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a b s t r a c t

Objective: Few studies have examined the effects of participants’ diet and activity prior to sample
collection on metabolomics profiles, and results have been conflicting. We compared the effects of
overnight fasting with or without 3 days of standardized diet and restricted physical activity on the
human blood metabolome, and examined the effects of these protocols on our ability to detect differ-
ences in metabolomics profiles in adolescent girls with obesity and polycystic ovary syndrome (PCOS) vs.
sex and BMI-matched controls.
Methods: This was a cross-sectional study of 16 adolescent girls with obesity and PCOS and 5 sex and
BMI-matched controls. Fasting plasma metabolomic profiles were measured twice in each participant:
once without preceding restriction of physical activity or control of macronutrient content (“typical
fasting visit”), and again after 12 h of monitored inpatient fasting with 3 days of standardized diet and
avoidance of vigorous exercise (“controlled fasting visit”). Moderated paired t-tests with FDR correction
for multiple testing and multilevel sparse partial least-squares discriminant analysis (sPLS-DA) were
used to examine differences between the 2 visits and to compare the PCOS and control groups with the 2
visits combined and again after stratifying by visit.
Results: Twenty-three known metabolites were significantly different between the controlled fasting
and typical fasting visits. Hypoxanthine and glycochenodeoxycholic acid had the largest increases in
relative abundance at the controlled fasting visit compared to the typical fasting visit, while oleoyl-
glycerol and oleamide had the largest increases in relative abundance at the typical fasting visit
compared to the controlled fasting visit. sPLS-DA showed excellent discrimination between the 2 visits;
however, when the samples from the 2 visits were combined, differences between the PCOS and control
groups could not be detected. After stratifying by visit, discrimination of PCOS status was improved.
Conclusions: There were differences in fasting metabolomic profiles following typical fasting vs moni-
tored fasting with preceding restriction of physical activity and control of macronutrient content, and
combining samples from the two visits obscured differences by PCOS status. In studies performing
metabolomics analysis, careful attention should be paid to acute diet and activity history. Depending on
the sample size of the study and the expected effect size of the outcomes of interest, control of diet and
physical activity beyond typical outpatient fasting may not be required.
© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Metabolomics, the analysis of metabolites in cells, tissues, and
biofluids, can be used to identify biomarkers of disease and to study
physiological mechanisms of metabolism; however, the large inter-
and intra-individual variability inherent in metabolomic measures
remains a major challenge for the field [1]. A carefully designed
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Abbreviations:

PCOS polycystic ovary syndrome
AIRS Androgens and Insulin Resistance Study
BMI body mass index
CTRC Colorado Clinical Translational Research Center
EDTA ethylenediaminetetraacetic acid
LC-MS liquid chromatography-mass spectrometry
FDR false discovery rate
sPLS-DA sparse partial least-squares discriminant analysis
AUC area under the receiver operating characteristic

curve
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study, including consideration of aspects related to biological
sample collection, sample preparation, instrumental analysis, data
processing and analysis, and interpretation, is needed to avoid
biased and misleading results, to reduce measurement variability
and to increase statistical power [2].

There is an extensive body of literature on the relationships
between dietary and activity factors and serum and plasma
metabolomics profiles [3e13]. However, relatively little research
has been done on the effect of pre-sample collection standardiza-
tion of study participant diet and activity on the variability in
metabolite profiles, and the results are conflicting. Walsh et al. [14]
studied the intra- and inter-individual variability in metabolomics
profiles and found that a standardized diet and avoidance of
vigorous physical activity reduced variability in metabolites in
urine samples, but not in plasma or saliva. In another inpatient
study with participants admitted twice for 3 days each, technical
aspects (e.g., sample preparation and analysis) were the largest
source of variability in blood metabolomes, although timing of
collection relative to meals did affect variability [15]. However, in a
2-week inpatient study, Winnike et al. [16] demonstrated that
differences in the fasting serum metabolome could be detected
after 1 day of standardized diet, but that variability did not decrease
with increased duration of diet. In another study of standardized
protocols for reproducible metabolomics profiling, amino acids
increased postprandially, acylcarnitines were generally higher in
samples collected during fasting, and certain amino acids and
acylcarnitines were significantly affected by strenuous exercise
[17]. Finally, Sampson et al. [18] found that fasting status was
associated with 34% of metabolites, although the overall proportion
of variability explained by these metabolites was relatively small.

