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Summary  

Rhythmic motor behaviors are generated by neural networks termed central pattern generators 

(CPGs). Although locomotor CPGs have been extensively characterized, it remains unknown how 

the neuronal populations composing them interact to generate adaptive rhythms. We explored the 

non-linear cooperation dynamics among the three main populations of ipsilaterally projecting 

spinal CPG neurons – V1, V2a, V2b neurons – in scratch reflex rhythmogenesis. Ablation of all 

three neuronal subtypes reduced the oscillation frequency. Activation of excitatory V2a neurons 

enhanced the oscillation frequency, while activating inhibitory V1 neurons caused atonia. These 

findings required the development of a novel neuromechanical model that consists of flexor and 

extensor modules coupled via inhibition, in which rhythm in each module is generated by self-

bursting excitatory populations and accelerated by intra-module inhibition. Inter-module inhibition 

coordinates the phases of flexor and extensor activity and slows the oscillations, while facilitation 

mechanisms in excitatory neurons explain the V2a activation-driven increase in frequency. 
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Introduction 

Diverse rhythmic motor behaviors occur across the animal kingdom, arguing evolution has 

selected several mechanisms to generate rhythmic activity. However, the neuron types and circuit 

dynamics underlying this diversity of rhythms remain a long-standing question. Conserved 

neuronal networks in the vertebrate spinal cord, termed central pattern generators (CPGs) are able 

to produce a range of rhythmic motor behaviors including swimming, walking, running and 

scratching. These rhythmic behaviors show specificity in the timing and coordination patterns of 

muscle contractions, largely by shaping the output of the different motor pools that innervate limb 

and appendicular muscles (Goulding, 2009; Kiehn, 2016). 

Locomotion has long been used as model behavior to study the mechanistic underpinnings of 

rhythm generation and the underlying cellular and circuit components of CPGs in aquatic and 

terrestrial vertebrates. The spinal locomotor CPGs comprise six genetically identified interneuron 

populations - dI6, V0, V1, V2a, V2b and V3 neurons - that differ in their axonal projection patterns 

and neurotransmitter phenotypes (Goulding, 2009). Studies in mammals have revealed that the 

locomotor rhythm is primarily generated by excitatory neurons and/or neural networks that display 

intrinsic bursting properties (Dougherty and Ha, 2019). These neurons are primarily ipsilaterally 

projecting such that each spinal hemicord has the capacity to generate rhythmic activity (Kiehn, 

2016). In zebrafish, the excitatory Chx10-expressing V2a neurons (Chx10-V2a) have been shown 

to be rhythmogenic (Ampatzis et al., 2014). However, in rodents ablating or silencing Chx10-V2a 

neurons does not abolish the locomotor rhythm (Crone et al., 2008, 2009; Dougherty et al., 2013). 

This may be due to compensatory activity from Shox2-expressing V2a neurons (Shox2-V2a) 

(Dougherty et al., 2013), V3 neurons (Zhang et al., 2008), and the non-canonical CPG population, 

the Hb9-expressing neurons (Caldeira et al., 2017). Remarkably, inhibitory neurons also contribute 

to rhythmogenesis, with the loss of V1 neurons leading to a slowing of the fictive locomotor rhythm 

(Gosgnach et al., 2006; Trevisan et al., 2024). Fast swimming in zebrafish (Kimura and 

Higashijima, 2019) and tadpoles (Vijatovic et al., 2024) also depends on V1 neuron activity. While 

the loss of the ipsilateral inhibitory V2b neurons increases swimming frequency in larval zebrafish 

(Callahan et al., 2019), ablating these neurons in adult mice was found to have little or no effect on 

the locomotor rhythm (Britz et al., 2015). Despite these advances in defining the functional 

contribution of V1, V2a and V2b neurons to locomotor rhythmogenesis, we are still far from 
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understanding how the dynamic interactions among these excitatory and inhibitory neurons 

contribute to generate other rhythmic motor behaviors. 

