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Abstract

Accurate and adaptive encoding of complex, dynamic visual information is

critical for the survival of many animals. Studies across a range of taxa have

investigated behavioral and neuronal responses to objects that represent a

threat, such as a looming object approaching along a direct collision course.

By investigating neural mechanisms of avoidance behaviors through recording

multineuronal activity, it is possible to better understand how complex visual

information is represented in circuits that ultimately drive behaviors. We used

multichannel electrodes to record from the well-studied locust nervous system

to explore how object motion is reflected in activity of correlated neural activ-

ity. We presented locusts (Locusta migratoria) with objects that moved along

one of 11 unique trajectories and recorded from descending interneurons

within the ventral nerve cord. Spike sorting resulted in 405 discriminated

units across 20 locusts and we found that 75% of the units responded to some

form of object motion. Dimensionality reduction through principal compo-

nent (PCA) and dynamic factor (DFA) analyses revealed population vector

responses within individuals and common firing trends across the pool of dis-

criminated units, respectively. Population vector composition (PCA) varied

with the stimulus and common trends (DFA) showed unique tuning related

to changes in the visual size and trajectory of the object through time. These

findings demonstrate that this well-described collision detection system is

more complex than previously envisioned and will drive future experiments to

explore fundamental principles of how visual information is processed

through context-dependent dynamic ensembles of neurons to initiate and

control complex behavior.

Introduction

Encoding complex visual information is critical for the

survival of many animal species that rely on robust, coor-

dinated and appropriately timed avoidance behaviors.

Salient visual cues are important across many taxonomic

groups, including humans (Vallis and McFadyen 2003,

2005 Gray and Regan 2006; Poljac et al. 2006), other pri-

mates (Maier et al. 2004), gerbils (Ellard 2004), birds

(Sun and Frost 1998; Cao et al. 2004), frogs (Yamamoto

et al. 2003), fish (Gallagher and Northmore 2006; Preuss

et al. 2006), crabs (Oliva et al. 2007; Oliva and Tomsic

2012), and insects (Robertson and Johnson 1993a; Jablon-

ski and Strausfeld 2001; Verspui and Gray 2009; Yama-

waki and Toh 2009). Natural animal behavior operates in

closed loop. Behaviors evoked by spatiotemporal stimulus

properties result in changes in the stimulus that must be

encoded and decoded appropriately to allow subsequent

behaviors to be adaptive. For example, objects approach-

ing along a direct collision course reflect movement of

the animal through space as well as motion of con-

specifics or predators. However, even within a single

modality, natural stimuli consist of ranges of properties

that are encoded by receptors and downstream networks
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as well as range fractionation at multiple processing levels.

Therefore, a more complete understanding of how vision

controls even “simple” behaviors, such as avoidance,

requires study of parallel visual pathways that encode

changing spatiotemporal stimulus properties.

Multineuronal recordings and analysis allow researchers

to investigate how populations of neurons encode and

process sensory information (see Ruther and Paul 2015

for a review). Populations are often characterized as

ensemble of neurons in which the activity of each unit

combines in some functional manner and population

responses can be reflected in parallel recordings using

multichannel electrodes. As such, emergent firing of neu-

ral populations can provide a mechanism to disambiguate

variation in unit firing that results from presentation of

complex natural stimuli. Without emergent population

coding, individual unit activity could produce an intract-

able barrage of firing patterns that would not be effec-

tively decoded by downstream elements involved in

production of coordinated behaviors. In this context,

population coding is important for processing visual

information used for motion detection of objects or an

individual’s movement through space. In the medial tem-

poral area of the extrastriate visual cortex in Rhesus mon-

keys, population responses predict effects of spatial

frequency and contrast on target speed estimations

(Priebe and Lisberger 2004). Population responses in

human visual cortex can predict the identity of an image

and prediction accuracy improves with the number of

units (Quiroga et al. 2007). In Drosophila ellipsoid body,

ensembles encode the fly’s azimuth relative to its environ-

ment, which is maintained through persistent activity in

the absence of stimuli (Seelig and Jayaraman 2015). These

studies demonstrate that population coding is an impor-

tant property of visual detection and perception. Studying

populations of visual sensory neurons in tractable systems

with well defined, visually guided behaviors will allow

future experiments to address fundamental questions

of how animals use complex cues to drive adaptive

responses.

The migratory locust (Locusta migratoria) is an excel-

lent system for studying visually guided control of com-

plex behaviors as there is a wealth of knowledge regarding

robust behavioral and neural responses to approaching

objects. Jumping responses to a looming object (Fotowat

and Gabbiani 2007; Fotowat et al. 2011) follow a precisely

timed sequence that relates to properties of motion-sensi-

tive neurons. Similarly, intentional flight steering in

response to a loom involves production of forewing

asymmetries and steering torques (Robertson and John-

son 1993a,b; Chan and Gabbiani 2013) that are driven by

adjustments in the timing of wing muscles (McMillan

et al. 2013). One motion-sensitive pathway in locusts

includes the Lobula Giant Movement Detector (LGMD)

and it postsynaptic partner, the Descending Contralateral

Movement Detector (DCMD), which receives retinotopic

inputs from the compound eyes (O’Shea 1976) and cov-

eys motion information to motor centers that control the

legs and wings (Burrows and Rowell 1973; Simmons

1980; Pearson et al. 1985; Boyan 1989). While there is

much information on putative biophysical mechanisms

that underlie LGMD computation of a looming object’s

visual properties (Rind and Bramwell 1996; Gabbiani

et al. 2004; Jones and Gabbiani 2010; Fotowat et al.

2011), relatively few studies have attempted to directly

relate the activity of this pathway to flight steering (Santer

et al. 2006). Given the variability of flight steering behav-

iors in locusts able to maneuver within six degrees of

freedom (Chan and Gabbiani 2013; McMillan et al. 2013)

and the ability of the LGMD/DCMD pathway to respond

to complex object motion (Guest and Gray 2006; McMil-

lan and Gray 2012; Dick and Gray 2014) against complex

visual backgrounds (Yakubowski et al. 2016), it is likely

that other motion-sensitive descending interneurons

(Griss and Rowell 1986; Rowell and Reichert 1986; Gray

et al. 2010) play a role in initiating and coordinating this

Figure 1. Experimental setup and visual stimuli. (A) The diagram of the locust shows the relative position of the central nervous system (CNS)

in red. The expanded (ventral) view of the CNS below shows the relative positions of the brain and the prothoracic (Pro), mesothoracic (Meso),

and metathoracic (Meta) ganglia in the thorax. One set of distal tetrodes on each shank of a silicon multichannel probe were inserted into the

ventral connective anterior to the prothoracic ganglion. Upper right shows an expanded view of the probes indicating the recording sites on

one tetrode corresponding to data channels on the top probe (Tetrode 1). We also used corresponding recording sites on Tetrode 2 (see

materials and Methods). Raw neural recordings (bottom right) were taken from a single locust presented with a looming disk and shown for

each of eight channels across the two tetrodes. The red vertical line indicates the projected time of collision. (B) Eleven different stimuli were

presented as either directly looming (gray), translating from anterior or poster (orange) or compound trajectories with transitions (small filled

circles) from anterior or posterior translation to a looming trajectory (blue). Each random sequence of stimuli was bracketed by a straight loom

from 90° to rule out the potential effects of the duration of the experiment on DCMD responses (see Materials and Methods). (C) Stability of

waveform shapes throughout the experiment duration. Average waveforms (black lines) and standard deviation (gray shade) from discriminated

units. Data from each tetrode recording from one animal across 13 stimulus presentations. Each panel is divided into four sections of

