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ABSTRACT: The fewest switches surface hopping method continues
to grow in popularity to capture electronic nonadiabaticity and
quantum nuclear effects due to its simplicity and accuracy. Knowing
the basics of the method is essential for the correct implementation
and interpretation of results. This review covers the fundamentals of
the fewest switches surface hopping method with a detailed discussion
of the nuances such as decoherence schemes and frustrated hops and
the correct approach to calculating populations. The consequences of
incorrect implementation are further discussed toward calculating
kinetic and thermodynamic properties. Some tips for practitioners and
a step-by-step algorithm for developers are provided. Finally, some of
the finer technicalities of the fewest switches surface hopping method
that are buried deep in the literature are pointed out to help graduate
students better appreciate this method.

1. INTRODUCTION
The fewest switches surface hopping (FSSH)1 method is one
of the most used methods for nonadiabatic dynamics.2−10

Several packages are now available that can integrate with
electronic structure packages to run FSSH simulations on the
fly, such as SHARC,11 JADE,12 NewtonX,13 PYXIAD,14

Libra,15 ANT,16 and Q-Chem.17 A correct usage of this
method is necessary to obtain meaningful insights. For
example, if decoherence or frustrated hops are not treated
correctly, one might get qualitatively wrong reaction dynamics
or thermal properties.
This review is meant to be a pedagogical text to expose the

basic ideas of the surface hopping method to those who are
beginning to get into this field. We have included the basic
derivations, with some tricks of the trade that are well-accepted
practices in the surface-hopping community but are scattered
in the literature.
For the FSSH methodology practitioners, this review

provides intuition and tips for choosing the correct details
for running the simulations and correctly interpreting the
results. For those who wish to code this method themselves,
this review provides some finer nuances that are hard to find in
the literature but essential to the method with a detailed
algorithm.
With this review, a basic open-source code in Python for

FSSH is provided in ref 18. Further, a Python code to perform
numerically exact quantum dynamics for a 2-level system
interacting with one nuclear coordinate is provided in ref 19.
We encourage the students reading this review to use these

codes to compare the populations and coherences for low-
dimensional model problems calculated from surface hopping
and exact quantum dynamics. This should help build intuition
for the correct treatment of decoherence and frustrated hops,
which are critical components in FSSH.
This review is organized as follows: Section 2 introduces the

Born−Oppenheimer setup, followed by an introduction to
FSSH in Section 3. The decoherence issue is described in
Section 4; a correct interpretation of the FSSH method to
calculate diabatic populations is described in Section 5; and a
discussion of frustrated hops is given in Section 6.
Consequences of decoherence and frustrated hops to the
thermal properties are discussed in Section 7, and the
vibrational nonadiabaticity is discussed in Section 8. Some of
the nuances in coding the FSSH method are given in Section 9,
followed by some tips for practical usage of surface hopping in
Section 10. The codes can be found in Section 11, some of the
challenges and opportunities in Section 12, and conclusions in
Section 13.
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2. BORN−OPPENHEIMER SETUP
We first introduce the Born−Oppenheimer setup to define our
notation. The system’s degrees of freedom are partitioned into
“fast” modes q and “slow” modes R. In general, q and R are
vectors representing the coordinates of the corresponding
degrees of freedom. For clarity of notation, we are not using
vector signs throughout the review.
Usually, q are the electronic coordinates, and R are the

nuclear coordinates. However, there is no such requirement.
We can also include some nuclear modes in the “fast” degrees
of freedom q.
The total Hamiltonian of the system is given as

H T HR el= + (1)

H T V q R( , )qel = + (2)

where T̂R and T̂q are the kinetic energy operators for the R and
q modes, respectively, and V(q, R) is the total potential energy.
Given that R are the slow modes, it is natural to form a

complete basis for the total system as the eigenfunctions of Hel
at fixed configuration R:

H q R E R q R( , ) ( ) ( , )i i iel
ad ad ad= (3)

We will refer to these solutions, Ei
ad and ϕi

ad, as adiabatic
eigenenergies and adiabatic eigenfunctions, respectively. The
complete wave function of the system can now be written as

q R t R t q R( , , ) ( , ) ( , )
i

i i
ad=

(4)

We emphasize that eq 4 is an exact quantum mechanical
expression. At each R, ϕi

ad(q, R) is a complete set in q space.
Therefore, the exact wave function can be expanded in this
adiabatic basis at that R. For different R, the coefficients will be
different and given by χi(R, t). The expansion in eq 4 is true,
however, only if the summation is not truncated and χi(R, t) is
calculated without any further approximations, which for real
systems might not be numerically possible.
It is often the case that one is interested only in the q

subsystem. The subsystems (q or R) cannot be described in
general by a wave function. Instead, a complete description of
the subsystem is given by a reduced density matrix

t Tr t( ) ( )Rel = (5)

where TrR is the trace over the R coordinates, and ρ is the total
(q + R) density matrix: ρ(t) = |Ψ(t)⟩⟨Ψ(t)|.

3. ALGORITHM OF THE FEWEST SWITCHES SURFACE
HOPPING METHOD

FSSH is a mixed quantum-classical method that considers the
slow modes R classically and the fast modes q quantum
mechanically. It is a trajectory-based stochastic method to
calculate approximately (R(t), ρel(t)). Further, in this method,
the trajectories are independent, allowing for fast paralleliza-
tion of codes.
We start with a summary of the basic FSSH algorithm

described by Tully in ref 1. In the FSSH method, the classical
subsystem is described by the phase space (R(t), P(t)), where
P are the momenta, and the quantum subsystem is described
by a wave function ψel(q, t). As discussed in the previous
section, the quantum subsystem is correctly described by a
reduced density matrix (eq 5). In general, the total wave

function might not be separable into an electronic and a
nuclear wave function, and assigning an electronic wave
function is an ansatz.
The electronic wave function is expanded in a complete

basis as

q t c t q R t( , ) ( ) ( , ( ))
j

j jel =
(6)

We refer to ϕj(q, R(t)) as a diabatic basis, and this basis is the
choice of the user. It often depends on the problem under
investigation: for example, these might be the bright states
when investigating absorption spectroscopy.
The potential energy surfaces for the classical subsystem are

assumed to come only from one of the diagonal matrix
elements of the electronic Hamiltonian: Vλλ(R) =
⟨ϕλ(R)|Hel|ϕλ(R)⟩ (where the integration is done over the q
coordinates). λ will be used to denote the active surface from
now on. With this, the evolution of the classical subsystem is
given by

mR R t H R t( ( )) ( ( ))R el= | | (7)

Assuming that ψel(q, t) obeys the time-dependent Schrödinger
equation

i q t H q t( , ) ( , )el el= (8)

and substituting eq 6 in eq 8 gives

i c t q R t c t q R t

c t H q R t

( ) ( , ( )) ( ) ( , ( ))

( ) ( , ( ))

j
j j j j

j
j jel

[ + ]

=
(9)

