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ABSTRACT Despite the widely acknowledged public health impacts of surface
water fecal contamination, there is limited understanding of seasonal effects on (i)
fate and transport processes and (ii) the mechanisms by which they contribute to
water quality impairment. Quantifying relationships between land use, chemical
parameters, and fecal bacterial concentrations in watersheds can help guide the
monitoring and control of microbial water quality and explain seasonal differences.
The goals of this study were to (i) identify seasonal differences in Escherichia coli
and Bacteroides thetaiotaomicron concentrations, (ii) evaluate environmental drivers
influencing microbial contamination during baseflow, snowmelt, and summer rain
seasons, and (iii) relate seasonal changes in B. thetaiotaomicron to anticipated gas-
trointestinal infection risks. Water chemistry data collected during three hydrocli-
matic seasons from 64 Michigan watersheds were analyzed using seasonal linear
regression models with candidate variables including crop and land use propor-
tions, prior precipitation, chemical parameters, and variables related to both waste-
water treatment and septic usage. Adaptive least absolute shrinkage and selection
operator (LASSO) linear regression with bootstrapping was used to select explana-
tory variables and estimate coefficients. Regardless of season, wastewater treat-
ment plant and septic system usage were consistently selected in all primary
models for B. thetaiotaomicron and E. coli. Chemistry and precipitation-related vari-
able selection depended upon season and organism. These results suggest a link
between human pollution (e.g., septic systems) and microbial water quality that is
dependent on flow regime.

IMPORTANCE In this study, a data set of 64 Michigan watersheds was utilized to gain
insights into fecal contamination sources, drivers, and chemical correlates across sea-
sons for general E. coli and human-specific fecal indicators. Results reaffirmed a link
between human-specific sources (e.g., septic systems) and microbial water quality.
While the importance of human sources of fecal contamination and fate and trans-
port variables (e.g., precipitation) remain important across seasons, this study pro-
vides evidence that fate and transport mechanisms vary with seasonal hydrologic
condition and microorganism source. This study contributes to a body of research
that informs prioritization of fecal contamination source control and surveillance
strategy development to reduce the public health burden of surface water fecal
contamination.
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The financial and public health impacts of fresh water fecal contamination have
long been recognized: fecal contamination of freshwater is a public health concern

with potential to degrade the quality of irrigation water for food crops (1, 2), ground-
water used for drinking water (3), and surface waters that have multiple beneficial uses
(4), yielding significant disease and financial burdens. Direct exposure to contaminated
surface waters, such as those through recreational activities, can also lead to negative
health outcomes (5, 6). For example, an epidemiological study at beaches in Brazil
found direct correlations between Enterococcus concentrations in water and gastroin-
testinal illness rates in swimmers (7). Freshwater beach epidemiological studies have
correlated Escherichia coli concentrations in water with gastrointestinal illnesses in
swimmers (8, 9).

Two commonly utilized methods for investigating fecal contamination sources in
surface waters are (i) indicator organisms and (ii) microbial source tracking (MST) of
host-specific gene markers. Indicator organisms (e.g., E. coli) are not specific to a partic-
ular animal species. MST methods utilize PCR-based methods to quantify specific gene
sequences associated with different sources (10–12). One example of MST is the use of
single-copy homologues encoding Bacteroides thetaiotaomicron a-1-6 mannanases
found in high percentages of human fecal samples and indicative of human fecal con-
tamination when detected in water (13, 14).

Some transport factors influencing fecal contamination in water are well recognized,
such as runoff from land into surface waters (15, 16). However, the specific mechanisms of
fecal contamination fate and transport and corresponding public health burdens are not
well understood. Improving surveillance protocols for prioritizing fecal contamination
source control will help to implement evidence-based public health interventions.

