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A B S T R A C T   

In this work, the binding mechanism of myofibrillar protein (MP) with malondialdehyde and 4-hydroxy-2-none-
nal under low temperature vacuum heating was investigated via multispectroscopic and molecular docking. The 
results showed that binding interaction and increasing temperature caused significant changes in the confor-
mations as well as a decrease in the value of protein intrinsic fluorescence, surface hydrophobicity, and fluo-
rescence excitation-emission matrix spectra. Furthermore, the decrease in α-helix and β-turn, increase in β-sheet 
and a random coil of MP, imply the MP molecules to be more unfolded. Isothermal titration calorimetry and 
molecular docking results showed that main driving force for binding with MP was hydrogen bond, and the 
binding ability of malondialdehyde was superior to that of 4-hydroxy-2-nonenal. Moreover, increasing the 
heating temperature was beneficial to the binding reaction and intensified the conformational transition of MP. 
These results will provide a reference for further studies on the lipid and protein interaction of sturgeon.   

1. Introduction 

Russian sturgeon (Acipenser gueldenstaedti), as a typical source of 
highly digestible protein, is increasingly farmed due to its rich protein 
and polyunsaturated fatty acids, as well as its balanced amino acid 
composition (Liu et al., 2022), especially in China, which accounts for 
85% of global production (Shen et al., 2020). At present, the processing 
of sturgeon fillets is still relatively basic, and an important reason is a 
loss caused by protein oxidation during processing. Protein oxidation 
changes the physicochemical properties of the protein in sturgeon fillets, 
which in turn affects the quality of sturgeon fillets and their processing 
properties (Zhang, Xiao, & Ahn, 2013). Regulation of protein oxidation 
during processing is a critical issue for improving sturgeon utilization. 

Heat treatment is a common technical unit in the prefabrication or 
cooking process of fish meat. Most of the traditional heat treatment 
methods are air exposure conditions under normal pressure. The 

oxidative structure of protein is relatively serious, and it is easy to cause 
quality deterioration and economic losses due to excessive heat pro-
cessing (Wan et al., 2021). Low temperature vacuum heating (LTVH) is a 
new heating technique, which can effectively improve the processing 
quality of sturgeon meat, form a good flavor (Liu et al., 2022), and 
prolong the shelf life (Shen et al., 2020). Compared to other vacuum 
heat treatment methods, LTVH was an easy-to-use processing method 
for processing large batch sizes of samples simultaneously. Therefore, 
LTVH is more suitable for industrial production. Based on this, it is 
necessary to study protein oxidation under LTVH processing conditions 
to expand the production and utilization of sturgeon fillets. 

Protein and lipid oxidation reactions usually co-exist and mutually 
promote one another in the meat system (Wang, Zhao, Qiu, & Sun, 
2018). The oxidation of both was generally initiated by reactive oxygen 
species (ROS), and there was a potential correlation between the two 
(Wang, He, Emara, Gan, & Li, 2019). Lipid oxidation products can cause 
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some damage to the protein. 4-Hydroxy-2-nonenal (HNE) altered the 
spatial structure of the protein and damaged the membrane of the pro-
tein, resulting in changes in membrane protein function, for example, 
Na+/K+ ion pump activity decreased (Fleuranceau-Morel, Barrier, 
Fauconneau, Piriou, & Huguet, 1999). Some studies have mainly 
focused on the oxidative damage of malondialdehyde (MDA) on 
myofibrillar protein (Wang et al., 2019) and the properties of myofibril 
gel (Wang, Zhang, Fang, & Bhandari, 2017), and some scholars have also 
paid attention to the effect of MDA on protein after adding antioxidants 
(Wang, He, Zhang, Chen, & Li, 2021). Previous studies did not apply 
external force and only relied on the interaction of MDA with proteins to 
promote protein oxidation. However, in the actual production process, 
factors such as heating, high pressure, and electric field will affect 
protein oxidation together with lipid oxidation products. Nevertheless, 
it is reasonable to speculate the LTVH could accelerate the reaction of 
lipid oxidation products and proteins, and the degree of both reactions 
increased with increasing temperature. 

