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Clear cell renal cell carcinoma (ccRCC) is one of the most prevalent kidney malignancies. The tumor microenvironment (TME) is
highly related to the oncogenesis, progress, and prognosis of ccRCC. The aim of this study was to infer the level of infiltrating
stromal and immune cells and assess the prognostic value of them. The gene expression profile was obtained from TCGA and
used for calculating the stromal and immune scores. Based on a cut-off value, patients were divided into low- and high-
stromal/immune score groups. Survival analysis was performed to evaluate the prognostic value of stromal and immune scores.
Moreover, differentially expressed genes (DEGs) that are highly related to TME were determined and applied for functional
enrichment analysis and protein-protein interaction (PPI) network. The Kaplan-Meier plot demonstrated that patients with
high-immune scores and stromal scores had poorer clinical outcome. In addition, a total of 89 DEGs were identified and mainly
involved in 5 pathways. The top 5 degree genes were extracted from the PPI network; among them, IL10 and XCR1 were highly
associated with prognosis of ccRCC. The results of the present study demonstrated that ESTIMATE algorithm-based stromal
and immune scores may be a credible indicator of cancer prognosis and IL10 along with XCR1 may be a potential key regulator
for the TME of ccRCC.
1. Introduction

Renal cell carcinoma (RCC) is the most prevalent kidney
malignant tumor globally [1], and it is estimated that over
350,000 cases are diagnosed with RCC each year [2]. Clear
cell renal cell carcinoma (ccRCC) is the most common and
invasive form in all RCC and comprises about 70–80% of
all RCC cases [3, 4].

In recent years, the tumor microenvironment (TME) has
already attracted a huge amount of interest from researchers.
TME is a complicated system which consists of an extracellu-
lar matrix, stromal cells (like fibroblasts, occasionally adipo-
cytes, and mesenchymal stromal cells), and immune cells
(such as B and T lymphocytes, macrophages, and natural
killer cells) [5]. Immune and stromal cells are the most
important component of nontumor cells in TME and have
shown a potential value for diagnosis and prognosis predic-
tion of cancers [6, 7]. Previous studies have found that the
extent of stromal cells could provide a prognostic factor for
patients with solid cancers [8]. In addition, it also has been
reported that activated CD8+ T cell density in TME is associ-
ated with favorable clinical outcomes of ccRCC [9, 10]. Nev-
ertheless, several immune cells have the opposite effect. For
example, the recruitment of CD4+ T cells in TME could pro-
mote RCC proliferation through modulating TGFβ1/YBX1/-
HIF2α signals [11]. Moreover, regulatory T cells (Tregs) can
also inhibit tumor immune responses by releasing immuno-
suppressive cytokines [12]. Macrophages have been reported
to have crucial function in both promoting and blocking can-
cer growth. Macrophage M2 presenting CD163 and CD204 is
highly associated with poor prognosis of RCC [13], whereas
Hutterer et al. found that tumor-associated macrophages
could independently reduce the risk of death in RCC [14].

Immunohistochemistry (IHC) and flow cytometry are
the most commonly used technology for determining
immune and stromal cells in TME by detecting marker pro-
teins [15]. However, due to the restriction of the channel of
markers, conventional technology could not evaluate diverse
immune cells simultaneously [16]. As an alternative, algo-
rithms based on a large scale of gene expression profile have
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Table 1: The baseline characteristics of all patients.

Parameter Subtype No. Percent (%)

Age (years)
<65 250 48.5

≥65 265 51.6

Gender
Male 341 66.2

Female 174 33.8

TNM staging
Stage i/ii 315 61.2

Stage iii/iv 200 38.8

Fuhrman grade
G 1/2 235 45.6

G 3/4 280 54.4

Immune score
Low 296 57.5

High 219 42.5

Stromal score
Low 317 61.6

High 198 38.4

Survival status
Alive 354 68.7

Dead 161 31.3

Total 515 100
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been applied for predicting tumor purity in many researches
[17]. The ESTIMATE (Estimation of Stromal and Immune
cells in Malignant Tumor tissues using Expression data)
algorithm developed by Yoshihara et al. is a new tool for
inferring the level of infiltrating stromal and immune cells
by calculating stromal and immune scores [17]. Subsequent
researches on glioblastoma [18], colon cancer [19], and
breast cancer [20] have been investigated with the ESTI-
MATE algorithm and shown good effectiveness of this
algorithm. Nevertheless, research on ccRCC using the
ESTIMATE algorithm has not been reported in detail.