Multiplying with ϕk*(q, R(t)) and integrating over q gives

i c t V R t i T c t( ) ( ( ( )) ) ( )k
j

kj kj j=
(10)

w h e r e V k j ( R ) = ⟨ ϕ k ( R ) | H e l | ϕ j ( R ) ⟩ a n d

T R t R t( ( )) ( ( ))kj k
d
dt j= is the time-derivative nonadia-

batic coupling matrix. One useful relation to note is Tkj = v·dkj,
where d R R R( ) ( ) ( )kj k

d
dR j= is the derivative coupling

vector (often called the nonadiabatic coupling (NAC)), and v
is the velocity.
Finally, to account for nonadiabaticity, the active surface λ

can change depending on the rate of change of |cλ|2. Using eq
10, it is easy to show

d c
dt

Re T c c V c c2 ( )
2

Im( )
k

k k k k

2| | = * *i
k
jjj y

{
zzz

(11)

Each term in the summation in eq 11 is interpreted as the
rate of population transfer from state λ to state k, given by

( )Re T c c V c c2 ( ) Im( )k k k k
2* * . Using a time step dt much

smaller than the time scale of hopping, the hopping probability
during the time interval dt from state λ to state k then is
proportional to ( )Re T c c V c c dt2 ( ) Im( )k k k k

2* * . Normaliz-
ing with the current population in state λ gives the final
hopping probability as
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g
Re T c c V c c

c
dt

2 ( ) Im( )
k

k k k k
2

2=
* *

| | (12)

Notice that the hopping probability in eq 12 can be negative.
That would signify a hop from state k to state λ. In the spirit of
the fewest hops, these hops with negative hopping probability
are ignored.
As a concrete and a simplified example, consider that at

some time t there are 80 trajectories on state 1 and 20
trajectories on state 2, with |c1|2 = 0.8 and |c2|2 = 0.2. After a
small time step dt, say the quantum coefficients change such
that |c1|2 = 0.7 and |c2|2 = 0.3. Therefore, (0.8−0.7)/0.8 × 80 =
10 trajectories should hop from state 1 to state 2, and no
trajectory should hop from state 2 to state 1 to achieve the
desired result of 70 trajectories on state 1 and 30 trajectories
on state 2.
It is common to use the adiabatic basis ϕj

ad(q, R) of eq 3 to
perform the FSSH simulations. In this case, Vjk(R) = Ej

ad(R)δjk,
and the forces can be calculated using the Hellman−Feynman
theorem mR R t H R t( ( )) ( ( ))R

ad
el

ad= | | . The hopping
probabi l i ty in the adiabat ic bas is s impl ifies to

g dtk
Re T c c

c
2 ( )k k

2= *
| |

.

Now a few points are worth noting:

• The state of the system in FSSH for each trajectory is
defined by classical phase space (R, P), state of the
system λ, and quantum amplitudes cj.

• FSSH is a stochastic method with independent
trajectories. The hopping probabilities depend solely
on the current state of the system.

• The wave function ψel only obtains the hopping
probability. It should not be interpreted as the wave
function of the quantum system. See Section 5 for a
discussion. The rate of change of |cλ|2 is a good indicator
of the rate of change in the population of the state λ;
however, |cλ|2 itself might be a bad indicator of the
population of the state λ.20,21

• On a hop, velocity has to be adjusted to conserve energy.
This adjustment is typically performed along the
direction of the nonadiabatic coupling vector dλk (for a
hop occurring from state λ to state k). More discussion
on this can be found in Section 6.

4. DECOHERENCE
FSSH is usually an overcoherent method. We first discuss the
origins of coherence and decoherence from exact quantum
dynamics compared with FSSH dynamics, followed by the
consequences of not including decoherence and different
approaches to include decoherence.
4.1. Fundamentals of Coherence. To understand

coherences, we investigate two simple model systems, having
two electronic states and one nuclear degree of freedom R. We
have so far been describing electronic coordinates using the
symbol q. We now move to a diabatic basis description which
is more convenient. This diabatic basis we define as any
complete basis in the electronic space, such as ϕj(q, R(t)) used
in the previous section (see eq 6). For convenience, we will
drop the q and R terms and write the diabatic basis using the
notation |j⟩.
In a diabatic basis, we consider a Hamiltonian of the form

H
p
m

A BR C

C A BR2

tanh( ) e

e tanh( )

DR

DR

2
1

2

2

2
= +

i

k

jjjjjjjj
y

{

zzzzzzzz
(13)

Our diabatic basis chosen here is such that it does not
explicitly depend on the nuclear coordinate R. The electronic
Hamiltonian is written in matrix notation, with the matrix
elements explicitly given by Hel

jk(R) = ∫ dqϕj*(q)Helϕk(q) =
⟨j|Hel|k⟩.
We consider two cases (all numbers in atomic units): (a) A2

= −0.01 and (b) A2 = 0.005, with common parameters A1 =
0.01, B = 0.6, C = 0.001, and D = 1. The potential, particularly
in case (a), is motivated by Tully model 1 of ref 1.
The adiabatic potential energy surfaces obtained by solving

Helϕj
ad(R) = Ej(R)ϕj

ad(R) for cases (a) and (b) can be seen in
Figure 1. Case (a) is designed for an avoided crossing where
the adiabatic surfaces are not parallel, while for case (b), these
surfaces are nearly parallel.
The dynamics of these model systems can be solved

numerically exactly. Details of this numerically exact dynamics
is provided in the Appendix, and an open-source Python code
for the exact quantum dynamics for the above systems is
provided in ref 19. In brief, we first calculate the eigenfunctions
and eigenenergies of the total Hamiltonian of eq 13: HΨk =
EkΨk. The time-dependent wave function can then be written
as ψ(t) = ∑kckΨke−iEkt/ℏ, where ck = ⟨Ψk |ψ(0)⟩. For these
s i m u l a t i o n s , w e h a v e c h o s e n

Figure 1. Two model adiabatic potential energy surfaces of eq 13. (a) Nonparallel potential energy surfaces with A2 = −0.01 and (b) nearly parallel
potential energy surfaces with A2 = 0.005. All numbers are in atomic units.
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( )R N e( , 0) exp 1R R ikR( )0
2

2= | with R0 = −5 au, σ = 1

au, and k = 11 au. |1⟩is the left diabat.
We expand the total wave function using eq 4 as

R t R t R R t R( , ) ( , ) ( ) ( , ) ( )1 1
ad

2 2
ad| = | + | (14)

The numerically exact dynamics of χ1(R) and χ2(R) was
computed using the procedure described in the Appendix.
Absolute values of χ1(R) and χ2(R) can be seen in Figure 2.
Once the wave function crosses the nonadiabatic coupling
region, it “spawns” a new wave function on the upper adiabat,

which then follows its dynamics. If the surfaces are not parallel,
then the centers of the wave packets separate as time
progresses, as can be seen in case (a) in Figure 2a. For case
(b), however, since energy surfaces are nearly parallel, the wave
packet separation is smaller on the time scale shown in Figure
2b.
To understand the relevance of decoherence, we calculate

the electronic density matrix given by eq 5 in the adiabatic
basis using numerically exact dynamics19 as well as with FSSH
simulations. For FSSH, we have calculated the adiabatic
density matrix as ρel(i, j) = ci*cj, averaged over 100 trajectories.

Figure 2. Absolute values of the nuclear wave functions, calculated numerically exactly, at different time steps (in au) along the evolution for cases
(a) nonparallel and (b) nearly parallel potential energy surfaces. The lower and upper panels show the component of the wave packets on the
ground adiabatic surface and excited adiabatic surface, respectively. Note the greater separation of wave packets for case (a) when surfaces are not
parallel compared to case (b) where surfaces are nearly parallel.