The purpose of this paper was to study the interaction and binding 
mechanism of different lipid oxidation products (MDA and HNE) on 
sturgeon myofibrillar proteins under low temperature vacuum heating 
(50, 60, 70 ◦C respectively). The multispectral methods including 
intrinsic fluorescence spectroscopy, Fourier transformation infrared 
(FTIR) spectroscopy, fluorescence excitation-emission matrix (EEM) 
spectra were used to analyze the structural changes in proteins. Mean-
while, the affinity of the interaction was confirmed by isothermal 
titration calorimetry (ITC). Besides, molecular docking technology was 
used to explore the binding mechanism of MDA and HNE to MP. The 
research results can provide new ideas for regulating protein oxidation 
during heating, and provide theoretical support for deep processing of 
sturgeon. 

2. Materials and methods 

2.1. Materials 

The sturgeon was transported from Quzhou Sturgeon Aquatic Food 
Technology Development Co. Ltd. (Zhejiang, China) within 2 h at 4 ◦C. 
4-hydroxy Nonenal (HNE) was purchased from GlpbBio (Shanghai, 
China), sodium phosphate Dibasic dodecahydrate, 1,1,3,3-Tetramethox-
ypropane (TMP)sodium phosphate, monobasic dehydrate, sodium 
chloride, ethylenediaminetetraacetic acid (EDTA), brilliant blue G, so-
dium hydroxide, sodium 8-Anilino-1-naphthalenesulfonate (ANS-Na), 
6-FITC were bought from Macklin biochemical Co. Ltd. (Shanghai, 
China). All chemicals were of analytical grade. 

2.2. Preparation of lipid oxidation products 

MDA solution was prepared according to Wang et al. (2019) with 
some modifications. Briefly, TMP (1.1 mL) was added with distilled 
water (38.9 mL) and 5 M HCl (10 mL). The reaction was magnetically 
stirred at 50 ◦C for 1 h in the dark. The color of the solution changed 
from colorless to light yellow. The pH of the mixture was adjusted to 7.4 
using 6 M NaOH after the temperature was lowered to room tempera-
ture. Dilute the solution appropriately and measure the absorbance at 
267 nm with a UV–Vis spectrophotometer (UV1900i, Shimadzu, Kyoto, 
Japan). The concentration of MDA was determined by the specific 
absorbance coefficient (31500 M− 1 cm− 1). The MDA solution was finally 
diluted in phosphate buffer B (25 mM, pH 7.0) containing 0.6 M NaCl to 
make 10 mM working solution. The HNE solution was diluted to a 10 
mM solution in phosphate buffer B mentioned above. 

2.3. Extraction of MP 

The method for MP extraction was carried out in agreement with 
former reports (Shen et al., 2020). MP was stored at 4 ◦C and analyzed 
within 24 h. To determine the MP concentration, the volume of 20 μL 

MP solution was mixed with the 200 μL of Coomassie Brilliant Blue G- 
250 and the absorbance was measured at 595 nm. 

2.3. In vitro oxidation of MP 

The MP suspensions were adjusted to 1 mg mL− 1 using the phosphate 
buffer B. The MP suspension without any addition was the control 
group, the 10 mM MDA and HNE solution were added into MP as treated 
groups, respectively. The solution was immediately equally divided into 
three portions for low temperature vacuum heating (LTVH). The tem-
perature of this period was set as 50, 60, 70 ◦C respectively. The control 
groups were named C50, C60, and C70. The MP solutions treated with 
MDA were M50, M60, M70 while those treated with HNE were H50, 
H60, H70. After heating for 15 min, the resulting MP solutions were 
dialyzed against 20 mM phosphate buffer A (pH 7.0) comprising 100 
mM NaCl and 1 mM EDTA for 10 h. At the end of dialysis, the suspension 
was centrifuged at 10,000 g for 15 min at 4 ◦C, and the supernatants 
were discarded. The precipitate was subsequently lysed with phosphate 
buffer B and adjusted the MP solution to 1 mg mL− 1. 