Contaminant occurrences and concentrations depend on myriad factors, including con-
tamination sources, hydrologic conditions (17), physical properties of the water, weather
(18–20), population density, land use characteristics, and human behavior (21). In temper-
ate regions, some of these parameters are seasonally driven, resulting in water quality
differences within any given year. As mentioned previously, precipitation and hydrologic
conditions are well-known drivers of fecal contamination. A previous Great Lakes study
found inconsistent relationships between fecal indicator bacteria and human-specific
markers under low- and high-flow conditions, suggesting that hydrologic conditions play a
role in water contamination (20). However, parsing out individual fates and transport
mechanisms for specific fecal contaminants can be challenging in complex systems that
receive multiple sources of water and pollution.

Relating E. coli and B. thetaiotaomicron fate and transport mechanisms with seasonal
environmental changes would improve the understanding of risks posed by fecal contami-
nation in surface waters as different recreational activities vary seasonally. Therefore, this
study sought to (i) identify seasonal differences in E. coli and B. thetaiotaomicron concentra-
tions in surface waters, (ii) determine environmental drivers of microbial contamination in
baseflow, snowmelt, and summer rain seasons, and (iii) use quantitative microbial risk
assessment (QMRA) across seasons to address exposures from recreational activities and
associated gastrointestinal illnesses. Quantifying relationships between fecal contamina-
tion, land use or environmental parameters, and human health can provide a basis to
improve watershed management policies and microbial risk mitigation.

RESULTS

In the 64 watersheds studied across a large (88,000-km2) spatial scale, there were signifi-
cant seasonal differences in log10 concentrations of B. thetaiotaomicron (P , 0.001), a
human fecal source tracking marker (Fig. 1; see also Table S1 in the supplemental material).
Mean log10 concentrations of B. thetaiotaomicron varied over multiple orders of magnitude.
Concentrations were highest during baseflow (5.15 log10 cell equivalents [CE]/100 mL), fol-
lowed by the snowmelt (3.84 log10 CE/100 mL) and summer rain (3.07 log10 CE/100 mL)
seasons (Fig. 1). This trend was routinely measured across watersheds (Fig. 1). In contrast,
mean log10 E. coli concentrations, while statistically significantly different (P, 0.002) across
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seasons, were within the same order of magnitude (;1 log10; baseflow, 1.81 log10; snow-
melt, 1.53 log10; summer rain, 1.93 log10), with no strong spatial pattern across seasons
(Fig. 1). Most precipitation and chemical parameters were significantly different across sea-
sons (Table S1).

Notable least absolute shrinkage and selection operator (LASSO)-selected vari-
ables and their seasonal trends. Total dissolved nitrogen was selected in multiple pri-
mary and sensitivity models with statistically significant estimated beta coefficients (Fig. 2).
While primarily selected for E. coli, one model also selected total dissolved nitrogen for
B. thetaiotaomicron (summer rain, sensitivity). Based on these beta coefficients, the E. coli
baseflow model found that an increase of 1mg/L of total dissolved nitrogen was associated
with a 36% ½ðe3:1�1021

2 1Þ � 100%� increase in E. coli concentrations (most probable num-
ber [MPN]/100 mL). In the snowmelt model, an increase of 1mg/L in total dissolved nitrogen
was related to a 20% ½ðe1:8�1021

2 1Þ � 100%� increase in E. coli concentrations (MPN/
100 mL) (Table S2).

Other consistently selected variables for all seasons related to B. thetaiotaomicron
human-specific fecal contamination sources included WWTP- and septic-related varia-
bles (Fig. 2). Two of the human pollution-related variables (e.g., percentage of the pop-
ulation on septic, percentage of the population on WWTPs, number of septic systems
in watersheds, or population density) were found to be important drivers of microbial
water quality in all primary models (Fig. 2). Specifically, the percentage of the popula-
tion on septic systems was selected in 8 of the 12 primary and sensitivity analysis mod-
els, and the percentage of the population on WWTPs was selected in 4 of 12 models
(Fig. 2; Table S2). WWTP variables (e.g., percent population on WWTPs and number of
people on WWTPs) and number of septic tanks in watersheds consistently had positive
relationships with log-transformed E. coli and B. thetaiotaomicron concentrations, in
both primary and sensitivity analysis models (Fig. 2; Table S2). Despite having been
selected in all models, only the baseflow sensitivity model for B. thetaiotaomicron had

FIG 1 Distributions of B. thetaiotaomicron (B. theta) and E. coli log10 concentrations across seasons in chronological order of measurement collection
(baseflow [BF], snowmelt, and summer rain). Each watershed sampled in this study is shown with corresponding color and gray border. Bolded watersheds
were identified as influential watersheds in the sensitivity analysis. Baseflow measurements were collected from 1 to 13 October 2010. Snowmelt and
summer rain measurements were collected from 5 to 23 February 2011 and from 1 to 28 June 2011, respectively.
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a statistically significant beta coefficient for one of these human pollution source
variables.