Figure 3. Absolute values of the electronic density matrix for nonparallel surfaces (corresponding to Figure 1(a)) as a function of time computed
numerically exactly and using FSSH (without decoherence) and A-FSSH (with decoherence). Python codes are available for exact quantum
dynamics in ref 19 and FSSH in ref 18.

Figure 4. Same as in Figure 3 but for nearly parallel energy surfaces of Figure 1(b).
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A Python code for FSSH is available in ref 18. Details of
numerically exact dynamics are provided in Appendix.
Figures 3 and 4 show the electronic density matrix’s diagonal

and off-diagonal (absolute value) elements for the two cases.
First, let us consider the numerically exact results. The
diagonal elements behave roughly the same for the two cases.
However, the off-diagonal element decays to 0 for Figure 3
(nonparallel surfaces), while it remains nonzero for Figure 4
(nearly parallel surfaces).
FSSH captures the diagonal element of the density matrix

very well for both cases (Figures 3 and 4). However, the off-
diagonal element remains large for both cases from the FSSH
simulation. FSSH by itself does not capture the decay of the
off-diagonal density matrix elements.

Decoherence is the decay of the off-diagonal elements of the
density matrix. The inability of FSSH to capture this
decoherence is the overcoherence issue of FSSH.
Let us briefly examine the origin of decoherence. Calculating

the coherence term by substituting eq 4 in eq 5 gives

R t R R t R t( ) ( ) ( ) Tr ( ( , ) ( , ))k k q R k kel| | = * (15)

t t( ) ( )k k R= | (16)

where ⟨··· ⟩q is an integral over q variables and ⟨··· ⟩R is an
integral over R variables. Therefore, the coherences of the
electronic density matrix decay as the overlap of the “nuclear”
wave functions decays.
From a semiclassical perspective, the separation of the wave

packets happens when the trajectories on different electronic

Figure 5. Reproduced from ref 22. Copyright [2015] American Chemical Society. (a) Plot of the adiabatic potential energy surfaces for the
Hamiltonian of eq 17. (b) Reactant population decay averaged over 2000 trajectories calculated with and without decoherence. Decoherence is
included from the augmented-FSSH version.24,25

Figure 6. Reproduced from ref 22. Copyright [2015] American Chemical Society. Plot of position vs time for (a) a nonreactive and (b) a reactive
trajectory. Corresponding plots of |c1diab|2 are shown in (c) for the nonreactive trajectory and (d) for the reactive trajectory. The calculations are
performed with the FSSH method with and without decoherence.
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surfaces separate. This separation can occur due to either
different forces or different momenta on the various electronic
surfaces. When surfaces are parallel, coherence decay is due to
differences in momenta, while when surfaces are not parallel,
the coherence decay is due to differences in forces and
momenta.
For the case of nearly parallel surfaces shown above,

decoherence is not observed because our initial conditions are
such that the momenta on the different surfaces are not
significantly different. For cases with significant momenta
differences, even on parallel energy surfaces, the wave packets
will separate on different surfaces, and decoherence will occur.
4.2. Consequences of Not Including Decoherence. If

surface hopping is used to examine ultrafast excited-state decay
through avoided crossings or conical intersections, decoher-
ence might not be necessary. If all that one cares about are the
diagonal elements of the density matrix and the nonadiabatic
event occurs only once during the course of dynamics,
decoherence might not play an important role.
The story is entirely different if one is interested in long-time

thermal populations or where the nonadiabatic region is
encountered multiple times. To illustrate, consider a harmonic
Hamiltonian (taken from ref 22):

H
p
m

m R V

V m R R2

1/2

1/2 ( )

2 2 2
c

c
2

0
2

0

= +
+

i

k
jjjjjjj

y

{
zzzzzzz (17)

As an example, for the parameters Vc = 2.28 × 10−4 au, ω = 9.1
× 10−4 au, R0 = 5.91 au, and ϵ0 = 1.82 × 10−3 au, FSSH
simulations were run with fixed initial conditions: R = 0 au and
initial energy E0 = 7.29 × 10−3 au with positive momentum.22

Decoherence is included within the augmented-FSSH
method.23 Open-source codes can be found in ref 24. Figure
5(a) shows the potential energy surfaces.
The reactant population was calculated as the fraction of

trajectories with R < 2.9 au and active state λ = 1. Figure 5(b)
shows the plot of population decay as a function of time with
and without decoherence averaged over 2000 trajectories. The
sharp lines in the population decay are due to constant energy
calculations with fixed initial conditions. Two important things
to note for population decay without decoherence: (1) the
reactant population computed without decoherence initially
(around t = 10 000 au) decays faster than the reactant
population computed with decoherence and (2) after t >
40 000 au, there is a nonphysical increase in the reactant
population for calculations without decoherence.
To understand these nonexponential dynamics, consider the

trajectories approaching the avoided crossing (transition state)
from the left (reactant) region. We consider two kinds of
trajectories: nonreactive and reactive. Nonreactive trajectories
hop at the transition state, reflect on the excited state, and hop
back to the ground state on reaching the transition state. These
then proceed back to the reactant region. Reactive trajectories
are the ones that do not hop and evolve to the right (product)
region. To analyze these trajectories, we expand the electronic
wave function in the diabatic basis: ψel = c1diab|1⟩+ c2diab|2⟩.
Figure 6(a) and (c) shows the plots of R and |c1diab|2 as a

function of time for a nonreactive trajectory with and without
decoherence. Since the trajectory is nonreactive, the position
plot is nearly identical�the trajectories on reaching close to
the transition state hop to the excited state and thereafter
return to the reactant region. However, the plot of |c1diab|2 is

different with and without decoherence. |c1diab|2 changes from 1
to about 0.85 after the first crossing of the transition state (t ≈
2000 au). When the trajectory returns back to the reactant
region, without decoherence |c1diab|2 remains unchanged and on
second crossing (at t ≈ 9000 au) changes to about 0.6. The
change in |c1diab|2 is 0.25 (= 0.85−0.6) after the second crossing,
which is larger than the change in |c1diab|2 of 0.15 (= 1−0.85)
after the first crossing without decoherence. With decoherence,
on returning to the reactant region, there is a collapse to the
ground state (at t ≈ 4000 au), and on reaching the second
crossing, |c1diab|2 changes again from 1 to 0.88.
The larger change in quantum probabilities without

decoherence is the reason the reactant population initially
decayed faster without decoherence in Figure 5(b).
Now we examine a reactive trajectory, with and without

decoherence, as shown in Figure 6(b) and (d). This trajectory
does not hop on the first recrossing (at t ≈ 2000 au) and
evolves to the product region. The potential energy surface
dictating the dynamics in this region is the diabat |2⟩. Without
decoherence, however, |c1|2 ≈ 1; i.e., the quantum amplitudes
have not adjusted to the change in diabat. Including
decoherence correctly resets the amplitude c1diab ≈ 0 (and
c2diab ≈ 1) and sorts this problem. (Decoherence happened on
the adiabatic surface, i.e., c1ad = 1 and c2ad = 0. However, since far
away from the crossing diabat 2 is approximately the same as
adiabat 1, c1ad ≈ c2diab.) When this trajectory returns to the
transition state from the product region, without decoherence,
the quantum amplitudes behave as if the trajectory is returning
on diabat 1 (i.e., with c1diab = 1), giving rise to a spuriously large
probability of returning to the reactant region.22