2.4. Intrinsic fluorescence spectroscopy 

The fluorescence emission spectrum was obtained using the methods 
reported by Chizoba Ekezie, Cheng, & Sun (2018) with some modifi-
cations. The fluorescence spectra were recorded at wavelengths ranging 
from 300 to 400 nm with the excitation wavelength at 285 nm. The 
excitation slit width was set at 5 nm and the emission slit width was the 
same. 

2.5. Fourier transformation infrared (FTIR) spectroscopy 

The infrared spectra of the MP samples were obtained using a Fourier 
transform infrared spectrometer (NICOLET IS5, Thermo Scientific, 
Germany). Samples were mixed with dry potassium bromide in a ratio of 
1:100, ground, and pressed. The test was scanned in the range of 
4000–400 cm− 1 and performed in transmissive mode with 32 scans (Liu 
et al., 2021). 

2.6. Surface hydrophobicity 

MP samples (2 mL) was mixed with 20 μL of 1-anilino-8-naphthale-
nesulfonate (8 mM) and mixed vortex. After standing at room temper-
ature for 3 min and being protected from light. The excitation and 
emission wavelengths were set at 390 and 470 nm, respectively (slit 
width 5 nm) (Guo, Jiang, True, & Xiong, 2021). The fluorescence 
spectrum for phosphate buffer B was subtracted from all sample spectra. 
The initial slope of the fluorescence intensity versus protein concen-
tration (mg mL− 1) plot (calculated by linear regression analysis) was 
used as an index of surface hydrophobicity. 

2.7. Fluorescence excitation-emission matrix (EEM) spectra 

The three-fluorescence (3D) fluorescence emission spectra of MP 
were recorded using an RF-6000 fluorescence spectrophotometer (Shi-
madzu, Kyoto, Japan) as described by Lv et al. (2022) with modifica-
tions. The 3D map was collected with an excitation wavelength of 
200–400 nm and an emission wavelength of 200–500 nm, with a 5 and 
10 nm slit for excitation and emission, respectively. 

2.8. Isothermal titration calorimetry (ITC) 

The binding between lipid oxidation products (MDA and HNE) and 
MP was investigated using MicroCal PEAQ-ITC (Malvern Panalytical 
Limited, USA). MP was dissolved in a 6 M NaCl solution. 280 μL of MP 
solution was added to the sample cell and titrated with the MDA and 
HNE 19 times, respectively. The titrated samples were injected with a 
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time of 4 s per injection, 120 s between each injection, 0.4 μL per in-
jection, and then 18 injections of the same 2 μL. The analyses were 
performed at 50, 60, and 70 ◦C, respectively. 

2.9. Molecular docking 

Molecular docking was performed to study the binding modes for the 
site of myosin with its ligands and obtain binding affinity (Xu et al., 
2021, 2022). Molecular structure of MDA was obtained from the ZINC 
database (http://zinc.docking.org/substances/ZINC000005178380/). 
The 2D structures of HNE were obtained from the same website 
(http://zinc.docking.org/substances/ZINC000002020117/), which 
were then converted to PDB format via OpenBableGUI software. The 
crystal structure of myosin (PDB ID: 3QMA) was obtained from the RCSB 
Protein Data Bank (https://www.pdbus.org/structure/3QMA). The 
crystal structure was prepared into receptors by removing water and 
substrate and adding polar hydrogen atoms by AutoDock software. At 
the same time, AutoDock Vina was used to conduct protein–ligand 
molecular docking studies. A grid box covered the entire binding site 
was centered at coordinates of X: 42.75, Y: 46.5, and Z: 47.25. The po-
sition with the highest Vina docking score was chosen, and its visual 
analysis was performed by PyMoL software (https://www.pymol.org). 