Relating seasonal changes in B. thetaiotaomicron to anticipated risks. Temporal
changes in B. thetaiotaomicron concentrations were related to anticipated infection
risks using a QMRA approach to illustrate how MST, hydrologic methods, and QMRA
can be collectively used. Norovirus, a human pathogen associated with fecal contami-
nation, was used as the pathogen of interest because it is waterborne and has existing
dose-response curves (22). Additional modeling details are described in Materials and
Methods and in the supplemental material. Briefly, the concentrations of B. thetaiotao-
micron measured in this study were related to previously reported B. thetaiotaomicron
and norovirus concentrations in septic systems. The ratio of B. thetaiotaomicron to nor-
ovirus was then used to estimate norovirus concentrations in the watershed samples,
assuming that norovirus was always present in the septic source (i.e., fluctuations in
norovirus and B. thetaiotaomicron concentrations were not occurring and therefore the
ratio was constant). Relative to mean infection risks during the baseflow season, mean
infection risks for an hour of recreational activity with water ingestion in the summer
rain and snowmelt seasons were decreased by 95% and 79%. A sensitivity analysis of
this risk-based approach identified calculated norovirus concentration based on B. the-
taiotaomicron concentrations in surface water as the most influential parameter on
estimation of infection risks for all three seasons (r = 0.9996), followed by the patho-
gen concentrations in the source septic systems (r = 0.79) (Fig. S2).

DISCUSSION
Mechanistic explanations for model selection of WWTP and septic variables.

The positive relationships observed between both WWTPs and the total number of
septic tanks with log-transformed E. coli and B. thetaiotaomicron indicate that contami-
nation in the watersheds evaluated in this study may be primarily driven by human

FIG 2 Selected and statistically significant explanatory variables for primary and sensitivity E. coli and B. thetaiotaomicron models. Variable names are
described in more detail in Table S2. The total numbers of observations (i.e., watersheds) used in the primary models for E. coli and B. thetaiotaomicron per
season were 56, 46, and 60 for the baseflow, snowmelt, and summer rain models, respectively. In sensitivity analysis E. coli models, 2, 3, and 4 influential
watersheds were removed from the baseflow, snowmelt, and summer rain data sets, respectively. In the sensitivity analysis B. thetaiotaomicron models, 5, 4,
and 2 influential watersheds were removed from baseflow, snowmelt, and summer rain data sets, respectively. Missing data are described in the
supplemental material. N.negative, not statistically significant negative relationship; Y.negative, statistically significant negative relationship; N.positive, not
statistically significant positive relationship; Y.positive, statistically significant positive relationship.
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fecal sources. Identification of septic systems and WWTPs as inputs of surface water
fecal contaminations in this study is consistent with existing literature (23), and there is
prior evidence of WWTP and septic system contributions to the watersheds evaluated
(24–27). Either a variable related to WWTPs (e.g., percentage of the population on
WWTPs and number of people on WWTPs) or total number of septic systems was
selected regardless of hydrologic condition, implying that inputs of human fecal con-
tamination likely occur year-round.

Counterintuitively, negative relationships between the percentage of the popula-
tion on septic and log-transformed E. coli and B. thetaiotaomicron concentrations were
observed. However, these relationships were likely confounded by structural differen-
ces in watersheds across the state, leading to covariation between underlying drivers
of fecal contamination. In Michigan’s northern Lower Peninsula, most of the population
that is served by septic systems (Fig. 3) lives within largely forested watersheds with
limited agricultural activity. Here, a negative relationship between percentage of the
population on septic and E. coli was observed that was likely driven in part by the low
population density (Fig. 3). This region had relatively low E. coli concentrations overall,
especially during baseflow and snowmelt seasons (Fig. 1). A similar trend was present
for B. thetaiotaomicron, where concentrations were greater in watersheds in the center
of the state than in the northern area of the state across seasons (Fig. 1).