Reference 22 provides a more detailed discussion on this.
The incorrect high probability of a trajectory to go from
product region to reactant region without decoherence results
in the nonphysical increase in the reactant population without
decoherence in Figure 5(b).
The nonexponential dynamics and incorrect time scale of

decay without decoherence remain even when a thermal bath
is included. If a thermal bath is added to the Hamiltonian of eq
17 to simulate the condensed phase, under certain regimes,
exact quantum dynamics can be done (using the hierarchical
equation of motion26−29 in a strong system bath coupling
regime), and Marcus theory can be used under certain regimes
(weak diabatic coupling).
When the results of FSSH without any decoherence are

benchmarked against those of numerically exact results and
Marcus theory, the rate constants are too fast compared to the
correct results. Including decoherence corrects this issue in
large part.22,23,30

4.3. Methods to Include Decoherence. Different
decoherence algorithms exist that set criteria based on which,
after coherences are created, typically in the adiabatic basis, the
quantum amplitudes are reset.
The simplest and cheapest decoherence scheme is to set a

threshold value for the adiabatic energy difference. Once a
trajectory has an adiabatic energy difference less than this
threshold, the trajectory has entered a region with strong
nonadiabatic coupling. After the trajectory exits this region
(based on the energy threshold criteria), the amplitudes are
reset to 1 for the active state and 0 for the rest.31,32

The above scheme is clearly too simple to be applicable to
all cases. For a generalized decoherence method, the works of
Bittner, Prezhdo, Shwartz, Truhlar, and Rossky showed that
within the frozen Gaussian approximation33 the decoherence
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rate is proportional to the force difference between the
adiabatic states.34−39 The main difference between the
different approaches is estimating the proportionality constant.
Another approach was to estimate the decoherence time scale
as proportional to the adiabatic energy difference, proposed
originally by Zhu and Truhlar40,41 and later implemented by
Granucci et al.42 An alternate was further proposed by Jasper
and Truhlar that accounts for both the differences in momenta
and the differences in forces of the potential energy surfaces.43

Later, the Subotnik group derived a decoherence rate (within
the frozen Gaussian approximation)23,25 by mapping the FSSH
method within certain approximations to the quantum-classical
Liouville equation.44 This scheme requires the evolution of
extra variables to estimate the time scale of separation of wave
packets on different surfaces.
The decoherence version of choice depends on the problem

under study. If there is one sharp avoided crossing, the most
straightforward choice of collapsing based on a threshold
adiabatic energy difference might work (though one should
ensure that the results are independent of the cutoff parameter
chosen). For more general cases, different decoherence
schemes can be chosen depending on the complexity of the
problem and the resources available.

5. ELECTRONIC DENSITY MATRIX
One is often interested in the population of a given diabatic or
adiabatic state. If the diabatic coupling is weak, the simplest
approach is to calculate the adiabatic populations as the
fraction of trajectories on that adiabat. In the limit of weak
diabatic coupling, diabatic populations can be mapped to
adiabatic populations. Using quantum amplitudes of ten gives
spurious results�the quantum amplitudes at long times are
unreliable. FSSH often does not follow internal consistency;
i.e., the fraction of trajectories on a given adiabat i is not equal
to |ci2|. This point is discussed further in Section 6.
When the diabatic coupling is large and extended over a

large coordinate space, a simple mapping between the diabatic
and the adiabatic populations might not be possible. For such
cases, the diabatic population cannot be calculated simply
using the fraction of trajectories on adiabatic surfaces.
A different approach was developed by the Subotnik group,

where they connected the surface hopping approach with the
quantum-classical Liouville equation (under certain approx-
imations).44,45 Motivated by the quantum-classical Liouville
equation, a better choice for the adiabatic electronic density
matrix was shown to be46

i j
i j

c c i j
( , )

i

i j
el
ad =

=
*

l
m
ooo
n
ooo (18)

where λ is the active state.
Once the adiabatic density matrix is known, it can be easily

transformed to any other diabatic basis of choice and averaged
over an ensemble of trajectories.
Let us illustrate the above approach using an example: for a

two-level electronic system, we define the Hamiltonian in the
diabatic states |1⟩ and |2⟩:47
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Equation 19 describes the spin-Boson Hamiltonian and is often
used to describe condensed-phase electron transfer.47 The
couplings gi are described using spectral density function,
c h o s e n h e r e t o b e D r ud e s p e c t r a l d e n s i t y :

J( ) ( ) 2i
g

m i2
i

i

2

2 2= =
+

. The dynamics of

this particular Hamiltonian can be computed numerically
exactly using a method called the hierarchy equation of motion
(HEOM).26−29

For the choice of parameters Vc = 87 cm−1, ϵ0 = 120 cm−1, λ
= 70 cm−1, γ = 20 ps−1, and T = 77 K,48 we calculate the
population of diabat |1⟩ using FSSH and numerically exact
computation (codes available in ref 49). Initially, the system
starts with diabat |1⟩ and the bath at thermal equilibrium.
FSSH simulations are performed with the Drude spectral
density first transformed to the Brownian spectral density for
efficient simulations�details of this can be found in ref 49.
2000 FSSH trajectories are evolved with a time step of 0.2 fs.
For FSSH, we have calculated the populations using eq 18 as
well as using quantum coefficients in the diabatic basis: P1 =
|c1diab|2. Results are compared both with and without
decoherence. Decoherence was included using the augmented
FSSH approach.
Figure 7 shows the comparison of the diabatic populations

calculated from different approaches. This system is partic-
ularly chosen where the diabatic coupling is large (87 cm−1)
such that the diabatic populations and the adiabatic
populations will be very different. In this case, note that
usage of eq 18 gets results closer to the numerically exact
results (although not exactly the same). Populations calculated

Figure 7. Population of diabat 1 as a function of time calculated using
numerically exact simulations (HEOM), FSSH using diabatic
coefficients, and eq 18. FSSH populations were calculated with and
without decoherence. Decoherence was included using the
augmented FSSH (A-FSSH) approach.
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using diabatic coefficients, with or without decoherence, are
relatively worse. Another point worth noting is that all the
methods get the early dynamics (t < 100 fs) correct.
The parameters above were specifically chosen to demon-

strate that quantum coefficients might not always be reliable.
For smaller diabatic couplings Vc, the results from the different
approaches will agree.