2.048 msec, delimited by red vertical lines, representing time across each recording site. n = number of waveforms for each unit. Asterisks

indicate the valley of the detected waveform.
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complex behavior. A better understanding of the neural

mechanisms of collision detection and avoidance during

flight requires simultaneous recordings of multiple

descending interneurons when presented with complex

object motion. As a first step in testing the hypothesis

that object visual motion is coded in parallel descending

neural activity, we recorded from the ventral connective

of L. migratoria using multichannel electrodes while pre-

senting a variety of visual stimuli that included direct

approaches (looming) from different regions of the visual

field, translation across the visual field, and transitions

from translation to looming (Fig. 1). Using spike sorting,

principal component analysis, and dynamic factor analy-

sis, we were able to reduce the dimensionality of single

unit firing across a pooled set of neurons and we found

that correlated firing of discriminated units reflects stimu-

lus properties of objects moving along simple and com-

pound trajectories.

Materials and Methods

Animals

Adult male locusts (Locusta migratoria) were obtained

from a crowded colony maintained at the University of

Saskatchewan in the Department of Biology, kept at 25–
28°C with a 12 h light-dark cycle. Locusts were selected

at no less than 3 weeks past the imaginal molt, and

experiments were carried out at room temperature

(~25°C).

Preparation

Following restraint of the wings and removal of the legs,

a rigid tether was attached to the ventral surface of the

thorax with melted beeswax. A square of anterior thoracic

cuticle was removed using a sapphire blade to expose the

paired connectives of the ventral nerve cord between the

subesophageal and prothoracic ganglia. Following removal

of air sacs and fat body, the translucent protective sheath

surrounding the left connective was carefully cut using

the sapphire blade and removed using fine forceps. The

tissue was bathed in a drop of locust saline (in mmol:

147 NaCl, 10 KCl, 4 CaCl2, 3 NaOH, 10 HEPES, pH 7.2)

and the preparation was transferred to the recording

stage. Following insertion of a silver ground wire in to

the abdomen, a multichannel electrode with 2 9 2

tetrode arrays of 16 channels (NeuroNexus Technologies,

MI, USA) was mounted onto a Narishige MM-3 manipu-

lator (Narshige, NY, USA) and carefully inserted in to the

desheathed connective. The tetrode array was maneuvered

until a high signal:noise recording was achieved on at

least four recording sites. The two shanks of the electrode

array were arranged parallel to the long axis of the nerve

chord such that one of the shanks was anterior and one

was posterior. Given the depth of the connective and the

spacing of the tetrode on each shank, we used the distal

most tetrodes on either shank (Fig. 1A). Therefore, each

recording used eight recording sites within an anterior

and posterior tetrode array. The entire preparation was

then rotated so that the locust was oriented dorsal side

up perpendicular to and 10 cm away from the apex of a

rear projection dome screen aligned to the center of the

right eye. The preparation was left for 15 min in front of

a projected white visual field (background lumi-

nance = 430 cd/m2) to allow acclimation to the experi-

mental setup. In this configuration, we designated

azimuthal coordinates such that 0° was in front of the

locust, 90° was perpendicular to the center of the eye (the

dome apex), and 180° was directly behind the locust.

Visual stimuli

The procedure for generation of visual stimuli was similar

to that used by (Guest and Gray 2006). Vision Egg soft-

ware (Straw 2008) running on a Python programming

platform rendered visual stimuli as 1024 9 1024 pixel

portable network graphics (png) files. Individual projected

pixels were ~0.7 mm, subtending a visual angle of ~0.4°,
which is below the acceptance angle of ommatidia of the

locust compound eye (Horridge 1978). Stimuli were pro-

jected onto a specialized rear projection dome screen with

an InFocus DepthQ LCD data projector at 85 frames/s,

which is above the flicker fusion frequency of the locust

eye (Miall 1978). Correction factors embedded in the

Vision Egg code accounted for distortion due to projec-

tion onto the curved surface. A 1.2-msec TTL pulse

included in each video frame and the vertical refresh syn-

chronization pulse (vsync) from the video card (NVIDIA

GeForce4 Ti4200 128 MB) were used to align physiologi-

cal recordings with the stimuli. The last TTL pulse was

used to determine the final frame of the presentation,

indicating the disappearance of the object from the

screen. The corresponding vsync pulse thus determined

the start of frame rendering. All visual stimuli involved

the movement of a 7-cm-diameter black disk traveling at

3 m/sec along predesigned trajectories. The luminance

values and Michelson contrast ratio (0.48) have been used

previously (Guest and Gray 2006). To test neural

responses to complex visual motion, we presented each of

20 locusts with 11 different trajectories based on a subset

from (McMillan and Gray 2012): straight looming along

45°, 90°, or 135° azimuth, translation parallel to the

locust longitudinal body axis at 80 cm from the eye and

three compound trajectories that began as translating and

transitioned to looming at 45°, 90°, or 135° azimuth
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(Fig. 1B). All trajectories with translational components

were repeated for both directions of motion, toward the

posterior or toward the anterior. We used the following

naming conventions to simplify descriptions of the stim-

uli: approaches with only a looming component were des-

ignated by the direction of approach (45, 90, 135),

movement with only a translational component were des-

ignated by the direction of motion (A = motion from

anterior to posterior, P = motion from posterior to

anterior), and compound trajectories were designated

based on the direction of initial translation and

subsequent direction of the looming component (e.g.,

A45 = translation from anterior to posterior transition-

ing to looming at 45° in the azimuthal plane). For each

locust, the sequence of stimuli was presented in a differ-

ent random sequence and each sequence was bracketed

by a 90° loom presented at both the beginning and end

to rule out the potential effects of the duration of the

experiment on DCMD responses. Therefore, in total, each

locust was presented with 13 stimuli. However, for analy-

sis of looms from 90° we only used the single approach

that was within the randomized sequence. Therefore 11

different trajectories were used for analysis. To prevent

confounding effects of neural habituation, the interval

between each presentation was at least 3 min.

Data acquisition, spike detection, and unit
discrimination

For each stimulus presentation, we recorded and stored

neuronal activity data from eight channels, pulses from

each frame of the stimulus, and vsync pulses. Neural

activity was amplified with an RA16PA Medusa preamp

(Tucker-Davis Technologies, Alachua, FL) and sampled at

25 kHz, whereas vsync and frame pulses were amplified

with an RA8GA Loggerhead preamplifier. An RX5 Pen-

tusa Base Station with Butterworth filter settings of

100 Hz (high pass) and 5 kHz (low pass) was used to

store the data to disc. For spike detection and waveform

sorting, we imported recorded data into Offline Sorter v.