If typical outpatient fasting with no preceding control of physical
activity or diet is sufficient to control variability in metabolomics
measures, this would reduce study costs and participant burden
relative to a standardized diet. We are unaware of any studies that
directly compared the effects of typical fasting to fasting following a
standardized diet and restricted physical activity on the variability in
blood metabolomics and the resulting ability to detect other differ-
ences between biological groupings of participants. Therefore, the
purpose of this studywas to compare the effects of typical outpatient
fasting to a more rigorously controlled pre-sample collection pro-
tocol (3 days of standardized diet and restricted physical activity,
followed by 12 h of monitored inpatient fasting) on the fasting hu-
man blood metabolome, and to examine the effects of these pro-
tocols on our ability to detect differences in metabolomics profiles
between adolescent girls with obesity and PCOS and sex and BMI-
matched controls. We hypothesized that fasting followed by stan-
dardized diet and restricted exercise would be more effective than
typical fasting in reducing variability in metabolomics profiles and
allowing discrimination of differences by PCOS status.
2

2. Material and methods

2.1. Participant population

Participants were selected from the polycystic ovary syndrome
(PCOS) and control groups of the AIRS (Androgens and Insulin
Resistance Study, prior to NCT numbers) study, a cross-sectional
study that examined the relationship between testosterone and
insulin resistance in adolescent girls with obesity and PCOS
[19e21]. Enrollment took place during 2011e2014. Adolescents
with PCOS were recruited from specialty clinics and the general
adolescent clinics at Children’s Hospital Colorado as well as from
the community via advertisement; adolescents without PCOS were
recruited from the general adolescent clinic as well as from the
community via advertisement. AIRS inclusion criteria included:
female sex, obesity (body mass index [BMI] � 95th percentile for
age and sex), age 12e20 years, and physical inactivity (<3 h per
week of habitual exercise, per questionnaire). Exclusion criteria
included: diabetes mellitus, alanine aminotransferase >80 IU/mL,
blood pressure >140/90 mmHg, hemoglobin <9 mg/dL, serum
creatinine >1.5 mg/dL, smoking, medications affecting insulin
sensitivity or to treat hypertension or lipids pregnancy, and
breastfeeding. PCOS was diagnosed using the National Institute of
Health (NIH) criteria of oligomenorrhea, being � 18 months post-
menarche, and having hyperandrogenism [22,23]. The study was
conducted at the University of Colorado and Children’s Hospital
Colorado, andwas approved by the University of Colorado Anschutz
Institutional Review Board in addition to Children’s Hospital Col-
orado’s Scientific Advisory Review Committee. All participants
provided written informed consent. For participants younger than
18 years old of age, parents and participants provided consent and
assent, respectively. Samples were selected for metabolomics
analysis from AIRS participants with complete insulin clamp data
and samples available for analysis. They were thenmatched on BMI
between PCOS and controls, with a ratio of 3 girls with PCOS for
each control due to limited availability of stored control samples.
The original sample size for the metabolomics analysis consisted of
18 girls with obesity and PCOS and 6 sex and BMI-matched con-
trols; due to the fact that some participants were missing either the
typical fasting sample or the controlled fasting sample, the final
sample size for this analysis was 16 girls with obesity and PCOS and
5 sex and BMI-matched controls.
2.2. Overall study design

The protocol included two study visits as previously described
[19]. Briefly, the typical fasting screening visit included consent,
screening labs, a physical examination and an optional oral glucose
tolerance test. Participants were instructed to fast for at least 10 h
prior to the typical fasting visit. At the controlled fasting visit 2e4
weeks later, the remaining study outcomes, including the
hyperinsulinemic-euglycemic clamp, were measured. Prior to the
controlled fasting visit, participants were provided a 3-day stan-
dardized, isocaloric, weight maintenance diet (55% carbohydrate,
30% fat, 15% protein) from the University of Colorado Clinical
Translational Research Center (CTRC) metabolic kitchen, and were
asked to avoid vigorous exercise 3 days prior to the controlled
fasting visit. Participants wore an ambulatory GT3x accelerometer
(Actigraph Corp., Pensacola, FL) for seven days prior to the visit to
confirm sedentary activity. Following the 3 days of study diet and
restricted physical activity, participants were admitted overnight
for a 12-h fast and fasting AM samples were collected prior to
undergoing a hyperinsulinemic euglycemic clamp.