6. FRUSTRATED HOPS
When a hop occurs, velocity is rescaled (typically along the
direction of the nonadiabatic coupling vector dλk) to conserve
energy. While hopping to an excited state, if enough energy
does not exist to rescale the velocity, the hop is called
frustrated. Frustrated hops in FSSH are important to include since
these f rustrated hops give rise to detailed balance.50 See Section 7
for a discussion.
Different strategies exist to handle frustrated hops. The

simplest option is not to hop and continue evolving on the
original state. Another commonly used option is to reverse
velocity along the dλk direction.
Truhlar’s group has systematically and exhaustively studied

different options and proposed a simple scheme for a frustrated
hop: reverse velocity only when the forces along the derivative
coupling have opposite signs.51−53 The central “intuition”
behind this scheme is that if the forces have opposite sign, a
hop to the excited state is likely to reverse velocity.
Velocity reversal is, in fact, crucial for condensed phase

dynamics. FSSH recovers the Marcus rate constants only when
this velocity reversal is included.30 To understand this,
consider the potential energy surface of Figure 5(a). It is
easy to see that the energy difference between the two adiabats
at the point of crossing is 2Vc. Once more, consider trajectories
approaching the avoided crossing from the left, which we call
the reactant region. Let us say that the probability of not
hopping at a given energy is p(E). That is, the probability of a
trajectory being reactive at energy E is p(E). At thermal
equilibrium, the net probability of the reaction per crossing
event is

p T Ep E( ) d ( )
Vb

=
(20)

where Vb is the barrier height. If this is averaged with the
frequency of reaching the crossing point, one gets the total rate
constant. In the limit of small Vc, Fermi’s golden rule (or its

classical limit, Marcus theory) gives p(E) ∝ Vc
2. This gives an

overall rate constant proportional to Vc
2.

So far, we have not included frustrated hops in the
description. All trajectories with an energy between Vb and
Vb + 2Vc will experience a frustrated hop. If velocity is never
reversed on a frustrated hop, p(E) = 1 for such trajectories. We,
therefore, modify our net probability as

p T dEp E Ep E( ) ( ) d ( )
V

V V

V V

2

2b

b c

b c

= +
+

+ (21)

V Ep E2 d ( )
V V

c
2b c

= +
+ (22)

The effect of never reversing velocity on a frustrated hop is that
the rate becomes proportional to Vc in the limit of small Vc,
which is inconsistent with the correct Fermi’s golden rule (or
Marcus) result.54

Before closing this section, we make one additional remark
regarding internal consistency in FSSH. One immediate
consequence of frustrated hops is that they lead to
inconsistency between |ci2| and fraction of trajectories on an
adiabatic surface i.9,21,55 This inconsistency can exist even
without frustrated hops due to divergent trajectories.20

Therefore, to calculate the population of a given adiabatic
surface, using |ci2| might lead to erroneous results as was
discussed in Section 5. We also note that adding decoherence
can partially improve the internal consistency in FSSH.21,56

7. TIME REVERSIBILITY AND DETAILED BALANCE
FSSH does not obey time reversibility.57,58 Within classical
mechanics, imagine simulating a system with some initial
conditions for some duration t. At this time, t, we reverse all
the velocities (v = −v) and evolve the system again for the
same duration t. Assuming the forces are independent of time,
the system will retrace its steps back to the initial
conditions.59,60 Now let us imagine doing the same with
FSSH. Some of the trajectories might hop during the time
interval t. Because FSSH is stochastic (i.e., hops are
determined using a random number), after reversing the
velocities, these trajectories might not hop at the same time
step as when they hopped in the forward evolution. Therefore,
not all trajectories will return to the initial conditions for
FSSH.
It can be shown that if time reversibility holds then detailed

balance also holds.60 Detailed balance refers to a system

Figure 8. Schematic figure of potential energy surfaces for (a) forward and backward rate constants for a reaction and (b) transitions between
energetically accessible energy surfaces.
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attaining correct thermal equilibrium at long times. This raises
the question as to whether FSSH obeys detailed bal-
ance.50,61−63

There are two related questions we consider: (a) for a
reaction at a constant temperature with a barrier, will FSSH
give detailed balance for the thermal rate constants, and (b)
will the ratio of the populations of different adiabatic surfaces
calculated from FSSH obey detailed balance?
Let us start with the first question: why should the thermal

rate constants calculated from FSSH obey detailed balance?
Figure 8(a) shows a schematic of a potential energy surface.
The forward thermal rate constant (i.e., from reactant to
product) can be evaluated as kf(T) = ∫ 0

∞ dEκf(E)gR(E)
e−β(E−Er), where Er is the reactant minimum energy; gR(E) is the
degeneracy of reactant states with energy E; and κf(E) is the
microcanonical forward rate constant, that is, the forward rate
constant at a constant energy E. Similarly, the backward
thermal rate constant (i.e., from product to reactant) can be
evaluated as kb(T) = ∫ 0

∞ dEκb(E)gP(E)e−β(E−Ep), with Ep being
the product minimum energy, gP(E) being the degeneracy of
product states at energy E, and κb(E) being the backward
microcanonical rate constant. If time reversibility holds, then it
can be shown that κf(E)gR(E) = κb(E)gP(E).59,60
An investigation by the Subotnik group shows that for a case

with gR(E) = gP(E), although FSSH gives different forward and
backward microcanonical rate constants (i.e., κf(E) ≠ κb(E))
when averaged over energy E, FSSH does get the forward and
the backward rate constants approximately equal (⟨κf(E)⟩ ≈
⟨κb(E)⟩).54 This averaging is the savior of FSSH: a thermal
average of the microcanonical rate constants gives a thermal
rate constant, which approximately obeys the detailed balance
in FSSH.
It is important to note that the above discussion holds only

when decoherence is included, as discussed in Section 4.
Without decoherence, the population decay might not be
exponential at all (that is, FSSH might give erroneous kinetics,
and the rate constants might not be well-def ined).22 Further
decoherence has been shown to improve detailed balance in
FSSH.64

Second, consider the schematic shown in Figure 8(b), with
two electronic surfaces labeled 1 and 2, with E12 = E2 − E1 > 0.
Assuming classical velocities are at thermal equilibrium, the
ratio of the FSSH hopping rates between these surfaces is5,61
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where v is the classical velocity; β = 1/kBT is the inverse
temperature; pallowi→j (v) is the probability that the hop is not
frustrated; and cij is the quantum amplitude ci evolving on
surface j.
Here we make another important assumption: cij is

independent of surface j as well as the velocity v. Noting
|T12| = |T21| = |vd12|, pallow2→1(v) = 1, and pallow1→2(v) = h(v0), where h
is the Heaviside function and 1/2mv02 = E12, we get
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Using substitution of variables E = 1/2 mv2, it is now easy to
show that

k
k

e E1 2

2 1

12=
(25)

In deriving this, we have assumed (a) the velocity to be at
thermal equilibrium and (b) the quantum coefficients to be
independent of the velocity as well as independent of the
surface of evolution. These approximations are not exactly met,
and therefore FSSH does not give an exact detailed balance;
however, usually, the thermal populations from FSSH are close
to the correct Boltzmann answer.
Finally, we note that the Boltzmann condition in eq 25 is

derived, assuming that the hopping probability is proportional
to the velocity (via the T12 term). This is true in the adiabatic
basis; however, if FSSH is being done in a diabatic basis, this
might not be true, and one should be careful.