In contrast, the number of septic systems in the watersheds was positively corre-
lated with B. thetaiotaomicron concentrations during baseflow, with a significant model
beta coefficient. This may be explained by B. thetaiotaomicron loading, predominately
due to septic system failures. While widespread data on septic system failures are
unavailable, they are likely driven by factors such as system age, usage, type, and main-
tenance along with soil characteristics and hydrology. Though there are spatial differ-
ences in these factors across watersheds, septic failures are a relatively rare event and
should thus be viewed probabilistically. Specifically, a greater number of septic sys-
tems upstream of a sampling location means a greater probability of one or more sys-
tem failures. As a result, in this study, total number of septic systems in the watershed
may be a more appropriate surrogate for potential septic impact on water quality than
percentage of the population on septic.

Model selection was also impacted by the methods utilized. Adaptive LASSO, like all
regression shrinkage models, can underfit parameters, resulting in low predictive
power (28). This statistical limitation could explain, in part, the low adjusted R2 values
and relatively small beta parameter estimates in this study. However, adaptive LASSO

FIG 3 Spatial distribution of fraction of the population on septic service and number of people on septic service per square kilometer. Data are shown in
quantiles, where 20% of the data are shown in each category. Each watershed sampled in this study is shown with corresponding color and gray border.
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is an appropriate approach in the case where there are many candidate variables for
few outcome variables, as was the case in this study. Additionally, while collinearity
among candidate explanatory variables was a challenge, ridge regression was used to
shrink the weights for colinear variables (29, 30).

Mechanisms for similarities between models of E. coli and B. thetaiotaomicron.
Some variables were shared by E. coli and B. thetaiotaomicronmodels for the same sea-
son, providing evidence of relationships between general fecal contamination and
human-associated contamination. This also suggests that E. coli and B. thetaiotaomi-
cron may share a source and/or follow similar fates and transport mechanisms when
entering the environment. Under baseflow conditions, the percentage of the popula-
tion on WWTPs was selected for both E. coli and B. thetaiotaomicron primary models
(Fig. 2; Table S2). This explanatory variable had a positive relationship with E. coli and
B. thetaiotaomicron concentrations, indicating the importance of direct human contri-
butions of fecal contamination as a source for both organisms. Under snowmelt condi-
tions, 4-day precipitation was selected in both primary models, where it had a positive
relationship with E. coli and B. thetaiotaomicron concentrations (Table S2), indicating
that there may be shared transport mechanisms for these organisms.

Mechanisms for differences across seasons. The consistent selection of a certain
category of variable across seasons indicates its year-round relevance as a source or as
fate and transport mechanisms. Precipitation parameters were selected across seasons
in primary models (Fig. 2). However, the direction of their relationship with fecal indica-
tors was inconsistent, implying that while it may be mechanistically important year-
round, the role of precipitation in fate and transport may change. For example, in the
snowmelt season, rainfall had a positive relationship with E. coli and B. thetaiotaomi-
cron concentrations (Table S2), indicating enhanced delivery. However, in the summer
rain season, rainfall had a negative relationship with log-transformed B. thetaiotaomi-
cron concentrations (Table S2), indicating dilution effects. The positive relationship
between precipitation and fecal indicators was expected, especially in conjunction
with the model selection of total dissolved nitrogen: increased overland flow runoff
due to precipitation in agricultural areas is expected to increase nitrogen and E. coli
loading in watersheds (31). However, the negative summer relationship between pre-
cipitation and E. coli has not been reported, to our knowledge. This could be indicative
of a dilution effect caused by increased overland flow rates in comparison to subsur-
face flow, where septic tank effluent is present. Increased surface flows may also limit
the environmental persistence and regrowth of these organisms.