In the present retrospective study, we applied the ESTI-
MATE algorithm for the analysis of gene expression profiles
of ccRCC which were collected from The Cancer Genome
Atlas (TCGA, https://cancergenome.nih.gov) to infer stro-
mal and immune scores for the first time. The association
of stromal and immune scores with clinicopathological
parameter as well as clinical prognosis of ccRCC patients
was also investigated.

2. Materials and Methods

2.1. Data Profile. The gene expression profiles of ccRCC were
downloaded from TCGA (Apr 2019) and then were sub-
jected to background correction and normalization with Perl
5.0 (http://www.perl.org/). Meanwhile, relevant clinical char-
acteristics of cancer cases were also collected. Patients with
follow-up time <30 days or lacking pathologic diagnosis
would be removed.

2.2. ESTIMATE Algorithm. As described previously [17],
with the ESTIMATE package in R (version 3.5.2, https://
www.r-project.org), stromal and immune scores of each
sample were calculated. The optimal cut-off values were
evaluated with the online tool: Cutoff Finder (http://
molpath.charite.de/cutoff/assign.jsp) [21]. Based on the
cut-off values, patients were divided into low- and high-
stromal/immune score groups. Group comparisons of stro-
mal/immune scores between different clinical indexes were
performed by the t-test with SPSS 20.0. P value < 0.05 was
considered statistically significantly different.

2.3. Expression Analysis of Differentially Expressed Genes
(DEGs). The Bioconductor package, “edgeR” (http://www
.bioconductor.org/packages/release/bioc/html/edgeR.html) was
utilized to identify DEGs between low- and high-stromal/im-
mune score groups. The overlapping DEGs would be used for
further analysis.

2.4. Functional Enrichment Analysis and Protein-Protein
Interaction (PPI) Network. All overlapping DEGs were
utilized for Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Gene Ontology (GO) analysis with P value
(adjusted P value) <0.05 as the threshold. In addition, the
PPI network of overlapping DEGs would be obtained from
STRING (https://string-db.org) [22] with confidence >0.7
as a cut-off criterion. Then, the data of the PPI network was
reconstructed by Cytoscape (version 3.6, https://cytoscape
.org), and the top five degree DEGs were selected as the most
important targets. The relationship between hub genes and
tumor-infiltrating immune cells (B cell, CD4 T cell, CD8 T
cell, neutrophil, macrophage, and dendritic cell) was deci-
phered using TIMER (Tumor IMmune Estimation Resource,
https://cistrome.shinyapps.io/timer/).

2.5. Survival Analysis. The Kaplan-Meier plots were con-
ducted to illustrate survival difference between the low- and
high-stromal/immune score groups with overall survival of
ccRCC patients. Univariable and multivariable Cox regres-
sion model was used to determine independent prognostic
factors. The P value < 0.05 was set as the cut-off value.

2.6. Expression Profile of Immunomodulators. In recent years,
immune checkpoint inhibitors have been approved for the
therapy of various cancers, including renal cell carcinoma
[23]. In this study, several key immunomodulators (LAG-3,
TIM-3, CTLA-4, IFN-γ, ICOS, ICAM-1, TIGIT, PD-1,
PDL-1, NKG2A, and VISTA) were quantified in both normal
kidney tissues and ccRCC tissues. The difference of expres-
sion of immunomodulators between normal and ccRCC
samples as well as low- and high-stromal/immune score
groups was compared by the t-test.