2.10. Statistical analysis 

Data were expressed as means plus standard deviations for three 
independent experiments, each repeated four times. With the help of 
SPSS software (version 20.0), the significance between treatments was 
determined by using Multivariate Analysis of variance and least signif-
icant difference multiple comparison. The level for significance was 
defined as P < 0.05. 

3. Results and discussion 

3.1. Protein intrinsic fluorescence of the interaction between lipid 
oxidation products and MP 

Intrinsic fluorescence quenching was used to study the potential 
interaction between MP and lipid oxidation products (MDA and HNE). 
There were two main forms of fluorescence quenching, one was pro-
tein–protein cross-linking resulting from protein oxidation and modifi-
cation, and the other was the binding of covalent/non-covalent protein 
to lipid secondary oxidation ligands (such as MDA) (Zhang et al., 2022). 
Fig. 1 A showed the λmax values of MP in each group, which was around 
330 nm and the peak value was tryptophan (Try). An increase in the 
temperature led to a decrease in the fluorescence intensity of MP. It was 
consistent with Wan et al (2021). As the temperature increased, the 
degree of protein aggregation increased, causing an increase in steric 
hindrance, the fluorescence intensity decreased as well. The aggregation 

degree of protein increases with increasing the temperature, which re-
sults in the increasing of the steric hindrance and lower fluorescence 
intensity (Wan et al., 2021). The fluorescence intensity will be signifi-
cantly reduced when the protein containing a tryptophan residue 
exposed into the hydrophilic environment, and the decrease in fluores-
cence intensity stated that the MP was in a partially unfolded or fully 
unfolded state (Cao & Xiong, 2015). 

The response results of MDA and HNE were similar, with lower 
fluorescence intensity in higher temperatures. However, the fluores-
cence intensity decreased more after MDA treatment than HNE. It was 
reported that MDA can reduce protein fluorescence intensity due to the 
destruction of tryptophan residues, as well as the change of tryptophan 
microenvironment caused by the binding reaction of MDA to certain 
sites in the protein (Traverso et al., 2004). The lipid peroxidation 
product HNE reacted with proteins’ histidine, cysteine, and lysine resi-
dues to form HNE-protein adducts (Schaur, 2003), which may be the 
reason for the less decrease in fluorescence of HNE. 

3.2. Secondary structures of the interaction between lipid oxidation 
products and MP 

Fig. 1B showed the secondary structure of the interaction between 
lipid oxidation products and MP subjected to the different heating 
temperatures. The secondary structure composition was determined by 
FTIR by measuring absorbance within the amide I region (1600–1701 
cm− 1) (Shi et al., 2020), and the results were shown in Table 1. It was 
clear that the ratio of α-helix significantly decreased and β-sheet and 
random increased concomitantly with the temperature increasing (P <
0.05). It was conceptualized that intramolecular hydrogen bond net-
works played a critical role in the stability of α-helix, while heating 
weakened or even broke the hydrogen bond between the amino 
hydrogen and the carbonyl oxygen, thereby unwinding the α-helical 

Fig. 1. Changes in intrinsic fluorescence (A) and secondary structure (B) of MP extracted from sturgeon fillets. The heating temperature of MP was set as 50, 60, 
70 ◦C respectively. The control groups were named C50, C60, and C70. The MP solutions treated with MDA were M50, M60, M70 while those treated with HNE were 
H50, H60, H70. 

Table 1 
Changes in secondary structure content of MP extracted from sturgeon fillets.   