Elucidating the relative importance of fecal contamination sources and fate and
transport mechanisms over time and across locations has the potential to reduce rec-
reational risks (32), improve water quality surveillance efforts (33), and help prioritize
fecal contamination source control (18, 34). Concentrations of the human-specific B.
thetaiotaomicron were the most influential parameter related to infection risk. Thus, pa-
rameters that explain or signal seasonal changes in B. thetaiotaomicron and human
fecal contamination concentrations and their relationship to pathogens would be use-
ful for anticipating seasonal changes in risk. To better estimate absolute risks, future
work could address and improve upon the assumptions within our simple QMRA
model framework. For example, capturing the growth and decay dynamics of E. coli
and B. thetaiotaomicron after their release from sources would allow for more accurate
analysis of seasonal relationships and subsequent risk estimates. Additional data that
help improve risk assessments include seasonal changes in the number of people who
engage in exposure-related activities, parameters that relate differences in the trans-
port of pathogens versus indicator organisms from sources to sampling sites, and
mathematical explanations for anticipated mechanistic changes in septage inputs to
surface waters as a function of season.

Conclusions. This study provides further evidence that WWTPs and septic systems are
important, year-long sources of human fecal contamination within the evaluated water-
sheds. Furthermore, we show that the relationship between contamination and other ex-
planatory variables is seasonally dependent. However, there are still uncertainties regarding
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the magnitude of these sources relative to other fecal contamination inputs, which is likely
geographically and temporally specific. Future research is needed to quantify the impact
of human-specific sources on surface water fecal contamination, accounting for geographi-
cal and temporal effects. In particular, discerning impacts from septic systems was chal-
lenging due to confounding factors and limited reporting regarding septic system integrity
and usage.

The analyses from this study also demonstrate the year-long importance of precipi-
tation in fate and transport mechanisms of fecal contamination, but inconsistencies in
the direction of the relationship between precipitation and fecal indicator concentra-
tions indicate that the role of precipitation in these mechanisms is likely seasonally
driven. Other parameters, including total dissolved nitrogen, appear to be important
correlates of E. coli concentrations during baseflow and snowmelt seasons and are
commonly related to other watershed inputs such as agriculture. Further research is
needed to understand causal mechanisms behind the relationships identified here and
to quantify relationships with more statistical confidence, using larger sample sizes or
other statistical methods not as limited by underfitting and low predictive power.
Additionally, more data per season would provide more confidence in seasonal differ-
ences (or lack thereof) elucidated in this study.

MATERIALS ANDMETHODS
Study region and sample size. An observational study was conducted in 64 watersheds across the

state of Michigan across three hydrologic seasons: baseflow parameters were measured in fall (October
2010), snowmelt/spring thaw (March 2011), and postplanting summer rain (June 2011) (23). These inter-
vals were selected to provide a broad range of hydrologic conditions across the contributing watersheds
and within sampled streams. Details regarding sample collection timing and differences in seasonal
streamflow are provided in the supplemental material.

At each site, streamflow was measured and water samples were collected as described by Verhougstraete
et al. (23). Briefly, grab samples were collected from the center of each stream, at the upstream side of each
access location. Biological samples were filtered and preserved within 24 h of collection. Samples for other
water chemistry parameters were filtered in the field and chilled or frozen as appropriate. Laboratory analyses
were performed within standard holding times and summary (23). Stream flows were either measured directly
via appropriate methods or taken from 15-min data at colocated U.S. Geological Survey (USGS) streamflow
gauges.

Variables. At each sampling location, physical and chemical parameters were measured during each
sampling event. These included ammonium, calcium, chloride, dissolved oxygen, magnesium, nitrate/nitrite,
total chlorophyll a, pheophytin-corrected chlorophyll a, pH, specific conductance, total dissolved nitrogen
and phosphorus, sodium, potassium, dissolved organic carbon, and sulfate. Analytical methods have been
described in detail by Verhougstraete et al. (23). E. coli was quantified using cultivation methods (IDEXX;
Colilert), and the B. thetaiotaomicron genetic marker was measured using quantitative PCR (qPCR) (Roche;
LightCycler 480 instrument) and previously published primer and probe sequences (14). Water temperature
and streamflow were also measured during each sampling.