4.1.0 (Plexon Inc. Dallas, TX). Neural data channels were

arranged into a tetrode configuration based on channel

mapping during initial data acquisition. Individual data

files contained data from one stimulus presentation to

one animal, which were presented in a different random

order for each locust. These files were combined into one

data file per animal that contained all stimulus types reor-

dered such that they were in the same sequence for each

locust. Thus, spike detection and waveform sorting were

performed on a single data file for each animal. Data

from the stimulus and vsync pulses were imported sepa-

rately into Offline Sorter and combined in the same order

for each locust. Stimulus and vsync pulses generated event

times used to align the data alignment with the stimulus

for spike train analysis.

The threshold for spike detection of physiological data

was set at three standard deviations from the mean volt-

age on each imported continuous data channel. We

sorted detected spikes using a semiautomatic process that

initially used the T-distribution E-M algorithm from Off-

line Sorter, which is a variant of the E-M algorithm (Sho-

ham et al. 2003). Pilot manual sorting of waveforms from

a single stimulus presentation to one animal revealed

approximately 20 discriminated units. Given that the

T-Distribution E-M algorithm agglomerates clusters

through an iterative process, we set the number of initial

“seed” clusters (units) to 35 to avoid under-sampling the

number of units. Following an initial automatic sort,

units were further discriminated manually based on wave-

form shape and amplitude (Fig. 1C). We set a minimum

inter-spike interval of 1 ms to avoid double counting of

overlapping waveforms within individual discriminated

units. To determine that recordings were stable through-

out the duration of stimulus sequences (approximately

40 min), we calculated the average and standard deviation

from the entire dataset for each locust.

Spike train analysis

Spike times for discriminated units were exported into

Neuroexplorer spike train analysis software (Nex Tech-

nologies, Plexon Inc., Dallas, TX) and aligned to either

the projected time of collision (TOC) for trajectories with

looming components or the time the object crossed 90°
azimuth (T90) for translation-only trajectories.

Given the orientation of our tetrode arrays (see above)

it was possible that the same unit could have been

recorded across both tetrodes. Therefore, we used cross

correlograms (bin width = 1 msec) to determine if units

were represented twice in each animal. The range of dis-

tances between recording sites on the probes was 114–
183 lm. For single units to be represented twice within a

1 msec time window across these recording site distances,

the conduction velocity of the axons would need to be

0.11–0.18 m/sec, which is slower than known values from

descending motion-sensitive neurons. (Gray et al. 2010)

reported conduction velocities of 2.6 and 2.0 m/sec for

DCMD and LDCMD, respectively. At a conduction veloc-

ity of 2.6 m/sec (e.g., DCMD) a spike would take

0.09 msec to spread across the farthest distance between

recoding sites and for a conduction velocity of 2.0 m/sec

(e.g., LDCMD) it would take 0.06 msec to spread across

the shortest distance. Therefore, a time window of 1 msec

is sufficiently long enough to resolve the same spike

recorded by each tetrode. Using this rationale, we

detected a pair of duplicate units from 1 locust and
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triplicate units from another. Therefore, from the 408 dis-

criminated units across all locusts, we determined that

405 were distinct (Table 1).

To determine if each discriminated unit responded to

the stimulus, we generated a peristimulus time histogram

(PSTH – 1 msec bin width and 50 msec Gaussian

smoothing filter) aligned to TOC or T90. The PSTH

included a 95% confidence level as well as a separate plot

of a weighted cumulative sum of spike counts tested

against an ellipse that represented the 99% confidence

level. The cumulative sum is a routine in Neuroexplorer

that was calculated with the following algorithm: for bin

1, cs(1) = bc(1)A; for bin 2, cs(2) = bc(1) + bc(2)-A X 2;

for bin 3: cs(3) = bc(1) + bc(2) + bc(3)-A X 3, etc. The

cumulative sum (cs) at each bin count (bc) includes the

counts from previous bins as well as the sum of the

Table 1. Summary statistics for sorted spikes across each tetrode for each animal.

Locust

Number of spikes
Total discriminated

units

MANOVA

Tetrode 1 Tetrode 2 Total Tetrode 1 Tetrode 2

L01 1317 1508 2825 15 F16,2614 = 5.1, P � 0.001 F12,3000 = 15.5, P � 0.001

L02 26,576 13,014 39,590 28 F30,52788 = 3.7, P � 0.001 F 22,26002 = 3.1, P � 0.001

L03 20,093 13,521 33,614 30 F28,40152 = 6.3, P � 0.001 F30,27008 = 4.1, P � 0.001

L04 8104 7906 16,010 23 F14,16190 = 3.1, P � 0.001 F28,15780 = 5.7, P � 0.001

L05 10,948 12,178 23,126 30 F18,21874 = 9.3, P � 0.001 F38,24314 = 33.7, P � 0.001

L06 12,368 13,579 25,947 28 F34,24698 = 14.8, P � 0.001 F18,27136 = 4.0, P � 0.001

L07 12,561 10,762 23,323 25 F26,25092 = 6.5, P � 0.001 F20,21500 = 7.9, P � 0.001

L08 17,110 14,329 31,439 15 F14,24214 = 55.6, P � 0.001 F12,28640 = 14.7, P � 0.001

L09 8106 10,091 18,197 10 F10,16198 = 4.6, P � 0.001 F6,20172 = 10.9, P � 0.001

L10 10,549 10,950 21,499 22 F18,21076 = 51.0, P � 0.001 F22,21874 = 4.9, P � 0.001

L11 14,967 11,954 26,921 24 F24,29906 = 2.2, P < 0.001 F20,23884 = 5.7, P � 0.001

L12 10,841 9,054 19,895 15 F10,21668 = 2.3, P = 0.011 F16,18088 = 3.8, P � 0.001

L13 13,638 12,885 26,523 20 F12,27260 3.2, P < 0.001 F24,25742 = 3.6, P � 0.001

L14 12,857 13,834 26,691 22 F22,25688 = 24.5, P � 0.001 F18,24832 = 4.3, P � 0.001

L15 11,695 11,569 23,264 18 F12,23374 = 4.8, P � 0.001 F20,23114 = 26.3, P � 0.001

L16 8933 9846 18,779 15 F14,17848 = 4.5, P � 0.001 F12,19676 = 3.2, P < 0.001

L17 7779 11,073 18,852 14 F14,15540 = 7.5, P � 0.001 F10,22132 = 12.3, P � 0.001

L18 14,989 12,519 27,508 19 F18,29956 = 2.0, P = 0.009 F16,25018 = 5.8, P � 0.001

L19 8084 11,245 19,329 12 F8,16156 = 6.1, P � 0.001 F12,22474 = 8.9, P � 0.001

L20 9411 10,601 20,012 20 F16,18802 = 4.5, P � 0.001 F24,21174 = 2.7, P < 0.001

Total 240,926 222,418 463,344 405

Mean 12,046 11,121 23,167 20

Median 11,322 11,407 23,195 20

S.D. 5252 2812 7530 6

Min 1317 1508 2825 10

Max 26,576 14,329 39,590 30

Figure 2. (A) Identification of responding units. Representative plots of 15 discriminated units from one locust responding to a disk looming