3. Results

3.1. Patient Characteristics.After removing cases with follow-
up time <30 days, a total of 587 samples (72 normal kidney
tissue samples and 515 ccRCC tissue samples) were collected
from TCGA. The detailed demographic and baseline charac-
teristics of 515 ccRCC patients are described in Table 1. All
patients were diagnosed with ccRCC pathologically.

3.2. Evaluation of Immune Scores and Stromal Scores. Based
on the cut-off values for stromal scores (841) or immune
scores (1780), patients were assigned to low- and high-stro-
mal/immune score groups. As shown in Figure 1(a), immune
scores in Fuhrman grade 3/4 were significantly increased
compared with those in Fuhrman grade 1/2 (P < 0:001). In
addition, immune scores in stage iii/iv were also significantly
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Figure 1: Distribution of stromal and immune scores. (a) Different Fuhrman grades and (b) TNM staging (c) with or without lymph node
metastasis. N0, N1, N2, and N3 represent 0, 1, 2, and 3 lymph node metastases. (d) Distant metastasis.
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increased (Figure 1(b), P < 0:001). However, for stromal
scores, there was no statistical difference between different
Fuhrman grades (P = 0:738) and TNM staging (P = 0:083).
When compared with patients without lymph node metasta-
sis, patients with 1, 2, and 3 lymph node metastases had
higher immune scores (Figure 1(c), P = 0:012, P = 0:032,
and P = 0:016). Similar results were observed in patients with
distant metastasis (Figure 1(d), P = 0:001). Nevertheless, no
difference of immune scores was observed between patients
with or without lymph node metastasis (P = 0:529) and
patients with or without distant metastasis (P = 0:685).

The associations of stromal/immune scores and corre-
sponding overall survival were analyzed by the Kaplan-
Meier plot and evaluated with the log-rank test. The
Kaplan-Meier plot demonstrated that high-immune scores
as well as stromal scores were negatively correlated with
favorable outcome of ccRCC patients (Figure 2). In addition,
5-year survival rates of low- and high-immune score groups
were 69.3% and 52.2%, respectively (HR = 1:659, 95% CI
[1.204, 2.248]). And, for low- and high-stromal score groups,
the rates were 65.7% and 54.6%, respectively (HR = 1:409,
95% CI [1.024, 1.938]). In addition, the result of multivari-
able Cox regression indicated that both stromal and immune
scores were independent prognostic factors (Table 2).

3.3. Functional Enrichment Analysis and PPI Network. A
total of 89 overlapping DEGs were identified between low-
and high-stromal/immune score groups, including 42
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Figure 2: Prognostic values for overall survival: (a) immune scores and (b) stromal scores.
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Table 2: Results of univariate and multivariable Cox regression analysis.

Characteristics
Univariate analysis Multivariate analysis

HR 95% CI P HR 95% CI P

Age (<65/≥65) 1.690 (1.232, 2.318) 0.001 1.512 (1.096, 2.087) 0.012

Sex (female/male) 0.937 (0.680, 1.292) 0.691 0.921 (0.665, 1.275) 0.619

Fuhrman grade (1 and2/3 and 4) 2.742 (1.923, 3.911) <0.001 1.771 (1.218, 2.574) 0.003

Stage (I and ii/iii and iv) 4.361 (3.162, 6.085) <0.001 3.410 (2.394, 4.857) <0.001
Stromal scores (low/high) 1.411 (1.134, 1.925) 0.030 1.236 (1.110, 1.551) 0.045

Immune scores (low/high) 1.647 (1.207, 2.248) 0.002 1.321 (1.197, 1.671) 0.029

HR: hazard ratio; 95% CI: 95% confidence interval.
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upregulated and 47 downregulated overlapping genes
(Figures 3(a) and 3(b)). To better understand the role of
DEGs, KEGG and GO analyses were carried out. KEGG anal-
ysis revealed 89 overlapping DEGs which were mainly
involved in 5 pathways, such as cytokine-cytokine receptor
interaction, NF kappa B signaling pathway, and primary
immunodeficiency (Figure 3(d)). In addition, 84 GO terms
(67 terms of biological process, 1 term of cellular component,
and 16 terms of molecular function) were enriched
(Figure 3(e), Supplemental Table 1).