Current models of how excitatory and inhibitory neurons cooperate to drive rhythm and 

motoneuron firing (Brown, 1911, 1914; Friesen and Stent, 1977; McCrea and Rybak, 2008; Perkel 

and Mulloney, 1974) have coalesced around the classic half-center model driven by the inhibitory 

coupling of the flexor and extensor modules (Brown, 1911). In alternative models, locomotor 

rhythm arises from individual modules acting as intrinsic bursting oscillators (Ausborn et al., 2018; 

Dougherty and Ha, 2019; Jankowska et al., 1967a, 1967b; Lundberg, 1981; Wallén and Grillner, 

1987). Nevertheless, it remains unclear if these rhythmogenic mechanisms and their underlying 

neural components and circuit architectures hold true for other rhythmic behaviors, given that 

different motor behaviors such as swimming and walking in aquatic vertebrates rely on both shared 

and specialized CPG neurons (Berkowitz et al., 2010). Molecularly distinct subsets of interneurons 

and motoneurons that are organized into specialized microcircuit modules enable adult zebrafish 

to swim at different speeds (Ampatzis et al., 2014). It is not known, however, whether the same 

principles apply to rhythmic movements in limbed animals. The mechanisms driving faster 

rhythmic movements in limbed animals have been particularly difficult to dissect, as animals adapt 

to higher speeds not only by simply increasing frequency but also by changing gait (Bellardita and 

Kiehn, 2015; Crone et al., 2008; Pinto and Golubitsky, 2006; Talpalar et al., 2013; Zhang et al., 

2022). To address these questions we focused on a simpler rhythmic behavior, the scratch reflex 

(Sherrington, 1910). Animals typically walk at a frequency of 2-3 Hz (Bellardita and Kiehn, 2015), 

but scratch at a frequency of 6 Hz (Frigon, 2012), which here we refer to as a ‘fast rhythm’. A 

further advantage is that the scratch rhythm is unilateral and mostly mono-articular, thus allowing 

us to focus on the ipsilaterally projecting excitatory V2a and inhibitory V1 and V2b neurons to 

define the circuit architecture and the neural dynamics that underlie ‘fast rhythm’ generation in 

limbed animals.  

We found that ablation of either excitatory V2a or inhibitory V1 and V2b neurons reduced the 

frequency of scratch oscillations. Activation of V2a neurons increased the cadence. By contrast, 

activating V1 neurons caused an atonia-like state. Our experimental results contrasted previous 

models predictions, which for example suggest that reducing inhibition should result in faster 

rhythmic oscillations (e.g. (Ausborn et al., 2021; Rybak et al., 2006; Sherwood et al., 2011; Skinner 

et al., 1994)). These incongruities prompted us to develop a novel neuromechanical model, in 

which flexor and extensor modules are coupled via mutual inhibition. The rhythm in our model is 
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generated by self-bursting excitatory populations within each module and is dependent on the 

relative strength of intra- and inter-module inhibition. Facilitation mechanisms in excitatory 

neurons explain the faster scratch oscillations caused by activation of V2a neurons. In sum, the 

computational modeling based on our experimental manipulations provides a mechanistic solution 

to the non-linear cooperation dynamics that drive fast rhythmic behaviors in an ipsilateral network 

of excitatory and inhibitory neurons.  

Results 

High-frequency flexor and extensor oscillations during scratching 

Scratching is an evolutionary conserved reflex, executed as a stereotypical sequence of high 

frequency hindlimb oscillations (Sherrington, 1910). In a series of preliminary experiments, we 

analyzed the kinematic parameters of scratching in mice by injecting chloroquine, a potent 

pruritogen, in the nape of mice (Figure 1A). Scratch behavior was recorded for 30 minutes (Video 

S1), showing a sustained response with multiple scratch episodes of variable duration and 

frequency (Figure 1B). Individual scratch episodes were comprised of three phases: approach, 

rhythmic oscillations, and termination (Figure 1C, 1D), in which the hindlimb is initially flexed 

towards the trunk (approach), then rhythmically extended and flexed around the nape 

(oscillations), and finally extended back towards the floor (termination) (Figure 1D). Kinematic 

tracking showed that mice predominantly use the distal limb to execute the movement, with 

scratching generated primarily by rhythmic oscillations of the ankle (Figure 1D, 1E). The 

approach phase involved a stereotypical flexion of the limb with a similar duration across episodes 

and animals (Figure S1C), however, the frequency of oscillations, the duration of individual 

episodes, the amplitude of movements, and the termination phase were found to be highly variable 

within and across trials and mice (Figure S1A, S1B, S1D, S1E). By quantifying the frequency 

distribution of scratch oscillations, we were able to evaluate the intrinsic motor variability of this 

behavior that displayed an oscillation frequency ranging from 2 to 15 Hz, with a peak at 6 Hz 

(Figure 1F). These analyses demonstrate that mouse scratching is a unilateral movement driven 

by ankle joint oscillations over a range of frequencies, and it confirmed its use as an experimentally 

accessible model to address how CPG neurons generate and modulate motor rhythm.  