from 90°. Time of projected collision is indicated by the red vertical line. Upper plots show rasters of spike times. Middle plots show

peristimulus time histograms using a 1 msec bin and 50 msec Gaussian smoothing filter. The blue horizontal line is the 95% confidence

interval of the histogram. Bottom plots show the cumulative sum (purple line) against a 99% confidence interval ellipse (gray shade). Units 2

and 8 did not generate any spikes and unit 15 showed no significant change in firing rate, indicating that these three units did not respond to

the stimulus. The remaining units showed some form of response, as indicated by the histogram touching or passing the 95% confidence

interval and the cumulative sum touching or extending outside the 99% confidence ellipse. (B) Frequency histogram showing the distribution of

units responding to one or more of the 11 stimuli within a randomized sequence. (C) Data from all locusts (n = 20) plotting the median

number of units (upper panel) and mean percent of all discriminated units (lower panel) that responded for each stimulus type. There were no

significant differences in the number or percent of units responding to different stimuli. Gray cells, boxes, and bars represent data from purely

looming trajectories, orange boxes and bars from translating trajectories, blue boxes and bars from compound trajectories. Boxes represent the

median, 25 and 75th percentiles. For the upper panel, whiskers represent the 10th and 90th percentile and symbols represent the 5th and

95th percentiles. For the lower panel, bars represent the mean and error bars represent the positive standard deviation. (see Materials and

Methods for details).
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current bin count minus the average (A) of the entire his-

togram. A cumulative sum that did not extend outside

the 99% confidence level ellipse was considered to have

represented a firing rate that showed no significant

change resulting from the stimulus, that is, no response,

whereas a cumulative sum that extended outside, or

touched, the ellipse was considered to have a significant,

stimulus evoked, firing rate change (i.e., a response). Fig-

ure 2A shows an example from one locust of units that

generated a significant response or no response when pre-

sented with a disk approaching from 90°.

Dimensionality reduction and tuning of
common trends

To reduce dimensionality of the data and explore putative

common responses across units, we first performed a prin-

cipal component analysis (PCA) on raw spike times of units

within each animal using a 50 msec bin. For trajectories

with a looming component we used data from t = �1.5 sec

to TOC whereas for translating trajectories we used spike

times from � 2 sec relative to T90. The number of compo-

nents extracted for further analysis was determined by

selecting the number of components with Eigenvalues > 1

and accounting for at least 70% of the cumulative variance.

We then created PSTH plots for the resulting population

vectors to determine if they responded to the stimuli. We

considered a vector to have responded if the plot of the

standardized firing rate crossed a 95% confidence interval.

Slight variations in tetrode positioning precluded

unambiguous recordings of the same neurons from each

preparation, resulting in an inability to directly compare

population vectors across locusts. Therefore, we pooled

responding population vectors across all animals for each

stimulus type. The pooled population vectors were ana-

lyzed using dynamic factor analysis (DFA), a method for

identifying underlying common trends shared among

time series (Zuur et al. 2003). DFA is a dimension reduc-

tion technique that identifies similarities among popula-

tion trajectories, similar to principal components analysis

for time series. DFA models a set of univariate time series

as linear combinations of underlying common trends,

explanatory variables, and noise:

Yiwt ¼ aiwMt þ ciw þ et (1)

where Yiwt is the neural response of the ith PC axis of the

wth individual at time t (i = 1, . . ., n; w = 1, . . ., 20; and

t = �1.50, . . ., 0); ai is the factor loading for the ith PC

axis of the wth individual; Mt is the common trend at

time t; ciw is a constant level parameter for the ith PC axis

of the wth individual; and ɛt represents the noise. Factor

loadings (ai; weights relating observed unit responses and

fitted values) indicate how representative a given common

trend is for each PC axis for each individual.

Population vector data were standardized (mean sub-

tracted from each value and divided by standard devia-

tion) prior to analysis to facilitate interpretation of factor

loadings and common trends (Zuur et al. 2003). Dynamic

factor analyses were run twice, once with equal error vari-

ance for each time series (indicating similar error among

PC axes and individuals), and the second with unequal

error variances (indicating different error between PC

axes and individuals); both models used diagonal covari-

ance matrices (no covariance among time series). The

optimal number of common trends was identified

through an iterative process starting with M = 1 common

trends and continuing to increase the number of common

trends until the model fit worsened (Table 2). Model

selection was conducted using a combination of Akaike’s

Information Criterion adjusted for small sample size

(AICc), distribution of the residuals, and biological inter-

pretation (Zuur et al. 2003). All analyses were conducted

in R 3.1.1 (Team 2014). Dynamic factor analyses were

Table 2. Number of common trends, variance structure, number

of parameters, log-likelihood, AICc, and wi (Akaike weight) from

dynamic factor models for a 90° loom.

Number of

common

trends

Variance

structure

Number of

parameters

Log-

likelihood AICc wi

10 DU 802 �3005.9 7934.1 1.00

11 DU 869 �2859.5 7988.2 0.00

9 DU 734 �3135.1 8000.4 0.00

8 DU 665 �3292.6 8126.8 0.00

7 DU 595 �3457.7 8272.1 0.00

6 DU 524 �3616.0 8407.1 0.00

5 DU 452 �3770.0 8537.1 0.00

4 DU 379 �3968.6 8759.7 0.00

3 DU 305 �4166.6 8984.2 0.00

10 DE 726 �3739.7 9187.3 0.00

11 DE 793 �3586.7 9251.9 0.00

2 DU 230 �4400.7 9284.5 0.00

9 DE 658 �3890.2 9303.2 0.00

8 DE 589 �4057.7 9456.4 0.00

7 DE 519 �4218.2 9599.0 0.00

6 DE 448 �4373.7 9734.8 0.00

5 DE 376 �4538.2 9891.8 0.00

4 DE 303 �4682.7 10012.0 0.00

3 DE 229 �4844.2 10169.3 0.00

2 DE 154 �5029.8 10377.7 0.00

1 DU 154 �5203.4 10725.0 0.00

1 DE 78 �5576.9 11312.3 0.00

Best model indicated in bold. DU, dynamic factor analysis with

unequal variance; DE, dynamic factor analysis with equal variance

(see Methods for details).
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conducted using the MARSS package (Holmes et al.

2012).

To determine which units contributed most to the

common trends for a direct loom from 90°, we selected

population vectors (for DFA) and subsequent units (from

PCA) with factor loadings ≥ 0.3 (DiStefano et al. 2009)

on the respective analysis. The combined activity of units

that are not part of a putative population could be

expressed simply as an average firing rate (equal loadings

with no weighted correlations), which could inform the

possibility that units are firing independently or in a cor-

related manner (with weighted correlations). Therefore,

we examined responses of each constituent unit as well as

the mean across units and common trends from DFA.