For exploring the interplay among 89 overlapping DEGs,
a PPI network was built using the STRING tool with confi-
dence >0.7 as the cut-off criterion. 24 nodes (21 upregulated
and 3 downregulated DEGs) along with 39 edges consisted of
the PPI network (Figure 3(c)). Moreover, in the PPI network,
CD79a, CD19, CCL19, IL10, and XCR1 were the remarkable
nodes as they had the most connections with other nodes.
Furthermore, survival analysis revealed a significant correla-
tion between the expression of IL10 (0.030) and XCR1
(P = 0:012) and prognosis of ccRCC (Supplemental
Figure 1). In addition, the result showed that both IL10 and
XCR1 were closely related to the infiltration of tumor
immune cells (Supplemental Figure 2).

3.4. Expression Profile of Immunomodulators. As shown in
Figure 4(a), all of 11 immunomodulators (LAG-3, TIM-3,
CTLA-4, IFN-γ, ICOS, ICAM-1, TIGIT, PD-1, PDL-1,
NKG2A, and VISTA) were significantly increased in ccRCC
samples compared with normal kidney samples. Moreover,
in the high-stromal score group, the expression of 11
immunomodulators was all upregulated (Figure 4(b)). In
the high-immune score group, similar phenomenon was
observed except for PD-1 and PDL-1 (Figure 4(c)). Then,
we further explored the prognostic value of 11 immuno-
modulators. Survival analysis suggested that patients with
low expression of LAG3 or CTLA-4 had a longer overall
survival than those with high expression of LAG3
(HR = 1:448, 95% CI [1.063, 1.972], Figure 4(d)) or
CTLA-4 (HR = 1:513, 95% CI [1.11, 2.062], Figure 4(e)).

4. Discussion

ccRCC is one of the most prevalent kidney malignancies and
accounts for approximately 3% of adult cancer [24, 25]. Pre-
vious studies have shown that the tumor microenvironment
(TME) was highly related to the oncogenesis, progress, and
prognosis of ccRCC [26]. TME is the place where the
immune system and tumor interplay, reflecting the plasticity
of both the tumor and immune system [27]. Tumor develop-
ment is highly dependent on TME, and any alterations of the
composition of TME may influence the evolution of malig-
nancies [27]. Understanding the change may help the devel-
opment of therapeutic strategies. Stromal cells and immune
cells are the important components of TME, which play a
critical role in the development of cancers [6]. The ESTI-
MATE algorithm, a tool based on a large scale of gene expres-
sion profile, has been used for the investigation of
glioblastoma, colon cancer, and breast cancer and shown
good precision and practicality [18–20]. However, it has
not been applied for the research on ccRCC.

In the current study, we attempted to infer the level of
infiltrating stromal and immune cells in ccRCC by calcu-
lating stromal and immune scores with the ESTIMATE
algorithm. Survival curves according to Kaplan-Meier
showed that low-immune scores as well as stromal scores
predicted a favorable prognosis in ccRCC patients. In
addition, evidence indicating a significant increase in
immune scores was witnessed in patients in Fuhrman grade
3/4 and stage iii/iv, with lymph node metastasis as well as
with distant metastasis, whereas for stromal scores, no differ-
ences were observed between different Fuhrman grades and
TNM staging, with or without lymph node metastasis or dis-
tant metastasis.