Ipsilateral excitatory V2a neurons drive the high-frequency scratch oscillations 

Rhythmic movements are driven by CPG neurons residing in the ventral spinal cord (Figure 
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2A) (Goulding, 2009). Since scratching is a hindlimb unilateral rhythmic movement, we focused 

on the three CPG neuron populations with ipsilateral projections: the excitatory V2a neurons and 

the inhibitory V1 and V2b neurons. The activity of these neuronal populations was selectively 

manipulated using an intersectional genetic approach involving mouse crosses that combined the 

hCdx2::FlpO allele (Britz et al., 2015), which restricts expression to the spinal cord, with selected 

Cre lines that developmentally capture the three neuronal lineages (Figure 2B). Dual recombinase-

expressing mice were then crossed with animals carrying one of among these Cre- and Flp-

dependent effectors, the diphtheria toxin receptor (DTR) allele (Tauds-DTR) (Britz et al., 2015) for 

neuronal ablation, the hM4Di DREADD (R26ds-hM4Di) (Bourane et al., 2015) for transient neuronal 

silencing, and the hM3Dq DREADD (R26ds-hM3Dq) (Sciolino et al., 2016) for transient neuronal 

activation. Importantly, these receptors only become active following the administration of their 

ligands, thus allowing for the normal development of the spinal circuits. 

Excitatory V2a neurons were ablated using Chx10Cre
 and hCdx2::FlpO to drive the expression 

of DTR (Britz et al., 2015) and administering the diphtheria toxin (DTx) twice in adult animals 

(Figure 2B, 2C). Littermates lacking the FlpO allele were used as controls. Two weeks after 

injecting DTx we tested the motor dynamics during chloroquine-induced scratching (Figure 2C). 

Ablating V2a neurons (Figure 2D, S2A) strongly affected the scratch response (Figure 2E) by 

significantly reducing the total number of scratch bouts (Figure S2B) and the average frequency 

of scratching oscillations (Figure 2F). A frequency distribution analysis of all the scratch episodes 

showed a marked shift towards slow oscillations, with the frequency peaking at 2 Hz in V2a 

neuron-ablated mice (Figure 2G). To confirm that these results were not due to either the re-

organization of the CPG circuitry post-ablation or compensation, we performed acute silencing 

experiments using the inhibitory DREADD hM4Di. CNO-dependent silencing of the V2a neurons 

(Figure S2C) also slowed the scratch rhythm (Figure S2D-S2F), phenocopying the impairments 

seen in scratching movements following V2a neuron ablation (Figure 2F, 2G). 

We then activated spinal V2a neurons using our intersectional genetic approach to drive the 

expression of the excitatory DREADD hM3Dq in these neurons (Figure 2H, S2G). Mice in which 

the V2a neurons were activated with CNO generated similar number of spontaneous scratch bouts 

(Figure S2H) but faster scratch oscillations as compared to CNO-treated control littermates 

(Figure 2I, S2I). Taken together, our data show that V2a neuron ablation or silencing slows the 

scratch oscillation frequency, whereas V2a neuron activation increases it. 
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Ipsilateral inhibitory neurons modulate the frequency of scratch oscillations 

To assess the role of inhibitory populations in driving scratch oscillations we targeted the V1 

and V2b neurons that are the principal source of ipsilateral inhibition onto limb motoneurons 

(Zhang et al., 2014). Expression of DTR was restricted to V1 neurons using hCdx2::FlpO and 

En1Cre (Britz et al., 2015), with littermates lacking the FlpO allele used as controls. Ablating the 

V1 neurons (Figure 3A, S3A) markedly impaired the execution of scratching (Figure 3B) by 

decreasing the oscillation frequency (Figure 3C, 3D) and reducing the total number of scratch 

bouts (Figure S3B). Acute silencing of V1 neurons via CNO-driven stimulation of hM4Di (Figure 

S3C) recapitulated the ablation phenotype (Figure S3D-S3F), again confirming that the slowing 

of the rhythm was not due to ablation-induced re-wiring or compensatory mechanisms. In contrast, 

CNO-activation of V1 neurons via hM3Dq (Figure 3E) did not increase the speed of scratching, 

but resulted in an atonia-like state, with no movements observed until the drug wash-out (Figure 

3F). 

