1 therapy showed
significantly negative correlation with tumor size (Figure S12E). To assess the
activation of immune system, we designed an immune score (IS) based on these
four ILs, where IS, > 0 was designated as immune activation and IS, < 0 was
designated as immune nonactivation (see materials and methods; Table S7).
Among 22 patients recruited, 11 patients with immune activation (IS, > 0) at cy-
cle 2 of anti-PD-1 treatment, and 10 of these 11 patients (90.9%) were responders
to anti-PD-1 treatment. This is significantly higher than the percentage of patients
without immune activation (IS, < 0; 10/11 versus 1/11; Figure 7C). These pa-
tients also had significantly better progression-free survival (PFS) (log rank test,
p =16 x 107° Figure 7D). Radiographic results demonstrated that patient
MYZL-116, with immune activation in the plasma after 6 weeks of anti-PD-1 treat-
ment, had 95% reduction in tumor diameter, while patient MYZL-168, without im-
mune activation, had a 200% increase in tumor diameter (Figure 7E). To assess
whether the activation score is an independent predictor, we considered age, sex,
the expression of PD-L1, and IS, as variables to perform the multivariate Cox
regression analysis, we found that the IS, is an independent predictor signifi-
cantly associated with better prognosis (Figure S12F). We further performed
multivariate Cox regression analysis by considering different drugs and IS as vari-
ables to avoid the effect of different drugs, and also found that /S, is an indepen-

dent predictor (Figure S12G). It is critical to investigate at earlier imepoints for the
potential biomarker. We further examined the levels of ILs at cycle 1 (2—3 weeks)
and observe the upregulated ILs, but unfortunately did not reach the statistical
significance (Figure S12H).

Considering the small sample size (n = 22) of our patient cohort, we further
collected an independent cohort of 67 patients with lung cancer with anti-PD-1
treatment alone or combination treatment of chemotherapy and anti-PD-1
(cohort 2, Table S8). In cohort 2, the PD-L1 protein expression of PD-L1 could
not predict the response of cancer immunotherapy (Figures S13A-S13D).
Consistently, all four IL proteins are significantly upregulated at cycle 2 of anti-
PD-1 therapy in responders (Figure S13E; Table S9), and the alteration of these
four IL proteins also negatively correlated with the shrink of tumor (Figure S13F).
Among these 67 patients 40 of 43 patients with immune activation at cycle 2
(93.0%) were responders to ant-PD-1 treatment, which is significantly higher
than the percentage of patients without immune activation (ISy < 0;9/24 versus
40/43, Figure 7F). In addition, patients with immune activation have significantly
better PFS (Figure 7G) and significantly reduced tumor size in radiographic anal-
ysis (Figure 7H). We performed the survival analysis for NSCLC and SCLC pa-
tients in activation and nonactivation group, respectively, and found that immune
activation is associated with better PFS in both cancer types (Figure S14G and
S14H). We further performed multivariate Cox regression analysis and demon-
strated that IS, is an independent predictor by considering the confounding fac-
tors, including age, sex, the expression of PD-L1, and different drug treatments
(Figures S141 and S14J). Taken together, our results provide the first proof-of-
concept evidence that the activation of ILs in an early treatment stage may accu-
rately predict the response to immunotherapy.

DISCUSSION

With the recent remarkable successes with cancerimmunotherapies, there is a
great need to reveal mutual relationships among immune features in the tumor
microenvironment to improve the understanding of ICB and to identify effective
combinations and biomarkers. Here, we revealed a systematic landscape of as-
sociations among immune features through multiple public datasets for the first
time, thereby providing a comprehensive perspective for investigating TIME in
immunotherapy. Our results demonstrated an overall positive relationship among
immune features in the TIME before and after immunotherapy, suggesting the
co-regulation of infiltration of various immune checkpoints and cell populations
in the tumor-immune system. These results could alternatively indicate that
processes leading to immune activation result in the subsequent induction of
regulatory processes designed to bring the immune system into equilibrium. In
the static environment of a tumor biopsy, this presents as correlations between
both activation and inactivation events.

Importantly, patients who benefitted from immunotherapy tend to have overall
upregulation of both immune stimulatory and inhibitory features in on-treatment
biopsies compared with pre-treatment biopsies (Figures 7I1=7K), while patients
who did not benefit from immunotherapy showed no significant immune alter-
ations after treatment (Figures 7K and 7L). Furthermore, there is no significant
difference for most immune checkpoints and immune cell populations in the
pre-treatment samples between patients who benefited and patients who did
not benefit from immunotherapy, suggesting that it is difficult to identify patients
who will benefit from treatment based on the pre-treatment samples alone.
Although a single pre-treatment biomarker would be useful, a recent novel
concept demonstrated the clinical utility of dynamic biomarkers, especially for
the complex system that may be characterized by multiple phases.” Our study
highlights the possibility of predicting immunotherapy response by comparing
pre-treatment and on-treatment biospecimens for multiple different immune
criteria. We showed that an on-treatment invasive biospecimen as early as
7-14 days after initiation of therapy could provide important information
regarding which patients are likely to benefit (Figure 7M). Furthermore, we