To quantify watershed precipitation prior to each sampling and static aspects of the landscape, water-
sheds were computed for each sampling location. For this, we used the 1/3 arc-second digital elevation
model (DEM) from the National Elevation Data (NED) set, using a standard workflow in ArcMap (version 10.2):
(i) the “fill” tool was run on the raw DEM, (ii) the “flowdirection” algorithm was run (which routes flow in one
of the cardinal and subcardinal directions only—a D8 algorithm), (iii) the “flowaccumulation” tool was then
run to make sure that sampling locations accurately fell within the DEM-generated flow network, and (iv)
“watershed” was run to compute watershed areas for each sampling location.

These watersheds were then used to extract static characteristics from geographic information sys-
tem (GIS) data sets that might reflect the influence of human or natural factors on B. thetaiotaomicron
and E. coli concentrations. Land use and land cover data for each watershed were obtained from the
USDA’s Cropland Data Layer (CDL) and the USGS’s National Land Cover Database (NLCD) 2006 values.
Watershed variables associated with WWTP use, such as percentage of the population using septic tanks,
number of septic systems, spatial density of septic systems, number of people on WWTPs, percentage of
the population on WWTPs, and population density, were estimated using U.S. Census Bureau data as
described by Luscz et al. (35).

Finally, we calculated nine spatially averaged precipitation variables within each watershed to account
for precipitation totals (in millimeters) prior to sample collection in each watershed over different periods of
time (6, 12, 18, and 24 h and 2, 3, 4, 6, and 8 days). Precipitation data were sourced from the North American
Land Data Assimilation System (NLDAS) version 2, forcing data set A.

Statistical methods. Descriptive statistics were calculated for B. thetaiotaomicron and E. coli and for
each sampling event: baseflow, snowmelt, and summer rain. Mixed-model analysis of variance was used
to test for differences across the three seasons. Repeated measures in the same location were consid-
ered using an unstructured covariance matrix. Watersheds with missing values for candidate explanatory
variables were not used in the primary or sensitivity analysis models.
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The primary analysis was linear regression on log-transformed B. thetaiotaomicron and E. coli concen-
trations with explanatory variables selected with adaptive least absolute shrinkage and selection opera-
tor (LASSO) methods (30). Multiple statistical approaches have been used to explore environmental-mi-
crobial interactions, but to our knowledge, few have applied LASSO regression methods (36). One of the
strengths of shrinkage methods includes their ability to address cases in which the number of potential
explanatory variables is much larger than the number of observations (28), as is the case in this and
many other stream health studies. Therefore, adaptive LASSO was used to select explanatory variables
for E. coli and B. thetaiotaomicronmodels for all 3 seasons (6 primary models).

Ridge regression, which shrinks coefficients of correlated explanatory variables “toward each other”
(29), was used to weight each candidate explanatory variable in adaptive LASSO. This is recommended
for data sets in which candidate explanatory variables may be colinear, as in this case (30). Adaptive
LASSO was restricted to select a number of explanatory variables that was equal to or less than the num-
ber of watersheds divided by 10 (n/10). For regression analysis, the outcome variables, E. coli and B. the-
taiotaomicron concentrations, were log transformed. Bootstrapping methods were used to obtain 95%
confidence intervals (CI) for regression parameters (beta parameter estimates) (37). Ten thousand sub-
sets from the total data set were created using sampling with replacement, and adaptive LASSO was
used to select variables from each of these subsets. If a variable was selected in more than 20% of the
subset models, this variable was selected overall, and a 95% CI was reported for the beta parameters
estimated per subset model.

Inclusion of zero in the 95% CI indicates uncertainty as to whether the selected variable had a rela-
tionship with the dependent variable. Therefore, exclusion of zero in the 95% CI for the beta parameter
estimates indicated statistical significance at the 0.05 level. To obtain adjusted coefficients of determina-
tion (R2), linear regression was used to fit log-transformed E. coli or B. thetaiotaomicron concentrations to
their respective selected variables. After explanatory variables were selected by adaptive LASSO, linear
regression assumptions were evaluated (details in the supplemental material).