α-helix/% β-sheet/% β-turn/% Random/% 

C50 13.60 ± 0.82a 38.16 ± 0.10d 34.78 ± 2.13a 12.93 ± 0.71c 

C60 12.44 ± 0.27abc 39.89 ± 0.64 cd 35.36 ± 0.50a 12.28 ± 0.13c 

C70 11.71 ± 0.55bc 41.90 ± 1.49bc 32.77 ± 1.10ab 17.60 ± 0.94a 

M50 12.83 ± 1.06ab 39.63 ± 0.73d 29.55 ± 2.52b 15.98 ± 0.07ab 

M60 12.46 ± 0.67abc 42.47 ± 1.77b 35.07 ± 0.42a 16.97 ± 1.35ab 

M70 11.69 ± 0.38bc 45.49 ± 0.91a 33.56 ± 1.81ab 17.64 ± 0.07a 

H50 13.19 ± 0.33ab 38.08 ± 0.15d 32.93 ± 2.69ab 15.28 ± 1.06b 

H60 11.81 ± 0.47bc 39.98 ± 0.11 cd 34.32 ± 0.57a 16.37 ± 0.69ab 

H70 10.98 ± 0.84c 43.99 ± 0.38ab 34.42 ± 1.92a 17.09 ± 1.15ab 

Results are presented as the mean ± standard deviation. Different letters indi-
cate significant difference (P < 0.05). 
The heating temperature of MP was set as 50, 60, 70 ◦C respectively. The control 
groups were named C50, C60, and C70. The MP solutions treated with MDA 
were M50, M60, M70 while those treated with HNE were H50, H60, H70. 
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structure of the protein (Yin, Zhou, Pereira, Zhang, & Zhang, 2020). 
Generally, the decline of the α-helix and the increase of the β-sheet 
usually indicated the unfolding of MP molecules with further aggrega-
tion and less structural order (Jiang et al., 2017; Zhang et al., 2022). 

For the interaction of different lipid oxidation products and MP, the 
effect of MDA on MP was more obvious. The interaction between HNE 
and MP was beneficial to the unfolding of the α-helix segment in MP, 
which can expose HIS residues buried inside the molecule, such as HIS24 
(Friend & Gurd, 1979), followed by further binding of HNE (Viana et al., 
2020), making the MP helical structure slightly recycled, so compared 
with the control groups differences were not significant (P > 0.05). As 
for MDA, it reacted readily with ε-NH2 groups of MP and reported that 
MDA can modify proteins by reacting with 50–60% of ε-NH2 (Buttkus, 
1967; Wang et al., 2017). Wang et al. (Wang et al., 2021) verified that 
MDA can reduce in α-helix and increase in the random coil of MP. 

3.3. Tertiary structure of the interaction between lipid oxidation products 
and MP 

ANS was a fluorescent probe with enhanced fluorescence after 
binding to a hydrophobic surface, which can be used to observe the 
conformational changes of proteins, mainly the exposure of hydropho-
bic regions (Fu et al., 2020). As depicted in Fig. 2, the effect of tem-
perature on the surface hydrophobicity was very significant, the 
temperature increased, the surface hydrophobicity increased signifi-
cantly (P < 0.05). The results were supported by Traore et al. (2012) 
who reported that increasing the heating temperature increased the 
surface hydrophobicity of pork MPs. After heating, part of non-polar 
amino acids was exposed to the hydrophobic clusters, leading to 
unfolding and rearrangement of protein molecules (Fu et al., 2019; 
Yarnpakdee, Benjakul, Visessanguan, & Kijroongrojana, 2009), 
increasing surface hydrophobicity, which was consistent with the result 
of Fourier transformation infrared spectroscopy. In addition, it was clear 
that the addition of MDA and HNE significantly increased the surface 
hydrophobicity (P < 0.05). Except that the surface hydrophobicity of the 
added MDA was lower than that of HNE in the 60 ◦C treatment group, 
the other two groups had the highest MDA. This indicated that due to the 
action of MDA, electrostatic interactions or hydrogen bonds between 
proteins are disrupted, resulting in the unfolding of proteins and 
exposing non-polar amino acids to the protein surface, thereby 
increasing the surface hydrophobicity (Wang et al., 2017; Wang et al., 
2021). 