L. Pyle, A.-M. Carreau, H. Rahat et al. Metabolism Open 9 (2021) 100085
2.3. Metabolomics

Untargeted plasmametabolomics analysis was performed at the
Michigan Regional Comprehensive Metabolomics Resource Core.
Plasma samples were drawn in EDTA tubes, with the plasma
separated and frozen immediately at �80.0 �C. LC-MS chromatog-
raphy was used for chromatographic separation and mass chro-
matographywas used for mass detection. This analysis yielded both
identified and unidentified compounds. Identification was made
comparing masses and retention times from samples to an in-
house library. Quality of analysis, assessed by visual inspection of
the chromatographic traces and relative quantification of internal
standards, showed that the analysis methods were both stable and
reproducible across all samples.
2.4. Statistics

Descriptive statistics for demographics and anthropometrics are
presented as mean ± standard deviation or frequencies and per-
centages, and PCOS and control groups were compared using t-
tests and Fisher’s Exact Test. Metabolites that were detected in <3
samples were excluded from analysis, and missing data were
imputed using the kth nearest neighbor algorithm. Data were log
transformed prior to analysis. Known metabolites were compared
between the two visits using paired moderated t-tests with the
Benjamini and Hochberg’s p-value correction methods to correct
for multiple testing. False discovery rate (FDR)-adjusted p-values
(q-values) are reported. Multilevel sparse partial least-squares
discriminant analysis (sPLS-DA) [24,25] was used to perform su-
pervised classification using all metabolites and to determine
which metabolites were best able to discriminate between the two
visits. The performance of the sPLS-DA model was evaluated using
cross-validation and the maximum distance as the prediction dis-
tance, with the error rate and area under the receiver operating
characteristic curve (AUC) averaged across 10 repetitions. To
examine the effect of differing diet conditions on the ability to
discriminate between participants with PCOS and controls, similar
sPLS-DA analyses were performed using PCOS status as the
outcome, including two samples, one from each visit, for each
participant. Finally, sPLS-DA analyses with PCOS status as the
outcome were performed after stratifying by visit.

All statistical analyses were performed using R version 3.6 (R
Core Team, Vienna). sPLS-DA was performed using the mixOmics
package [26,27].
3. Results

This analysis included 21 girls with obesity: 16 with PCOS and 5
without PCOS. Participant descriptors are presented in Table 1. Girls
with PCOS were older (14.6 ± 1.5 vs. 12.8 ± 0.8 years, p ¼ 0.022),
although in both groups, all participants were Tanner stage V.
Table 1
Participant characteristics.

Controls PCOS P-value

Na 5 16
Age (mean (SD)) 12.8 (0.8) 14.6 (1.5) 0.022
Ethnicity (%) 0.079
NHW 1 (20.0) 8 (50.0)
Hispanic 2 (40.0) 8 (50.0)
Black 2 (40.0) 0 (0.0)
Tanner 5 (%) 5 (100.0) 16 (100.0) NA
BMI percentile (mean (SD)) 98.02 (1.19) 97.97 (1.88) 0.956

a All participants had complete data.
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Otherwise, girls with PCOS were similar to obese controls.
Initial untargeted analysis identified 6747 compounds, 177 of

which were known metabolites. Twenty-three known metabolites
were significantly different (q < 0.05) between the typical fasting
and controlled fasting visits (Fig. 1). Hypoxanthine, a purine de-
rivative, was the metabolite with the largest increase in relative
abundance (0.8 fold change) at the controlled fasting visit
compared to the typical fasting visit (Fig. 2), with glyco-
chenodeoxycholic acid, a bile salt, having the second largest in-
crease (0.7 fold change). Oleoyl-glycerol, a monoacylglycerol, had
the largest increase in relative abundance (1.3 fold change) at the
typical fasting visit compared to the controlled fasting visit, with
oleamide having the second largest increase in relative abundance
(1.2 fold change). The 23 known compounds with q < 0.05 are
described in Table 2.

The sPLS-DA model showed excellent discrimination between
the typical fasting and controlled fasting visits (Fig. 3). The overall
classification error rate was 6.7% for the first sPLS-DA component
and 4.8% for the second component. Fig. 4 is a heat map of the 30
known metabolites that were most important in discriminating
between visits in the sPLS-DA model. The controlled fasting visit
samples had higher relative abundances of c18:1-oleoylcarnitine,
4-pyridoxic acid, citric acid, 50-methylthioadenosine, glutaric acid,
3-(4-hydroxyphenyl)lactic acid, n-amidino-aspartic acid, and
tryptophan compared to the typical fasting visit, while the typical
fasting visit samples had higher relative abundances of c20-
arachidyl carnitine, sucrose, and methyl beta-D-galactoside.