8. VIBRATIONAL QUANTIZATION
We in this section discuss a case study where all the details of
the FSSH simulation are important to treat correctly to get the
correct rate constants.
Although surface hopping simulations generally are used for

electronic nonadiabaticity, they can treat vibrational quantum
effects on the same footing. The separation of q and R is on the
user, and the vibrational modes can be included in the
quantum q modes. Hammes-Schiffer’s group has arguably
studied this extensively in the context of proton and hydrogen
transfer.31,32,65−68

Vibrational quantization within FSSH is ideal when nuclear
quantum effects of only 1 or 2 modes are important, for
example, proton transfer (or related reactions), where quantum
nuclear effects of only the transferring H atom are important.
Including more vibrational modes quantum mechanically
becomes too computationally expensive.
Vibrationally quantized surface hopping has long been used

for electronically adiabatic problems (i.e., dynamics is confined
to a single electronic potential energy surface). Benchmarking
for this has been done to show that surface hopping works well
for a broad range of parameters.69,70 Recent benchmarking of
the surface hopping method has also been done to capture
quantum nuclear effects for electronically nonadiabatic
problems.49

Simultaneous vibrational and electronic nonadiabaticity is
one of the extreme cases for FSSH, where all the nuances must
be treated correctly to get the correct rate constants. Including
decoherence is challenging since both parallel and nonparallel
surfaces are present. The decoherence scheme chosen should
include contributions to the decoherence rates from both
parallel and nonparallel surfaces. Similarly, if velocity is never
reversed on a frustrated hop, the decay rate constants can be
much faster (see results below for a specific example). Further,
this is a case where the diabatic couplings (between vibronic
levels) can be small. Therefore, the method should be able to
deal with trivial crossings correctly and efficiently (see Section
9 for a discussion).
From a surface hopping perspective, quantum nuclear effects

emerge as vibrational nonadiabaticity, i.e., avoided crossings in
vibronic potential energy surfaces. As a concrete example,49 let
us modify the Hamiltonian of eq 17 to

H
p

m
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2
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qm
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= +
(26)
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To treat q quantum mechanically, the vibronic adiabatic
energies are calculated by solving

H q x E x q x( , ) ( ) ( , )qm i i i
ad ad ad= (28)

The energy surfaces Ei
ad(x) are called vibronic potential energy

surfaces.
For the choice of parameters m = 1 amu, Vc = 6.8 × 10−4 au,

ω1 = 0.0054 au, ω2 = 0.0018 au, ϵ0 = 0.0041, q0 = 1.4 au, and g
= 0.0058 au (taken from ref 49), the potential energy surfaces
along the q coordinate are shown in Figure 9(a) (with x = gq).
If frequency ω1 of the q mode is large (kBT ≪ ℏω1), then
quantum effects such as tunneling for q mode cannot be
ignored. After quantization of q, x becomes the reaction
coordinate, and the potential energy surfaces are shown in
Figure 9(b). Now we note that the barrier height is much
smaller along the x direction, but one gets many more
crossings with much smaller energy gaps. That is, the quantum
nuclear effects show up as vibrational nonadiabaticity. We also
note that after quantization some of the vibronic surfaces are
nearly parallel, while some are not.
To calculate thermal rates, FSSH simulations are performed

for the above Hamiltonian with a Langevin friction (with
friction constant γ = ω2 and kBT = 0.0013 au) added to the x
mode. We compute results from FSSH with decoherence
added (A-FSSH version), velocity reversed on a frustrated
hops (Truhlar’s scheme), and using eq 18 to compute diabatic
populations. Codes for these calculations can be found at ref
71. These population decay results are compared against those
computed when there is (a) no decoherence (see Section 4),
(b) velocity is not reversed on a frustrated hop (see Section 6),
or (c) population is computed using diabatic quantum
coefficients alone: Pi = |cidiab|2 (see Section 5).
Population decay from the different approaches is shown in

Figure 9(c). These results are compared against Fermi’s golden
rule (FGR) result, which is exact for small diabatic coupling Vc.
A good comparison with FGR results is obtained when all the
nuances are correct. In the absence of decoherence or no
velocity reversal on frustrated hops, the results are much faster.
Using quantum coefficients to compute population gives

correct results only with decoherence. In the absence of
decoherence, |cidiab|2 gives the wrong long-time population.
Although doing surface hopping simulations on vibronic

surfaces (Ei
ad) is no different from electronic surface hopping,

one has to pay extra attention to the details.
• Multiple vibronic levels must be used to converge

results. Missing excited vibronic surfaces can lead to
incorrectly large rate constants.

• The derivative coupling between the vibronic states can
be large (owing to small Franck−Condon factors
between vibrational wave functions). The surface
hopping method used, therefore, must be robust to the
presence of sharp avoided/trivial crossings. See Section
9 for a discussion.

• Small diabatic coupling is also the regime where velocity
reversal on frustrated hops can play a crucial role. See
Section 6 for a discussion. We recommend Truhlar’s
scheme for when to reverse velocities.53

• The vibronic surfaces present one of the most
challenging cases for decoherence algorithms. Some of
the surfaces are nearly parallel, while some are not.
Therefore, the decoherence scheme used must include
contributions to the decoherence rates from both
parallel as well as nonparallel surfaces.

9. TRICKS OF THE TRADE
Here we provide some finer simulation details that become
important for an efficient FSSH simulation, no matter the
variant of FSSH being used.
9.1. Calculating Derivative Coupling. Evolution of a

quantum subsystem as well as the calculation of hopping
probabilities require the time-derivative coupling matrix T
( w i t h m a t r i x e l e m e n t s

T vd R t R t( ( )) ( ( )) ).jk j
d
dt kjk

ad ad= = These can be calcu-

lated from an electronic structure calculation as

d
R R

E E

( ) ( )

jk

j
H
R k

q

k j

ad adel

=
(29)

Derivation of this equation can be found in ref 31.
Using eq 29 is not efficient, though, and can even lead to

missing some of the nonadiabatic couplings. Instead, modern
packages calculate an averaged time derivative coupling25,31,72

Figure 9. Reproduced from ref 49. Copyright [2021] American Chemical Society. (a) The electronic adiabatic potential energy curves of eq 27 as a
function of q (keeping x at equilibrium: x = gq), (b) the vibronic energy surfaces as a function of mode x treating q quantum mechanically, and (c)
population decay as a function of time using FSSH simulations compared to the Fermi’s golden rule population decay.
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c
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where dtc is the classical time step and Ujk(dtc) =
⟨ϕj

ad(R(t0)) |ϕk
ad(R(t0 + dtc))⟩ is the overlap matrix. Derivation

of eq 31 can be seen in ref 25.
The advantage of using eq 31 is 2-fold. First, instead of

calculating the more expensive vector djk, one only calculates
the scalar matrix T. Second, suppose there is an avoided
crossing or a trivial crossing (with diabatic coupling zero), then
the derivative coupling vector will be very sharply peaked. In
this case, if the classical position does not exactly land on these
regions of strong derivative coupling, one can completely miss
these sharp avoided/trivial crossings. With a time-averaged
derivative coupling, however, one does not miss these strong
derivative coupling regions.
9.2. Sign Choice of the Adiabatic Wave Function. In

general, the sign of the adiabatic wave functions ϕj
ad is not

uniquely defined. It is important, however, to fix a sign
convention to avoid spurious results.25

The simplest choice is to choose any sign for each adiabatic
wave function at the start of the simulation and use
⟨ϕj

ad(R(t0))|ϕj
ad(R(t0 + dtc))⟩ > 0 for later time steps.