Fluorescence excitation-emission matrix (EEM) spectra can simul-
taneously obtain and characterize the spectral peak information of 
different fluorophores of proteins, which contributed to the confidence 

of conformational studies (Fu et al., 2020). Fig. 3 showed the spectra of 
the interaction between lipid oxidation products and MP. Generally, 
Peak 1 (λex = 280.0 nm, λem = 330.0 nm) characterized the spectral 
properties of Trp and Tyr residues, and peak 2 (λex = 230.0 nm, λem =
330.0 nm) can represent the fluorescence spectral changes of the poly-
peptide backbone structure (Jin, Wang, Yang, Shan, & Feng, 2021; Lv 
et al., 2022). The fluorescence intensity in Fig. 3 showed decreasing 
trends as temperature increased, for both two peaks. Meanwhile, it can 
be observed that the peak 1 fluorescence intensity of MP decreased after 
adding MDA and HNE in heating conditions. Besides, the fluorescence 
intensity of peak 2 also decreased with the addition of MDA and HNE. 
The chromophores of peak1 were mainly tryptophan (Trp) and tyrosine 
(Tyr), which were usually located in the hydrophobic region of the 
protein. The changes in fluorescence intensity were usually due to 
swelling of proteins exposing them to a hydrophilic environment (Jin 
et al., 2021). The interaction of lipid oxidation products with MP altered 
the polarity of the microenvironment of Trp and Tyr residues, resulting 
in reduced MP polarity and enhanced hydrophobicity, and a tendency 
for the protein to fold (Lv et al., 2022), it was validated the conclusion of 
surface hydrophobicity and intrinsic fluorescence spectroscopy. 

3.4. Affinity of lipid oxidation products to MP 

It was reported that ITC was an important method to explain the 
mechanisms of interaction (Demers & Mittermaier, 2009). Dissociation 
constants (KD), enthalpy change (ΔH), Gibbs free energy change (ΔG), 
and entropy change (ΔS) were crucial thermodynamic parameters for 
the investigation of interaction mechanism (Fu et al., 2020). A summary 
of the thermodynamic parameters from the ITC assay were presented in 
Table 2. The KD value of MDA and MP was smaller than HNE (P < 0.05), 
suggesting that the binding capacity of MP with MDA was stronger than 
that with HNE. The negative values of ΔG indicated the feasible and 
spontaneous nature of reaction (Fu et al., 2020). Besides, according to 
the size of thermodynamic enthalpy and entropy change, the main types 
of ligand–protein binding can be obtained (Frazier, Papadopoulou, & 
Green, 2006). Through the symbols of some thermodynamic constants, 
the type of molecular bonds can be judged: When ΔH > 0 and ΔS > 0, 
the reaction was a typical hydrophobic interaction; when ΔH < 0 and 
ΔS < 0 represented van der Waals forces and/or hydrogen bonds; when 
ΔH ≈ 0 or less, ΔS > 0 was an electrostatic interaction (Ross & Sub-
ramanian, 1981). It can be seen from Table 2 that both ΔH and ΔS of 
interaction lipid oxidation products and MP were negative, indicating 
that the major interaction forces in MP-MDA or MP-HNE complexation 
were hydrogen bonding and/or van der Waals forces. Besides, the in-
crease in temperature made the KD value decrease, indicating that 
increasing the temperature was beneficial to the reaction. 