The sPLS-DA model for PCOS vs. control participants, which
included the samples from the typical fasting and controlled fasting
visits for each participant, was not able to discriminate between the
two groups (Fig. 5). The error rate for both the first and second
sPLS-DA components was 23.8%. After stratifying by visit,
discrimination of PCOS status was improved (Fig. 6), although the
amount of variability explained by the first component was higher
in the controlled fasting visit samples compared to the fasting visit
samples (15% vs. 9%). The classification error rate for the controlled
fasting visit was 17.1% and 18.1% for the first two components,
Fig. 1. Volcano plot of statistical significance vs. the mean difference in relative
abundance (i.e., model coefficient) of known metabolites between the controlled
fasting and typical fasting visits. A positive coefficient indicates that the relative
abundance of the metabolite was higher in the controlled fasting visit.



Fig. 2. Mean difference in log relative abundance for known metabolites with q < 0.05. A positive coefficient indicates that the relative abundance of the metabolite was higher in
the controlled fasting visit.
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respectively. The error rate for the typical fasting visit was 19.5%
and 18.1% for the first two components respectively.

4. Discussion

Our results demonstrate that different pre-sample collection
protocols for study participants’ diet and physical activity can
significantly affect the blood metabolome, and induce variability
that obscures other differences of interest (in our case, PCOS vs.
control). Once we stratified the analysis by visit, we could
discriminate differences by PCOS status, in both the controlled
fasting samples and the typical fasting samples. The amount of
variability explained by the first component of the sPLS-DAwas 15%
for the controlled fasting visit, compared to 9% for the typical
fasting samples, suggesting that the standardized diet and
restricted physical activity may have reduced the variability in
metabolites compared to simply fasting. However, the AUC for the
first and second components were not drastically different (0.9463
and 0.9475 for controlled fasting visit and 0.9412 and 0.9400 for the
typical fasting visit), nor were the cross-validated prediction error
rates for the first and second components (17.1% and 18.1% for the
controlled fasting visit and 19.5% and 18.1% for the typical fasting
visit), which leads us to conclude that typical overnight outpatient
fasting may be sufficient to control variability in metabolomics
measures and the added burden and cost of a standardized diet
may not be justified.

There have been few studies that have investigated the effects of
various pre-sample collection protocols on metabolomics profiles,
4

and none that have directly compared the effects of typical fasting
alone vs. standardized diet and restricted physical activity followed
by monitored inpatient fasting on the ability to detect other bio-
logical associations. Walsh et al. [14] found that a standardized diet
did not reduce variability in blood metabolomics profiles; however,
in their study, diet was standardized by having each participant
consume the same foods that they did on the prior visit, and was
not standardized across participants. However, in their PCA scores
plot, the two visits at which participants consumed the same foods
did not cluster together more tightly than at other visits. Similarly,
Kim et al. [15] concluded that meal effects were more pronounced
in urine metabolomics profiles compared to blood, and, although
they stated that it would “be prudent” to utilize fasting samples,
random pre-meal samples were recommended if this was not
feasible. However, neither of these studies tested whether group
differences of interest could be discriminated in the presence of
other sources of variability; instead, they examined metrics such as
the proportion of variability explained by each source of variation.
Our findings are consistent with those of Winnike et al. [16], who
demonstrated a change in the serum metabolome after 1 day of
standardized diet compared to fasting samples. Although they
qualitatively compared the effects of fasting and standardized diet
by examining the location of these samples on PCA score plots, they
did not examine how the different pre-sample collection protocols
affected detection of other effects of interest.

There are several limitations to our study. The sample size used
in this analysis was relatively small, and was limited to adolescent
females with obesity with and without PCOS, and therefore, the



Table 2
Characteristics of the 23 known metabolites with q < 0.05, from most significant to least.

Metabolite Category HMDB number Notes

50-METHYLTHIOADENOSINE Nucleotides,
nucleosides, and
derivatives

HMDB0001173 Found in beans, squash, chocolate

OLEOYL-GLYCEROL Monoacylglycerol HMDB0011537 End product of intestinal digestion of dietary fats
ALPHA-TOCOPHEROL Tocopherol HMDB0001893 Most active form of vitamin E in humans
4-METHYL-2-OXOPENTANOIC

ACID
Keto acids and
derivatives

HMDB0000695 Abnormal metabolite that arises from the incomplete breakdown of branched-chain amino
acids

HYPOXANTHINE Purine and purine
derivatives

HMDB0000157 Naturally occurring purine derivative

OLEAMIDE Fatty amide HMDB0002117 Occurs naturally in the body of animals
2,3-BISPHOSPHO-D-GLYCERIC