Statistics

All data were tested for normality and equal variance to

determine whether further testing required parametric or

nonparametric statistics. Across all stimulus types, we tested

the median number of responding units using a Kruskal–
Wallis one-way analysis of variance on ranks and the mean

percent of responding units using a one-way analysis of vari-

ance. Tests were indicated by the H or F statistic, respectively,

with a subscript to indicate the degrees of freedom. Where

appropriate, data that passed normality and equal variance

were plotted as the mean and positive standard deviation,

nonparametric data were plotted as boxes representing the

median, 25 and 75th percentiles, with whiskers representing

the 10th and 90th percentile, and symbols representing the

5th and 95th percentiles.

Results

Unit discrimination

Spike sorting revealed a total of 463,344 spikes from all

20 locusts (median of 23,195 spikes per locust summed

across both sets of tetrodes; range = 2825–9590 spikes per

tetrode (Table 1). MANOVA analysis on sorted clusters

from each combined data file for each locust revealed that

clusters were statistically well-separated in two-dimen-

sional space. We discriminated a total of 405 units from

20 locusts (median = 20 units/locust, range = 10–30) that
accounted for 100% of the detected spikes. Figure 1C

shows the sorted spikes from a single locust that represent

15 discriminated units across the two tetrodes, which

were stable throughout the stimulus sequences.

Unit responses

Figure 2A shows responses of units represented in Fig-

ure 1C when presented with a disk looming from 90°.

Based on our criteria for determining whether units

responded or not (see Materials and Methods), we

found that 12 of the 15 units generated significant

responses.

Figure 2B shows the distribution of the number of

units across the entire dataset (n = 20 locusts) that

responded to 1 or more of 11 stimuli (not including

looming stimuli at the beginning and end of the

sequence). We found that while units responded to differ-

ent numbers of stimuli, the largest group (80 units)

responded to all stimuli. Table 3 provides a summary of

the number of responding and nonresponding units

across the entire dataset, showing that 305 discriminated

units, representing 75% of the total, responded to at least

one of the stimuli. Table 3 also shows that relatively few

units responded solely to the three general stimulus types

(looming, translating or compound) or movement con-

strained to either the frontal or rear visual field. However,

49 units responded only to a combination of looming

and compound motion, that is, no response to pure

translation. Figure S1 shows matrices of responding units

across the entire dataset and stimulus type, including

from the same locust (L16) represented in Figure 1C. In

this example, a range of 10–13 units showed some

response to any stimulus, eight responded to all stimuli

and two (units 5 and 11) did not respond to pure transla-

tional motion. While unit 2 responded preferentially to

motion within the anterior visual field, no units

responded solely to motion within the posterior visual

field (Table 3). Comparing across stimulus types, we

found no significant differences in the median number

(H12 = 20, P = 0.06) or mean percent (F12 = 1.5,

P = 0.12) of units responding to each stimulus (Fig. 2C).

These findings suggest that, generally, the pool of

motion-sensitive neurons was of similar size across

Table 3. Unit response summary

Number % Median (range)

Total units 405 20 (10–30)

Responding 305 75 16 (7–22)

Nonresponding 100 25 5 (0–13)

Looming 4

Translation 1

Compound 13

Looming + compound 49

Anterior visual field 1

Posterior visual field 0

Lower 6 rows refer to responses to stimuli that only contain the

specified motion. Looming (45, 90 and 135); translation (A and P)

compound (A45, A90, A135, P45, P90, P135); anterior visual field

(45, A45); posterior visual field (135, P135).
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different stimulus types. However, while there were no

differences in the median number of responding units,

the total number varied across stimulus types (Table 4)

and not all units responded to each stimulus (Fig. S1).

Unit responses to object motion across all stimulus

types were highly variable across and within each stim-

ulus type. As a first attempt to identify and classify

patterns of unit response properties, we examined the

231 units from 20 locusts that responded to a disk

looming from 90°. At this initial level of classification,

we were able to classify four general response types

from 161 units based on firing rate modulation during

object approach (Fig. 3). These were as follows: (1) a

firing rate increase near time of projected collision

(Fig. 3A), (2) a firing rate decrease near time of pro-

jected collision (Fig. 3B), (3) an early to intermediate

firing rate peak (Fig. 3C), and (4) an early firing rate

increase that was maintained until time of projected

collision (Fig. 3D). Those from category 1 were further

subdivided into 10 subcategories based on peak firing

rate increments of 20 spikes/s (Fig. 3A). Units from

category 2 were further subdivided based on relative

distributions of the mean firing rate of the histogram

and placed into one of four increments of 50 spikes/s

(Fig. 3B). Units from category three showed distinct

peak firing rates earlier than those from category 1 and

were distinguished by an early peak occurring from

�1.0 to �0.75 sec before TOC or an intermediately

timed peak that occurred 0.75 to 0.4 sec before TOC.

There were relatively few units from category 4 and

these could not be reliably subdivided further. While

the remaining 70 units responded to a loom from 90°,
the firing modulations were inconsistent and could not

be classified. Therefore, it was not possible to classify

all units based solely on common responses to loom-

ing.

Taken together variable tetrode positioning (see Materi-

als and Methods) likely resulted in variability in recording

the number of responding units across all stimuli, which

limited our ability to unambiguously classify unit

responses within a single stimulus type. Therefore, we car-

ried out dimensionality reduction analyses to explore

putative common patterns in responses within and across

stimuli.

Population vectors within individual locusts

Principal component analysis (see Materials and Meth-

ods) of units from one locust, represented in Figs. 1C

and 2A, revealed three components that explained 70% of

the cumulative variance and produced eigenvalues > 1

(Fig. 4A). From all sorted units in the same locust, we

observed that the weighting of units in the major princi-

pal components differed across stimuli (Fig. 4B). After

converting components from responses to a loom from

90° from all locusts (n = 20) into population vectors and

plotting the PSTHs relative to TOC (Fig. 4C), we

observed three distinct response types. The first (pv1,

Fig. 4Ci) showed an increase in the firing rate near TOC,

the second (pv2, Fig. 4Cii) showed a decrease near TOC

and the third (pv3, Fig. 4Civ), showed no specific pattern.

A population vector from another locust, showed a nar-

rower valley in the firing rate near TOC (Fig. 4Ciii).