For exploring the potential mechanism of the change of
TME, we identified tumor microenvironment-related genes
which would be further utilized for functional enrichment
analysis and constructing the PPI network. A total of 89 over-
lapping differentially expressed genes (DEGs) (42 upregu-
lated and 47 downregulated genes) were determined. KEGG
analysis demonstrated that 5 pathways were enriched by 89
overlapping DEGs, including cytokine-cytokine receptor
interaction, NF kappa B signaling pathway, and primary
immunodeficiency. The NF kappa B signaling pathway is
involved in immunity, inflammation, and cell survival [28].
Lua et al. found that the NF kappa B signaling pathway could
affect the prognosis of RCC by decreasing the local inflam-
matory infiltrate and regulating TME [29]. Additionally,
Morais et al. reported that inhibition of the NF kappa B sig-
naling pathway attenuated the progression of RCC [30].
Meanwhile, the PPI network was constructed to predict the
interaction relationship among 89 overlapping DEGs, and
the top 5 degree genes (CD79a, CD19, CCL19, IL10, and
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interaction (PPI) network with confidence >0.7. Red and green nodes represent upregulated and downregulated genes, respectively.
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Figure 4: Continued.
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Figure 4: The distribution of immunomodulators (a) between normal samples and ccRCC samples, (b) low- and high-immune scores, and
(c) low- and high-stromal scores. (d) Kaplan-Meier curves for overall survival of CTLA-4 and (e) LAG-3.
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XCR1) were extracted for further analysis. Among the top 5
degree genes, 2 DEGs (IL10 and XCR1) were highly relative
to clinical outcome of ccRCC patients as well as the infiltra-
tion of tumor immune cells. IL10, a cytokine produced by
monocytes and lymphocytes primarily, has pleiotropic effects
on regulating immune response by stimulating B cells and
inhibiting macrophages and helper T cells [31]. A previous
study showed that the RCC patients with high expression of
IL10 had a lower incidence of distant metastasis [32]. How-
ever, another research suggested that IL10-producing B cells
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were higher in advanced-stage RCC and could decrease the
proportion of T cells in TME [33]. XCR1, the only receptor
of the chemokine XCL1, is expressed in dendritic cells and
has an implicated function in dendritic cell-mediated cyto-
toxic immune response [34]. Besides, the overexpression of
XCR1 can promote the growth, migration, and invasion in
breast cancer and non-small-cell lung cancer [35, 36]. All
data suggested that IL10 and XCR1 may be potential key reg-
ulators for the TME of ccRCC and novel markers for the
prognosis of ccRCC.

Recently, immune checkpoint inhibitors have evolved
treatment strategies in oncology and have been approved
for the therapy of various cancers including RCC [23]. In this
study, we determined 11 immunomodulators that are
involved in tumor escape mechanisms and found 9 immuno-
modulators (LAG-3, TIM-3, CTLA-4, IFN-γ, ICOS, ICAM-
1, TIGIT, NKG2A, and VISTA) that were upregulated in
both high-immune score group and high-stromal score
group. In addition, PD-1 and PDL-1 were also increased in
the high-stromal score group. Kaplan-Meier analysis dem-
onstrated that longer overall survival among patients with
low expression of LAG-3 and CTLA-4 was observed.
CTLA-4, a homolog of CD28, is expressed by T cells and
could inhibit the T cell immune response by diminishing
costimulatory signal [37]. LAG-3 is expressed in activated
CD4+ and CD8+ T cells and participates in helper T cell
response [38]. Several researches have shown that LAG-3
expression was related to the metastasis and prognosis of
various cancers such as breast cancer, lung cancer, and
ovarian cancer [39–41].

There are a few limitations to be addressed in this study.
Firstly, due to the fact that all patients were gathered from
TCGA database, the potential of selection bias could not be
excluded and it was not possible to collect all information
of patients, such as the organ distributions with metastasis
and information on whether to use anti-inflammatory drugs
or not. Secondly, there was no experimental research con-
ducted to examine the functions of IL10 and XCR1 in ccRCC.
Thus, further investigation both in vitro and in vivo is
demanded to testify the discovery of this research.

In summary, we applied the ESTIMATE algorithm to
calculate stromal and immune scores which were highly
associated with the clinical outcome of ccRCC. In addition,
we identified 89 microenvironment-related genes, and data
from the PPI network and survival analysis revealed that
IL10 and XCR1 may the potential key regulators for the
TME of ccRCC and could be useful for outlining the prog-
nosis of ccRCC patients. However, more experimental
research both in vitro and in vivo is needed to examine
the finding of this research.
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