ACID
Sugar acids and
derivatives

HMDB0001294 Present at high levels in the human red blood cell

5-OXOPROLINE Amino acid derivative HMDB0000267 Elevated blood levels may be associated with problems of glutamine or glutathione metabolism
L-HISTIDINE Amino acid HMDB0000177 Essential amino acid
METHIONINE Amino acid HMDB00696 Found in meat, fish, dairy
URIDINE Nucleotides,

nucleosides, and
derivatives

HMDB0000296 Uridine is found in many foods (anything containing RNA) but is destroyed in the liver and
gastrointestinal tract, and so no food, when consumed, has ever been reliably shown to elevate
blood uridine levels

N-ACETYL-L-ALANINE Amino acids, peptides,
and analogues

HMDB0000766 Human and fungal metabolite

SUCROSE Disaccharide HMDB0000258 Sugar
CYTIDINE 50-

DIPHOSPHOCHOLINE
Nucleotides,
nucleosides, and
derivatives

HMDB0001413 Essential intermediate in the biosynthetic pathway of structural phospholipids in cell
membranes, particularly phosphatidylcholine

3-METHYL-2-OXOPENTANOIC
ACID

Keto acids and
derivatives

HMDB0000491 Abnormal metabolite that arises from the incomplete breakdown of branched-chain amino
acids

GLYCOCHENODEOXYCHOLIC
ACID

Bile salt Acts as a detergent to solubilize fats for absorption

N-ACETYL-DL-METHIONINE/5-
HYDROXYINDOLEACETIC ACID

Indoles and
derivatives

HMDB0000763 Breakdown product of serotonin

INDOLE-3-ACETIC ACID Indoles and
derivatives

HMDB0000197 Breakdown product of tryptophan metabolism and is often produced by the action of bacteria
in the mammalian gut.

TYROSINE Amino acid HMDB0000158 Non-essential amino acid
TRYPTOPHAN Amino acid HMDB0030396 Essential amino acid
CITRIC ACID Carboxylic acide and

derivatives
HMDB0000094 Weak acid that is formed in the tricarboxylic acid cycle or that may be introduced with diet

16:0 LYSO PC Glycerophospholipid HMDB0010382 Derived from fish oils, milk fats, vegetable oils and animal fats
MALIC ACID Beta hydroxy acids

and derivatives
HMDB0000744 Found in a variety of foods
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Fig. 5. Sample plot from the sPLS-DA with the controlled fasting and typical fasting
visits combined, with 95% confidence ellipses for PCOS (orange triangles) and control
(blue circles) samples. Each sample is represented as a point according to its projection
on the first two components of the sPLS-DA. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 3. Sample plot from the sPLS-DA using all metabolites, with 95% confidence el-
lipses for the controlled fasting (orange triangles) and typical fasting (blue circles)
samples. Each sample is represented as a point according to its projection on the first
two components of the sPLS-DA. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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results may not be generalizable to other populations or scientific
differences of interest. For example, if the effect size of a between-
group difference of interest is larger than that observed in our study
between the PCOS group and the control group, it may be
Fig. 4. A clustered image map or heat map of the top 30 known metabolites from the sPLS-
and columns represent metabolites.

6

distinguishable despite differences in pre-sample collection pro-
tocols. We did not collect non-fasting samples, so we cannot
conclude whether typical fasting reduced variability compared to
non-fasting. The generalizability of our findings to other
DA comparing the controlled fasting and typical fasting visits. Rows represent samples



Fig. 6. Sample plot from the sPLS-DA using all metabolites, with 95% confidence el-
lipses for PCOS (orange triangles) and control (blue circles) samples. The top panel
includes controlled fasting visit samples only, and the bottom panel includes typical
fasting visit samples only. Each sample is represented as a point according to its
projection on the first two components of the sPLS-DA. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of
this article.)
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populations, as well as to other metabolomics platforms, should be
confirmed in future studies. Finally, although we provided the
standardized diet, participants were not admitted to the hospital
during the entire 3 days prior to the controlled fasting visit, only the
12 h prior to the hyperinsulinemic euglycemic clamp, and so we
cannot be sure of the level of adherence to the diet, nor can we be
sure that participants were truly fasting at the typical fasting visit.
5. Conclusions

The metabolomic profiles associated with samples obtained
after typical outpatient fasting and samples obtained after 3 days of
a standardized diet and reduced physical activity followed by 12 h
of monitored inpatient fasting can be discriminated. Combining
these two types of samples obscured differences in participants
with PCOS and BMI-matched controls. In studies that plan to
performmetabolomics analyses, careful attention should be paid to
standardize acute dietary and activity history. Depending on the
7

sample size of the study and the expected effect size of the out-
comes of interest, control of diet and physical activity beyond
typical outpatient fasting may not be required.
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