While three response types (Fig. 4Ci, ii and iii) were

reflective of the first two categories for individual units

(Fig. 3A and B), they did not reveal subcategories nor an

early or intermediate peak in the firing rate. However, the

population categories were represented broadly across a

Table 4. Responding units and dimensionality reduction across stimuli

Stimulus 45 90 135 A P A45 A90 A135 P45 P90 P135

#Units responding 213 231 222 173 175 219 201 211 188 205 228

#Components (PCA) 94 77 94 126 122 103 110 115 108 103 109

#Trends (DFA) 8 10 9 7 6 10 5 5 5 7 10

Figure 3. General response categories of units from all locusts responding to a direct loom from 90°. (A) Units that responded with an

increasing firing rate near time of projected collision (n = 124). Based on relative distributions of peak firing rates, units were further subdivided

into increasing rate bins of 20 spikes/sec (inset for each graph). No units showed peak firing rates in the range of 180–200 spikes/sec. (B) Units

that responded with a decreasing firing rate near time of projected collision (n = 21). Based on relative distributions of the mean firing rate of

the histogram, units were further subdivided into increasing rate bins of 50 spikes/sec (inset for each graph). (C) Units that responded with an

early (top panel) or intermediate (bottom panel) peak firing (n = 11). (D) Units in which the firing rate increased early during the approach and

maintained a relatively constant rate. For all graphs n = the number of units. Only 161 of 231 units that responded to a loom from 90° could

be categorized (see text for details).
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pooled set of vectors following PCA of all units respond-

ing to a direct loom from 90°, as evidenced by the heat

maps below the PSTHs in Figure 4C. The heat maps

below pv3 (Figure 4Civ) show that many vectors

responded with no categorical firing rate modulation.

These findings suggest that while a subset of population

vectors could be categorized based on firing rate modula-

tion, another subset showed variable responses.

We also found that the average number of compo-

nents varied between different stimulus types (Fig. 4D).

Fewer vectors represented unit responses to direct looms

(45, 90, and 135) compared to responses to pure trans-

lation starting in the anterior (A) or posterior (P) visual

field or responses to compound trajectories with a

longer duration translational component (A135, P45).

This relationship between the stimulus type and average

number of components contrasted that of the total

number of components (Table 4). On average, PCA

resulted in a dimensionality reduction of 48%, though

the reduction was less pronounced for purely translating

stimuli, suggesting that fewer components were required

to represent responses to stimuli with a looming com-

ponent.
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Figure 4. Principal component analysis of responding units

revealed distinct population vectors. (A) Scree plot of data from a

single locust (represented in Fig. 2A) showing eigenvalues (black

line) and cumulative % variance (red line). The dashed vertical

line shows the number of components (3) with eigenvalues >1

that explained at least 70% of the cumulative variance. These

components were converted to population vectors and used for

subsequent analysis. (B) Unit weighting within correlation matrices

of components across all stimuli for the 15 units represented in

Figs. 1C and 2A. Black cells are from units that did not respond

to the stimulus. (C) Perievent time histograms of population

vectors (pv) from locusts responding to a direct loom from 90°.

The blue horizontal line represents a 95% confidence interval of

the histogram and the red vertical line indicates the time of

projected collision. pv1 (i), pv2 (ii), and pv3 (iv) represent

corresponding components extracted from the same locust

represented in A. A fourth component (iii) represents a

component from a different locust. Heat maps below the

histograms represent the standardized firing rate divided into

50 ms bins and color coded for similar population vector types

across the entire dataset from all locusts such that deep blue is

the lowest value and deep red is the highest value. Each row of

the heat maps represents a single vector from one locust and the

asterisks to the right indicate the heat map corresponding to the

histogram. Numbers to the left of the heat maps represent the

number of vectors within the vector type. See text for details. (D)

The number of components that explained 70% of the variance

in unit firing across all locust and stimulus types. Data represent

the mean and positive standard deviation. Different letters above

bars represent significant differences between stimuli. Significance

assessed at P < 0.05.
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These findings, firing rate variability in a subset of vec-

tors responding to a direct loom from 90° and differences

in the number of components across trajectories, suggest

that categorization of general response properties

remained ambiguous at this level of dimensionality reduc-

tion. Therefore, we performed a dynamic factor analysis

(DFA) on the full set of components (see Materials and

Methods).

Common trends across population vectors

DFA revealed sets of common trends (CTs) among the

PCA components pooled from 20 locusts for each stimu-

lus type (see Materials and Methods for details). Table 2

demonstrates that in response to a loom from 90°, there
were 10 trends in the standardized firing rates, based on

the lowest value of Akaike’s Information Criterion

(AICc). The factor loadings of each of the 77 components

(Table 4) in each of the 10 CTs for this stimulus are

shown in Table S1.

We then plotted the standardized firing rates of the

CTs as PSTHs aligned to TOC in order to explore puta-

tive response types that coincide with individual unit or

population vector responses. We characterized CT

responses that extended outside of a 95% confidence

limit of the histogram within 0.5 sec before collision,

which is a behaviorally relevant time window (McMillan

et al. 2013). Figure 5 shows CT responses (black lines)

to a loom from 90°. As with units and vectors, we

found a subset of trends that responded with an

increased standardized firing rate near or leading up to

TOC (Fig. 5 – left column of plots). A second subset,

CT5 and 7, showed a firing rate decrease. CT2, CT10

and CT9 showed sequences of relatively small peak-val-

ley-peak. Comparing to population vectors from PCA,

CT1 resembled pv1(Fig. 4 Ci), CT5 resembled pv2

(Fig. 4Cii) and CT10 resembled vector responses from

Figure 4Ciii. The 36 nonclassified responses from Fig-

ure 4Civ (e.g., pv3) may have contributed to CT2 and

CT10. We also plotted the responses of units constituent

to each CT (gray lines) and unit averages (red lines).

The range of unit firing and differences between average

firing and CTs suggest that trends are not a result of

simple averaging of units and, instead, are result of

weighted correlations resulting from dimensionality

reduction.

Composition and tuning of common trends

To examine the composition and responses of CTs

across the stimulus types, we first determined the num-

ber of trends for each stimulus. Table 4 shows that tra-

jectories with direct looming (45, 90, 135) or relatively

brief translation (A45, P135) were represented by a

greater number of trends (8–10), whereas purely translat-

ing (A, P) or translation to 90° or beyond (A90, A135,

P45, P90) were represented by fewer trends (5–7). Thus,
the number of trends were related to the nature of the

stimulus, with fewer representing motion that is primar-

ily translational.

To examine how DFA common trend activity related

to object motion, we plotted overlays of all CTs and

object subtense angle (h) versus TOC or T90 for each

stimulus type (Fig. 6). For simple looms (45, 90, 135),

the firing rate was relatively consistent across CTs prior

to 0.5 sec before collision, though tuning was narrower

for 45 and 135. Within 0.5 sec of collision, tuning

broadened in response to all three simple looms, with

concurrent increasing, decreasing and maintained firing

rates. For translating trajectories (A and P), early tun-

ing was relatively broad compared to simple looms and

only one (A) or two (P) CTs showed increasing or

decreasing firing rates between 0.5 and 1.0 sec before

T90. Firing rates of the remaining CTs for each trans-

lating trajectory were maintained through to T90. For

compound trajectories, (Fig. 6 right panels) CT firing

rates were relatively consistent prior to the time of

transition, except for one CT each in A90, A135, and

P90, during which the standardized firing rate decreased

0.5–1.0 sec before transition. Within 0.5 sec of TOC or

T90, or following a trajectory transition, CT firing

broadened across a range of increasing or decreasing

firing rates. Generally, these results demonstrate that

correlated firing of units (in the form of common

trends from DFA) dynamically tune across a broad

range within individual stimulus types and that the

tuning range varies with stimulus trajectories.