Suppose this sign convention is not chosen. In that case, Ujj
≈ −1 can hold in regions with negligible derivative coupling.
One then gets complex derivative coupling (from eq 31). Even
if eq 29 is used to calculate the derivative coupling vector, very
small quantum time steps will be necessary for evolving cj
values.
At a trivial crossing, choosing the sign convention can be

tricky, and we refer the reader to ref 25 for more details.
9.3. Separation of Time Steps. Classical and quantum

subsystems typically have very different frequencies or time
scales. Therefore, evolving these two subsystems with different
time steps makes sense.25,31

One usually evolves the classical subsystem with a larger
classical time step first. Time derivative coupling can then be
calculated using eq 31, and quantum amplitudes evolved over a
smaller quantum time step. The adiabatic energies can be
linearly interpolated from t0 to t0 + dtc for this purpose.
The time step of the quantum subsystem is often about a

factor of 10 smaller than the classical subsystem. For very sharp
crossings, this can be even smaller. Some algorithms can
automatically choose the quantum time step based on the
strength of time derivative coupling and adiabatic energy
differences.25

9.4. How to Collapse. One nuance about collapsing
quantum amplitudes: when there are multiple energy surfaces
present (more than 2), there can be different strategies to
collapse the quantum amplitudes. One option is to reset the
quantum amplitude to 1 for the active surface and 0 for the
rest. However, most decoherence approaches calculate the
decay rate of the off-diagonal element of the density matrix ρij.
From the FSSH perspective, one method to account for
possibly different decay rates for different off-diagonal density
matrix elements is to calculate the different collapse
(decoherence) rates between the active state λ and all other
states j ≠ λ at each classical time step. Now, based on a
random number, if decoherence between the active state λ and

a particular state j occurs, then the quantum amplitudes can be
adjusted as23

c c
c c

c
jnew

2 2

=
| | + | |

| | (32)

c 0j
new = (33)

c c k j ,k k
new = (34)

This approach resets the quantum amplitudes only for the state
λ and one other state j at a time.
9.5. Overall Algorithm. A basic algorithm of FSSH,

therefore, goes as
1. Create a loop over trajectories. Since trajectories are

independent, each trajectory can be run over a different
node.
(a) For each trajectory, choose the initial position R,

momentum P, active state λ, and quantum
coefficients ci. This choice depends on the
problem being investigated.

(b) Create a loop over time.
i. At the current time step t0, solve for eq 3 to
get eigenfunctions ϕi

ad(R(t0)) and eigene-
nergies Ei

ad(R(t0)).
ii. Except for the first time step, if ⟨ϕj

ad(R(t0 −
dtc))|ϕj

ad(R(t0))⟩ < 0, set ϕj
ad(R(t0)) =

−ϕj
ad(R(t0)).

iii. Calculate force as F = −∇⟨ϕλ
ad(R(t0))|Hel|

ϕλ
ad(R(t0))⟩.

iv. Evolve R and P classically using a classical
time step. Typically, the velocity−Verlet or
Runge−Kutta fourth-order methods are
good enough integrators.

v. Use eq 31 to calculate time derivative
coupling.

vi. Evolve ci’s using eq 10 over a smaller
quantum time step. Runge−Kutta fourth
order is a common choice for the integrator.

vii. While evolving ci’s, calculate the hopping
probability using eq 12 over each quantum
time step to each state k. Call a uniform
random number r between 0 and 1. If
∑l=1

k−1gλl < r < ∑l=1
k gλl, store the label k until

the classical time step is reached and do not
check for any more hops.

viii. At each classical time step, if a hop to state
k was attempted during step 1(b)vii,
calculate derivative coupling vector dλk

n

(where n refers to the nth classical
coordinate). The velocity now needs to be
rescaled as vn′ = vn − γdλk

n /mn.
31 γ is

calculated to conserve total energy. For
that, calculate a = ∑ndλk

n2/(2mn), b =
∑nvndλk

n , and c = Ek − Eλ. Here mn and vn
are the mass and velocity of the n’th
coordinate, respectively. If b2 − 4ac > 0,
hop is not frustrated: set new state to k and

ca lcu la te b b ac a( 4 )/(2 )2= ± .
The sign ± is chosen as the same as the
sign of b. If b2 − 4ac < 0, hop is frustrated,
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and the state does not change. If velocity is
to be reversed,53 set γ = b/a.

ix. At each classical time step, check for
decoherence based on the method of your
choice. See Sec. 4 for discussion. Equations.
32-34 can be used to collapse ci’s.

x. Calculate any time-dependent observable if
needed.

(c) Calculate any observable at the end of the
simulation time if needed.

2. Average the observables over the trajectories.
A basic Python FSSH code following the above algorithm

can be found in ref 18. A faster Fortran version, including
decoherence, frustrated hops, and correct calculation of the
density matrix, can be found in ref 24.

10. CHOICES FOR A PRACTITIONER
10.1. Should I Add Decoherence? Yes. There are

situations where decoherence might not play a role, as
discussed in examples in this overview. However, if one does
not know a priori, and it is often unclear whether decoherence
is important, it is better to add decoherence.
Importantly, adding decoherence will rarely worsen the

surface hopping result (the only known exception is the
additional broadening of spectra for gas-phase systems).
Therefore, it is important to know if adding decoherence
might have made a difference to the study.
Different packages for doing surface hopping simulations

allow for different schemes available in the literature.23,25,35,42

10.2. What Method to Use for Frustrated Hops? This
question might not even be relevant for photoexcited dynamics
since the system has enough energy that no frustrated hops will
be encountered. Nonetheless, Truhlar’s scheme53 of reversing
velocity on encountering frustrated hop only when the
adiabatic forces have opposite signs is a good one.
10.3. How to Average Diabatic Populations? If the

adiabatic surfaces look close to the diabatic surfaces, the most
straightforward strategy is to compute the fraction of
trajectories on each adiabatic surface. For problems where
this is not true, Subotnik’s scheme is the preferred one.46

Using quantum amplitudes can give incorrect results as they are
of ten unreliable at long times. That being said, quantum
amplitudes often converge faster than the surface populations,
and if it is known that they are accurate for the system under
investigation, they can be used to reduce the number of
trajectories.

11. CODES
Codes for performing numerically exact quantum dynamics
with one coordinate R and two quantum states can be found
at:

• Github link: https://github.com/amber-jain-group-iitb/
Exact-QD-Python

• Static link: https://zenodo.org/badge/latestdoi/
519436839

A detailed algorithm for the above codes is given in the
Appendix. Codes for a basic implementation of the FSSH
algorithm in Python are at:

• Github link: https://github.com/amber-jain-group-iitb/
FSSH-Python

• Static link: https://zenodo.org/badge/latestdoi/
519432030

The above FSSH codes follow the algorithm given in
Section 9.5 and do not include decoherence or velocity reversal
on frustrated hops.
The above libraries have commented codes and a detailed

readme file with instructions for running the codes and how
the codes are structured. We strongly encourage the reader to
run the codes and modify the potentials (instructions in
readme files) to compare exact vs FSSH dynamics. Readers
with an elementary knowledge of Python coding are
encouraged to add their decoherence scheme and velocity
reversal on a frustrated hop in the provided FSSH codes.
A faster Fortran implementation of surface hopping with

decoherence included using the augmented FSSH,25 velocity
reversal on frustrated hops treated based on Truhlar’s
scheme,53 and correct calculation of diabatic populations46

can be found at

• Github link: https://github.com/amber-jain-group-iitb/
AFSSH

• Static link: https://zenodo.org/badge/latestdoi/
189350184

12. CHALLENGES AND OPPORTUNITIES
The main criticism of surface hopping comes from the
independent trajectory assumption. This is also why
decoherence schemes are always approximate in surface
hopping�true decoherence emerges from the correlation
between different trajectories. Alternative methods exist to
evolve trajectories in a coupled fashion.33,73,74