A sensitivity analysis was conducted for each primary model to evaluate the effect of influential
watersheds on variable selection and on adjusted R2 values. Influential watersheds were identified using
Cook’s D plots and were removed from the sensitivity analysis prior to performing adaptive LASSO
regression. Selected variables and the adjusted R2 values for the models were then compared to those
from the primary analysis that included influential watersheds. All statistical analyses were conducted
using SAS 9.4 software (SAS Institute Inc., Cary, NC).

Relative-risk estimation. QMRA can estimate a probability of a health outcome such as infection,
given a particular dose (38), and it has been used in surface water quality and recreational contexts (39–
41). Differences in B. thetaiotaomicron concentrations across seasons were related to estimated relative
risks of norovirus due to ingestion of water during recreational activities using a QMRA approach for
relating fecal markers to reference pathogens (41). This approach has been used in multiple studies
relating microbial source tracking in surface water to health outcomes (39–42). First, the B. thetaiotaomi-
cron concentration at the watershed sampling locations (Msample) was related to B. thetaiotaomicron con-
centrations at septic sources (Msource) to account for anticipated dilution from the source. A ratio of
B. thetaiotaomicron concentration to norovirus concentration at the source (Psource) was then used to
estimate how much norovirus would be present at the same watershed sampling location. This assumes
that norovirus is always present at the source. The fraction of norovirus genome copies anticipated to
be infectious (finfectious) was then accounted for and multiplied by the estimated rate of water ingestion
during recreational activities (V), informed by the work of Dorevitch et al. (43), and duration of the expo-
sure (d), assumed to be equal to 1 h, consistent with another recreational water risk assessment (44), to
yield an estimated dose (D) (equation 1):

D ¼ Msample

Msource
� Psource � finfectious � V � d (1)

While this assumes that the dilution of B. thetaiotaomicron and norovirus from septic sources would
be the same, this approach was not used to calculate accurate risk. Rather, changes in risks estimated
for summer rain and snowmelt seasons relative to baseflow were calculated. Data needed for a risk
assessment are described in Discussion. A Monte Carlo approach was used to account for variability and
uncertainty in input parameters. Explanations and sources for these distributions can be found in Table
S3 and other supplemental material. As a sensitivity analysis, Spearman correlation coefficients were cal-
culated to quantify linear relationships between input parameters and estimated infection risks. These
results can be found in the supplemental material.

Distributions were fit to B. thetaiotaomicron concentrations for each season using the fitdistrplus
package in R (version 4.0.2) (45), with details in the supplemental material. The effect of methods for
handling left-censored data on distribution fitting was also explored (supplemental material). The distri-
bution for concentrations of B. thetaiotaomicron at the source was informed by the work of Srinivasan
et al. (46), and the distribution of norovirus at the source was informed by the work of Murphy et al. (47).
A range of the fraction of genome copies representative of viable virus was randomly sampled from a
uniform distribution with a minimum of 0.001 and a maximum of 0.01. The volume of water ingested
during recreational activities was informed by the work of Dorevitch et al. (43). To account for differen-
ces in volumes ingested due to capsizing versus noncapsizing, two distributions were randomly
sampled, where the volumes for capsized activities was randomly sampled 5.4% of the time to be con-
sistent with the frequency at which capsizing occurred for these activities, according to Dorevitch et al.
(43). Minimums and maximums of two uniform distributions were informed by minimum and maximum
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mean estimated ingested volumes (in milliliters per hour) for a variety of activities and separately for
capsized versus noncapsized activity.

Dose was then related to risk of infection using an approximate beta-Poisson dose-response curve
described by Van Abel et al. (22), where a ¼ 0:104 and b ¼ 32:3 (equation 2). Mean risks were used to
estimate relative risks.

Pinfect ¼ 1 2 ð1 1
D
b
Þ2a (2)
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