Discussion

To the best of our knowledge, this is the first study to

record parallel activity of multiple descending neurons

from the nerve cord of locusts presented with simple and

complex visual motion. This approach has allowed us to

determine that correlated multineuronal activity relates to

varying properties of behaviorally relevant visual stimuli.

We discriminated 405 units (10–30 per locust) and classi-

fied them based on whether they responded to one of

11visual stimuli. Dimensionality reduction revealed popu-

lation vectors within animals (PCA) and common trends

of pooled population vectors (DFA). We found 5–10
common trends (CTs) that described general response

properties depending on the duration of translational

object motion across the locust visual field. Broadening of

the CT relationship with the object size suggested distinct

tuning across correlated neurons.
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Data recording and analysis

One of the limitations of multichannel, extracellular

recording techniques is the inability to unambiguously

identify individual neurons between animals due to

subtle differences in tetrode positioning (Bhavsar and

Heinrich 2015). While we took great care to position

the tetrodes as accurately as possible in each prepara-

tion, we could not position the recording sites in the

exact position relative to the same axons in each ani-

mal. Therefore, it was not possible to record, unam-

biguously, from the same neurons in each preparation.

For this reason, we increased the sample size by pool-

ing recordings across all animals for subsequent analy-

sis. The caveat of positioning notwithstanding, many

locust neurons can be characterized by responses to

visual motion. Further, given that we discriminated 10–
30 units per individual, it would be technically impossi-

ble to identify neurons using the gold standard of

simultaneous, intracellular recordings. Nevertheless,

given that the connective between the subesophageal

and prothoracic ganglion contains ~60 axons with

diameters >5 lm (Rowell and Dorey 1967) and that we

recorded from a stationary locust, it is likely that we

sampled from a large percentage of the descending sen-

sory interneurons within the cord. Another caveat is

that we presented each stimulus only once to each

locust. Therefore, we were not able to describe average

responses of identified units or populations within each

locust. By repeating sequences of fewer stimuli in future

experiments we will be able to address whether multiple

units show stereotyped responses. Nevertheless, the

intent of the experiments reported here was to examine

responses of multiple units across a wide range of sim-

ple and complex stimuli that we used in previous

experiments when recording from DCMD alone. The

number of stimulus presentations (13) combined with

the duration of recording stability (approximately 1 h)

precluded repeated presentations of each stimulus to

each locust. While average responses can describe cod-

ing properties of units and population vectors, in the

natural environment, specific object motion with the

locust’s visual field would likely not occur in a repeti-

tive, controlled sequence. Therefore, our experimental

design is an attempt to emulate aspects of variable nat-

ural object motion.

Units compared to identified visual
interneurons

The unit responses we observed likely reflect responses of

previously identified descending visually sensitive interneu-

rons in locusts. Multimodal M and S interneurons (Catton

1980) respond to visual stimuli across small subtense

angles and display weaker inhibitory responses (Catton

1982) and less adaptation (Catton 1988) than DCMD. This

property could result in weaker firing rate modulation

when presented with object motion, similar to what we

observed for units represented in Figure 3D. We may also

have recorded from Descending Ocellar Neurons (DONs)

that convey visual information from the ocelli to the tho-

racic ganglia (Rowell and Pearson 1983). However, DON

responses are tuned to wide field motion such as that gen-

erated by yaw, pitch, or roll during flight. Similarly, the

DNC neuron (Griss and Rowell 1986) responds to wide

field motion produced by a diving banked turn to the con-

tralateral side (Rowell and Reichert 1986). The Descending

Ipsilateral Movement Detector (DIMD, Burrows and Row-

ell 1973) and other attitude deviation detectors (Rowell

and Reichert 1986) receive input from the ipsilateral visual

field and are thus likely not represented in the responses

we observed following contralateral eye stimulation. It is

highly likely that we recorded activity of the DCMD given

the firing rate modulation we observed in units with peak

firing rates from 160 to > 200 spikes/s (Fig. 3A), which

are consistent with previous studies using similar stimuli

(McMillan and Gray 2012). It is also likely that LDCMD is

represented in one of the types shown in Figure 3A (100–
120) with a firing rate that increases approximately 0.5 sec

before collision and peaks slightly higher than 100 spikes/

s, which is consistent with LDCMD responses to a looming

disk traveling at 1 m/sec (Gray et al. 2010). Following

more precise characterization of units through sequential

use of a more restricted set of stimuli (see above), future

experiments could then incorporate a greater range of

visual stimuli, including wide field, to determine if the par-

allel responses we describe include previously identified

neurons.

Figure 5. Dynamic factor analysis (DFA) of population vectors revealed 10 distinct trends in response to a disk looming from 90°. The analysis

was performed on the 77 population vectors shown in Fig. 4C, representing 154 units across 20 locusts. The standardized firing rates (left

graph axes) plotted as black lines and the 95% confidence interval of the CT histogram plotted as dashed blue lines. Firing rates (right axes) of

units (gray lines) that contributed to each trend and the mean of the units (red lines) are overlaid. Numbers in parentheses are the number of

units contributing to each trend (see Materials and Methods for details). Within the last 0.5 s of object approach (see Results), Trends 1, 4, 8,

3, and 6 (left panels) showed significant standardized firing rate increases, trends 5 and 7 (top right panels) showed significant decreases,

trends 2, 10, and 9 (middle and lower right panels) showed sequences consisting of small peaks-valleys-peaks.
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Object motion relates to the distribution of
responding neurons

Within many systems, ensemble reconfiguration may

allow a level of functional plasticity that can accommo-

date complex sensory environments and which may be

expressed to a greater or lesser extent across taxonomic

groups. In the mouse primary visual cortex, coupling of

individual neurons within a population varies but is inde-

pendent of sensory preferences and may be more related

to motor intention (Okun et al. 2015). In smaller, and

more tractable nervous systems, however, it is likely that

appropriate coding of variable sensory information

requires neurons from a constrained pool to participate

differentially in dynamic population activity. Multisensory

neurons in the cockroach central complex respond to

changes in antennal stimulation and light, and population

responses are based on individual unit firing (Ritzmann

et al. 2008). In the moth antennal lobe, odors are

represented dynamically through restructuring of spatial

and temporal components of ensemble responses (Daly

et al. 2004). Here, we found that from a pool of 405

units, the absolute number that responded varied with

the type of stimulus (Table 4 and Fig. S1), though the

mean number and percent were consistent between indi-

viduals (Fig. 2C). These findings suggest that while the

number of responding neurons is constrained, unit

activity reflected in different response categories (Fig. 3)

contribute to population vector activity in a context-

dependent manner (Fig. 4B).

Composition of groups of correlated
neurons varies with stimulus properties

Within individuals, spatiotemporal properties of dynamic

stimuli activate suites of receptors in different patterns

that are reflected in the composition and dimensionality

reduction of activity in downstream neural ensembles.