An extreme case of the coherence issue is the recoherence
phenomenon. This recoherence occurs for gas-phase systems
where two wave packets that have separated and come back
together can interfere constructively or destructively. Such
recoherences occur, for example, in the low friction regime of
the spin-Boson model.75 These recoherences also show up in
the case of gas-phase spectroscopy.76 Surface hopping cannot
capture these recoherences.77 However, a surface hopping
approach based on the quantum-classical Liouville equation
was shown to capture these recoherences for the spin-Boson
model.78

Finally, on-the-fly surface hopping is mainly performed for
low-dimensional systems due to high computational costs.
There is a scope for developing tools for efficient on-the-fly
methods with machine learning.79

13. CONCLUSION
Fewest switches surface hopping is a powerful tool to simulate
nonadiabatic dynamics, both electronically and vibrationally.
The details, however, matter. Correct treatment of decoher-
ence and frustrated hops is essential for many systems.
Similarly, the calculation of the diabatic population should be
treated with care when diabatic couplings are large.
This review is not comprehensive of all the advances in this

method. However, it is written in a format to introduce the
basics and some of the subtleties of the surface hopping
method to students who are beginning to work in this field. We
hope that this review is helpful to both the practical users in
choosing the correct implementation details and those who
wish to code surface hopping for themselves for benchmarking
and method development.
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Numerically Exact Quantum Dynamics
Here we provide details of the numerically exact quantum
dynamics shown in Figures 2−4. We want to numerically solve
the time-dependent Schrödinger equation:

i
q R t

t
H q R t

( , , )
( , , )=

(35)

where Ψ(q, R, t) is the total wave function, and H is the total
Hamiltonian. For a time-independent Hamiltonian, the
solution to eq 35 is

q R t c q R( , , ) e ( , )
k

k
iE t

k
/k=

(36)

where Φk(q, R) and Ek are the eigenfunctions and the
eigenvalues of the total Hamiltonian: HΦk(q, R) = EkΦk(q, R)
and ck = ⟨Φk|Ψ(t = 0)⟩ are the expansion coefficients of the
initial wave function Ψ(q, R, t = 0).
Note that eq 36 can only be used if the eigenfunctions (and

energies) are known for the full Hamiltonian, which is
computationally prohibitive for general systems with a large
number of q and R coordinates. For a low-dimensional system
defined by two diabats |1⟩ and |2⟩ and a single coordinate R, it
becomes feasible to numerically solve for the eigenfunctions,
however. We consider the Hamiltonian to be given by

H T
V R V R

V R V R

( ) ( )

( ) ( )
R

11 12

21 22

= +
i

k
jjjjjj

y

{
zzzzzz (37)

where TR m R2

2 2

2= is the kinetic energy operator and Vij(R)
are the electronic Hamiltonian terms (in the diabatic basis).
In the Python codes provided in ref 19 the Hamiltonian

matrix is calculated in a discrete variable representation (DVR)
basis.80,81 This DVR basis intuitively represents position basis
with finitely many basis functions. These DVR basis functions
are defined over a uniformly spaced position grid: R0, R0 + ΔR,
R0 + 2ΔR, ..., RN. In this uniform DVR basis, the matrix
elements of the kinetic energy operator are given by81

T
m R

l l

l l l l2
( 1)

/3

2/( )
ll

l l
2

2

2

2
=

=l
mooo
n
ooo (38)

We now define a combined diabatic basis as |iRl⟩ where i = 1 or
2 represents the electronic diabatic basis and Rl = R0 + (l −
1)ΔR is the l’th element of the DVR grid. In this discrete basis
the wave function is given by |Ψ(t)⟩ = ∑i=1

2 ∑l=0
N Ψi

d(Rl,t)|iRl⟩,
where Ψi

d(Rl,t) are the expansion coefficients in the diabatic
basis |i⟩ at time t. The total Hamiltonian matrix elements in
this basis are given by

H T i i V R l l( , ) ( ) ( , )iR i R l l i i l, , ,l l
= + (39)

where δ(i,j) = 1 if i = j and 0 otherwise.
Figures 2−4 show the results of dynamics in the adiabatic

basis |ϕj
ad(Rl)⟩. This adiabatic basis is an eigenfunction of the

electronic Hamiltonian at a fixed Rl. Therefore, Hel(Rl)|
ϕj
ad(Rl)⟩ = Ej

ad(Rl)|ϕj
ad(Rl)⟩ with the matrix elements Hel

i,i′(Rl)
= Vi,i′(Rl) and Ej

ad(Rl) are the adiabatic potential energy
surfaces. Now the total wave function can be written in the
adiabatic basis as |Ψ(t)⟩ = ∑j=1

2 ∑l=0
N Ψj

ad(Rl)|ϕj
ad(Rl)Rl⟩ with

R R t R i( ) ( , ) ( )j l
i

i
d

l j l
ad

1

2
ad= |

= (40)

The coefficients Ψj
ad(Rl, t) represent the nuclear wave functions

on the adiabatic surface j at coordinate Rl at time t.
Therefore, to convert to the adiabatic basis, at each DVR

grid point Rl, we diagonalize the 2 × 2 matrix with elements
Vii′(Rl) to obtain the adiabatic coefficients ⟨i|ϕj

ad(Rl)⟩ and the
potential energy surfaces Ej

ad(Rl). These adiabatic energy
surfaces are plotted in Figure 1. The dynamics of |Ψ(t)⟩ is
evaluated in the diabatic basis to obtain Ψi

d(Rl, t). Equation 40
is then used to calculate Ψj

ad(Rl, t) whose absolute values are
plotted in Figure 2. Finally, the electronic density matrix
elements shown in Figures 3 and 4 are computed as ρj,j′

ad(t) =
∑l Ψj*ad(Rl, t) Ψj′

ad(Rl, t).
In summary, the algorithm for the numerically exact

quantum dynamics followed in ref 19 is
1. Define a grid with points R1, R2,···, RN, with a uniform

spacing Rl+1 − Rl = ΔR. The final results should be
converged with respect to the grid spacing and limits.

2. Construct a 2N × 2N Hamiltonian matrix using eq 39.
Diagonalize this matrix to obtain the coefficients of the
eigenfunctions in the diabatic basis ⟨iRl|Φk⟩ and
eigenvalues Ek.

3. At each Rl, calculate ⟨i|ϕj
ad(Rl)⟩ by diagonalizing the 2 ×

2 matrix with elements Vii′(Rl).
4. Initialize Ψi

d(Rl, t = 0) and calculate ck = ∑i,lΨi
d(Rl, t =

0)⟨Φk|iRl⟩.
5. Calculate Ψi

d(Rl, t) = ∑kcke−iEkt/ℏ ⟨iRl|Φk⟩.
6. Calculate Ψj

ad(Rl, t) using eq 40 and the electronic
density matrix as ρj,j′

ad(t) = ∑l Ψj*ad(Rl, t)Ψj′
ad(Rl, t).

The results in this work are calculated with 501 DVR points
uniformly distributed from −25 au to 25 au. This gives a
Hamiltonian matrix of size 1002 × 1002. This matrix is
diagonalized using an inbuilt Python library.
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