Figure 7. Dynamic profiling of immune features to predict response to immunotherapy (A) Schematic of sample collection for lung cancer patients with anti-PD-1 therapy alone or
chemotherapy and anti-PD-1 combination therapy. (B) IL expression difference (IL,) at cycle 2 of anti-PD-1 therapy is significantly higher in responders (n = 11) than non-responders
(n =11). p value was determined by paired Mann-Whitney-Wilcoxon test. The boxes indicate the median +1 quartile, with the whiskers extending from the hinge to the smallest or
largest value within 1.5x IQR from the box boundaries. (C—H) Immune activation (/S,) can accurately predict the patient response to anti-PD-1 therapy in patient cohort 1 (C~E) and
cohort 2 (F-H). (C and F) Patients with immune activation (IS, > 0) after ICB are more likely to respond to anti-PD-1 treatment. p value was determined by Fisher's test. (D and G)
Patients with immune activation (IS, > 0) demonstrate significantly better PFS. p value was determined by log rank test. (E and H) Tumor size decreases significantly in patients with
immune activation (IS, > 0) based on CT image. (I-N) Schematic of immune features in patients (I and J) with benefit or (K and L) without benefit from ICB treatment at (I and K) pre-
treatment and (J and L) on-treatment. (M) The activation of immune checkpoints and immune cell abundance in tumor microenvironment can predict immunotherapy benefit after 1-
4 weeks of ICB therapy. (N) The activation of ILs in patient plasma at cycle 2 can predict immune benefit of ICB therapy (4—6 weeks).
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demonstrated a noninvasive approach for predicting immunotherapy benefit by
examining the activation of ILs in patient plasma as early as two cycles (4-
6 weeks) after treatment starts in two independent cohorts, which is cost effec-
tive and time efficient and provides a novel paradigm for identifying biomarkers to
predict immunotherapy efficacy (Figure 7N). Those patients do not have the acti-
vation of IS; they may still remain not responsive based on our follow up data for
up to 32 months. Considering that follow-up responses to immunotherapy may
need to be evaluated through imaging at least 6—12 weeks according to guide-
lines for immunotherapy from The Response Evaluation Criteria in Solid Tumors
(iRECIST),” our approach can evaluate the response of patients several weeks
before the traditional CT scan, which is critical for cancer patients. Mechanisti-
cally, the benefit from immunotherapy may not correlate with the induction of
either positive or negative mediators, but rather with the immune activation or
recruitment of activated immune cells. While it is straightforward to understand
why evidence for positive immune regulators or effectors would correlate with
benefit, it is more difficult to explain associations with negative regulators. It
may be that any signal of an ability to activate the immune system is associated
with an improved outcome and that positive events subsequently activate
negative regulators to re-establish homeostasis. Nevertheless, the underlying
mechanisms need to be investigated in further works.

Our study is limited by the expression level of checkpoints, and the abundance
of the immune cell populations are estimated based on gene signatures. Consid-
ering challenges to capture the identity of immune checkpoints and immune cell
populations in transcriptomes, further technologies, and approaches are neces-
sary to validate our observations. Currently, the single-cell transcriptome profiles
of tumors are limited in few patients, which prevent us from accessing the asso-
ciations among different immune features across patients. Furthermore, the sin-
gle-cell RNA sequencing (scRNA-seq) and fluorescence-activated cell sorting
(FACS) normally assumed all-cell populations summed up as 100%. In the real
tumor microenvironment, the number of immune cells may be increased or
reduced with different percentages. This may further require dynamic single-
cell analysis of immune contexture, as it changes under the influence of ICB. In
this situation, the assumption that all-cell populations summed up as 100%
through scRNA-seq and/or FACS may not be appropriate to reflect this phenom-
enon. Nevertheless, we developed a simple, rapid, and cost-effective approach to
evaluate the activation of immune microenvironment in this pilot study. Further
investigations in large-scale patient samples and patients with other cancer types
(e.g., melanoma) for immunotherapy trials, especially at an earlier time point, are
necessary.

MATERIALS AND METHODS

We obtained gene expression data from TCGA, Gene Expression Omnibus (GEO), and
European Bioinformatics Institute (EBI) for primary, metastasis, and tumor with ICB treat-
ment. We also collected immune checkpoint genes and immune cell populations from pre-
vious publications.”® We recruited two independent patient cohorts from Hunan Cancer
Hospital and analyzed radiographic images and molecular features in patients with immu-
notherapy. All tissue samples were collected in compliance with the informed consent pol-
icy. The study protocol was approved by the Institutional Review Board of Hunan Cancer
Hospital (SBQLL-2019-035). More information is available in the supplemental informa-
tion file.
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