Dimensionality within the gustatory sensory cortex of rats

grows linearly with ensemble size and predicts an upper

bound proportional to pairwise correlations between neu-

rons (Mazzucato et al. 2016), whereas in barrel cortex,

emergent ensemble activity is invariant across large

changes in stimulus amplitude (Jacobs et al. 2015). Cou-

pling of neurons within populations of mouse visual

cortex can be diverse, ranging from narrow to broad

(Okun et al. 2015), demonstrating that dimensionality

reduction can vary within a single sensory modality.

Dimensionality reduction can also resolve tradeoffs

between sensory resolution and processing requirements.

Salamander retinal ganglion cells track motion using a

population vector average that, though perhaps not glob-

ally optimal, can be implemented with computational

efficiency within an ethologically relevant range of stimuli

(Leonardo and Meister 2013). In rhesus monkey visual

cortex, vector averaging revealed which neurons partici-

pated in population responses to changes in spatial prop-

erties of a visual stimulus (Priebe and Lisberger 2004).

We found that, within individuals, the distribution

(Fig. 4B) and, across all locusts, the number (Fig. 4D and

Table 4) of components that explained at least 70% of

the firing rate variability changed depending on the stim-

ulus. We also distinguished population vectors based on

three general types of responses to direct looms (Fig. 4C).

Through DFA, we were able to further reduce the dimen-

sionality of an ensemble pool from all individuals and

observe responses to object motion from trends com-

posed of populations vectors. This allowed us to disam-

biguate variability of units within individuals and identify

common trends in responses to direct looms (Fig. 5) as

well as their relationships to changes in object size during

an approach (Fig. 6).

Correlated neural responses across a range
of spatiotemporal stimulus properties

Population responses of complex, dynamic sensory infor-

mation can provide downstream neural circuits with

computationally efficient decoding strategies to effect

appropriate and flexible responses associated with behav-

iors. Population tuning curves of rabbit retinal ganglion

cells are broad, minimizing large errors at the expense of

higher average error and may be sufficient to encode a

range of stimulus parameters including object velocity,

size and angle of motion (Fiscella et al. 2015). Within rat

barrel cortex, invariance of ensemble activity across large

changes in stimulus amplitudes could be important for

early stage sensory processing (Jacobs et al. 2015). Popu-

lations also encode across ranges of spatiotemporal stimu-

lus properties. In Drosophila antennal lobe, populations of

Figure 6. Overlay of DFA trend responses for each stimulus type. Gray lines indicate directly looming stimuli, orange indicates translating

stimuli and blue indicates stimuli that transitioned from translating to looming. The left axes indicate the standardized firing rate. Insets indicate

the trajectory type (n = number of trends). Black lines indicate the object subtense angle (right axes). Note the reduced scale for the subtense

angle of translating stimuli (orange). For the x-axis of looming and transitioning stimuli, 0 indicates time of projected collision (red vertical line)

whereas for translating stimuli 0 indicates the time the object reached 90° azimuth (blue vertical line). Shaded areas represent durations of

noncollision trajectories.
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local inhibitory neurons encode stimulus intensity on

multiple timescales with responses controlled by combina-

tions of synaptic inputs and intrinsic properties (Nagel

and Wilson 2016). Multiplexing in leech mechanosensory

neurons encodes mechanosensory location and intensity

via fast spiking touch sensory (T) cells and summed spike

counts of pressure sensitive (P) cells, respectively (Pirschel

and Kretzberg 2016). Gonzalez-Bellido et al. (2013) found

that 16 dragonfly visual neurons code a population vector

that represents target direction across 360° and is pro-

vides reliable computation. Population responses can also

be important for changing stimuli similar to what we

tested here. Salamander retinal ganglion cells track

motion using a population vector average that is efficient

within an ethologically relevant range of stimuli (Leo-

nardo and Meister 2013). Within the medial temporal

area of the extrastriate visual cortex in Rhesus monkeys,

population responses predict effects of spatial frequency

and contrast on target speed estimations (Priebe and Lis-

berger 2004) and Macaque visual cortex multiplexes natu-

ral stimuli through coding on different time scales

(Ayzenshtat et al. 2012). Consistent with our findings,

neuronal populations in ferret visual cortex (V1) vary

response properties (peak firing) when objects change

direction (Wu et al. 2011).

In locusts, adaptive coding in a set of auditory sensory

neurons can circumvent ambiguity created by adaptation

and allow the system to temporally disambiguate auditory

patterns and location (Hildebrandt et al. 2015). In the

context of the locust visual system, since correlated firing

of presynaptic inputs to the LGMD can provide selectivity

to looming objects (Jones and Gabbiani 2010) it is rea-

sonable to predict that population responses of descend-

ing interneurons could provide a computationally

efficient way to convey important information to motor

centers involved in generating avoidance responses. With-

out coordinated population responses, we may expect that

the total firing of all individual units would provide a

poor representation of objects traveling along complex

trajectories. We found that low dimension correlated neu-

ral responses relate to spatiotemporal aspects within a sin-

gle stimulus type (Fig. 4) and that the relationships

change depending on the complexity of object motion

(Fig. 6). Future experiments that incorporate multichan-

nel recordings from tethered locusts “flying” in a closed-

loop arena will allow us to directly address whether corre-

lated activity converges to provide an efficient neural code

for downstream motor enters that drive flight steering

behavior.

The findings we present here directly address a long-

standing requirement to understand fundamental prop-

erties of correlated neural firing to more accurately

describe the make-up, responses, and coding properties

of neural populations that are implicated in controlling

a complex behavior. Building on our data, it will now

be possible to identify populations and their responses

to a wide range of visual stimuli ranging from local to

wide field motion to more accurately describe the tun-

ing of units and populations and clearly determine if

range fractionation is embedded within population

responses, as suggested by Figure 6. We will also be

able to include concomitant intracellular recording tech-

niques to investigate presynaptic visual inputs from the

optic lobes to the populations as well as postsynaptic

outputs of circuits within the thoracic ganglia that con-

trol motor centers associated with avoidance behaviors.

The latter will allow us to determine if and how popu-

lations converge onto motor elements important for

escape behaviors. For example, while DCMD makes rel-

atively weak connections onto subsets of flight

motorneurons (Simmons 1980) it is not known if other

motion-sensitive interneurons converge and summate to

produce stronger excitation of flight motorneurons,

which could account for variable responses to

approaching objects during flight.
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Figure S1. Response matrices of the entire data set of 405

units from 20 locusts. For each locust (L), the top and

bottom matrices represent units recorded from tetrode 1

and 2, respectively. Filled and open cells identify respond-

ing and non-responding units, respectively. Numbers in

parentheses represent the number of units responding to

any of the stimuli. Units are represented in rows and the

stimulus is represented in columns. Grey stimulus

numbers and cells indicate directly looming stimuli,

orange indicates translating stimuli and blue indicates

stimuli that transition from translating to looming. The

legend identifies the specific stimulus (see Materials and

Methods for details).

Table S1. Factor loadings from the dynamic factor model

for a 90° loom (Supp. Table 2) including ten common

trends (CT1 –CT10) and an unequal covariance structure.
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