3.5. Molecular docking of the interaction between lipid oxidation products 
and MP 

Molecular docking modeling was used to further validate the binding 
ability of lipid oxidation products and MP (Fig. 4). The binding energy of 
MP against MDA and HNE were − 5.5 and − 4.1 kcal/mol and indicated 
that the binding ability of MP to MDA was stronger than HNE. The re-
sults were consistent with the findings of the results of ITC. The HNE and 
MP complex was formed three conventional hydrogen bonds (O⋅⋅⋅H-X), 
in which the hydroxyl oxygen of HNE and the residues of LYS-67 formed 
two hydrogen bonds with the length of 3.0 Å and 3.2 Å, respectively 
(Fig. 4A). MDA was in close contact with HIS-78, LEU-71, and LEU-72, 
and formed six hydrogen bonds with the bond length of 3.5 Å, 3.0 Å, 2.8 
Å, 2.1 Å, 1.8 Å and, 3.5 Å, respectively (Fig. 4B). The results showed that 
the lipid oxidation products interacted with MP through hydrogen bonds 
and further confirmation of the results of ITC. The weak interactions 
suggested that the binding between lipid oxidation products and MP was 
reversible. It was reported that amino acid residues in proteins provide a 
more favorable environment for the reaction of MDA (Esterbauer, 

Fig. 2. Changes in surface hydrophobicity of MP extracted from stur-
geon fillets. 
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Schaur, & Zollner, 1991). In general, His only reacted with the corre-
sponding allyl group on the a-amino group, since MDA had an amino- 
imino-propene structure, it was easier to react with amino acids such 
as histidine and lysine. And the methyl-esters of His also reacted with 
MDA to enaminals of the general structure RNH-–CH=CH—CHO 
(Pietrzyk & Stodola, 1981). 

4. Conclusion 

In conclusion, the interactions of different lipid oxidation products 
(MDA and HNE) with MP in LTVH treatment and the corresponding 
effects on the structure at the molecular level were investigated using 
multispectroscopic and molecular docking. The addition of MDA and 
HNE altered the spatial structure of MP; however, this change was 
detrimental to the MP. And increasing the heating temperature can in-
crease the damage degree of protein structure and make the fluorescence 
spectrum change more significant. The result of ITC showed that the 
lipid oxidation products interact spontaneously with MP and by 
hydrogen bonding, and molecular docking further confirmed this. 
However, the ability of MDA to bind to MP was stronger than that of 
HNE. The amino acid residues related to binding of MDA to MP were 
identified, and HIS-78, LEU-71, and LEU-72 was confirmed as the key 
amino acid residue. As for HNE, LYS-67 was the key amino acid residue. 
The results can provide a theoretical basis for the industrial application 
of modified proteins induced by lipid oxidation products. At present, we 
only study the interaction between lipid oxidation products and protein 
and the changes to the spatial structure of protein, but lack of research 

Fig. 3. Changes in Fluorescence excitation-emission matrix spectra of MP extracted from sturgeon fillets. A- C represented the control groups, D-F represented the 
MDA groups, G-I represented the HNE groups, from left to right, this were 50 ◦C, 60 ◦C, 70 ◦C. 

Table 2 
Changes in thermodynamic properties of MP extracted from sturgeon fillets.   

T 
(◦C) 

KD (M, ×10- 
5) 

ΔH (kcal/ 
mol) 

ΔG (kcal/ 
mol) 

-TΔS (kcal/ 
mol) 

MDA 50 12.1 ± 0.5c − 1.5 ± 0.2c − 29.8 28.9 
60 7.0 ± 1.1d − 1.1 ± 0.3c − 25.7 27.3 
70 2.9 ± 0.9e − 0.8 ± 0.1d − 25 23.8 

HNE 50 36.3 ± 1.4a − 3.3 ± 0.1a − 78.9 261 
60 22.6 ± 0.3b − 2.1 ± 0.2b − 74.3 138 
70 10.5 ± 2.0c − 1.6 ± 0.1c − 76.6 123 

Different letters indicate significant difference (P < 0.05). 
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and specific application of specific characteristics of protein. Further 
studies are needed to focus on the study of the emulsifying properties of 
the lipid oxidation products for protein and the loading capacity of the 
emulsion. 
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