Due to the lack of a specific Cre line to target V2b neurons, we used Hes2iCre to label all V2 

neurons (Hayashi et al., 2023) combined with VGATFlpO to restrict DTR expression to the 

inhibitory V2b subset. DTx was injected intrathecally to ensure spinal specificity. Ablation of the 

V2b neurons (Figure 3G, S3G) significantly reduced the frequency of scratch oscillations (Figure 

3H, 3I, S3I) compared to controls, with no changes to the total number of scratch bouts (Figure 

S3H). Taken together, our findings show that the inhibitory V1 and V2b neuron populations play 

a critical role in sustaining the high-frequency rhythmic oscillation during scratching. Furthermore, 

activation of the V1 neurons is sufficient to induce atonia, preventing the spontaneous execution 

of the scratch reflex. 

A neural model for high-frequency flexor and extensor alternation 

Our experimental observations on how perturbations of neuronal activity affect the rhythm of 

scratching oscillations challenge some of the predictions generated by existing models of CPGs. 

For example, our finding that ablation of inhibitory V1 or V2b neurons reduces the frequency of 

scratch oscillations (Figure 3C, 3D, 3I, S3I) contradicts the prediction that reducing inhibition 

should result in faster rhythmic oscillations (e.g. (Ausborn et al., 2021; Rybak et al., 2006; 

Sherwood et al., 2011; Skinner et al., 1994)). To address these discrepancies, we developed a novel 

neuromechanical model capable of dissecting the mechanisms underlying: 1) the decrease in 

oscillation frequency induced by ablation of excitatory V2a neurons (Figure 2F, 2G); 2) the 
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increase in scratching rhythm due to activation of excitatory V2a neurons (Figure 2I, S2I); 3) the 

decrease in oscillation frequency caused by ablation of inhibitory V1 and V2b neurons (Figure 

3C, 3D, 3I, S3I); and, 4) the atonia driven by activation of V1 neurons (Figure 3F). Further, our 

goal was not only to build a model capable of replicating our experimental results, but also able to 

generate new predictions on circuit dynamics. 

We developed a rate model of the ipsilateral premotor circuit driving flexor and extensor 

oscillations based on the population-average firing rate and synaptic activity of neuronal 

populations rather than individual neurons (see STAR Methods). We opted for a rate model as it 

enables simplifying conductance-based models by assuming constant or slowly varying inputs and 

asynchronous firing (Shriki et al., 2003), thus allowing it to be used to compute circuit dynamics 

and characterize their underlying mechanisms via simplified schemes (Golomb et al., 2006, 2022; 

Hayut et al., 2011). The circuit architecture of our rate model (Figure 4A) was built on four 

assumptions. First, the model has two modules, one controlling flexion (F) and one extension (E), 

coupled via inhibition. Motoneurons in the flexor module (MF) are innervated by excitatory flexor 

neurons (EF) and inhibitory extensor neurons (IX). Extensor motoneurons (MX) receive mirrored 

input. Second, the two excitatory neuronal populations (EF and EX) generate rhythmic activity by 

network bursting. In principle, network bursting can be driven either via intrinsic mechanisms of 

individual neurons (Coombes and Bressloff, 2005; Husch et al., 2015; Zhong et al., 2010), or by 

these neurons functioning as a population of coupled excitatory neurons with adaptation currents 

(Van Vreeswijk and Hansel, 2001). In our model, network bursting is generated via adaptation and 

intrinsic depolarization currents. Third, there are recurrent intra-module excitatory-inhibitory 

connections that modulate the frequency of rhythmic bursting. Fourth, excitatory neurons have 

facilitation mechanisms (Zhong et al., 2010), as facilitation has been shown to modulate the 

oscillation frequency in networks with bursting neurons (Jackman and Regehr, 2017; Melamed et 

al., 2008; Reid et al., 1999). 

Our model includes six neuronal populations, two excitatory (EF and EX), two inhibitory (IF 

and IX), and two motoneuron pools (MF and MX) (Figure 4A, see also STAR Methods). The 

EX and EF populations include an equal number of bursting V2a neurons, since V2a neurons do 

not display a bias in innervating flexor vs extensor motoneurons (Azim et al., 2014; Dougherty 

and Kiehn, 2010; Hayashi et al., 2018). Since ablation of Chx10-V2a neurons did not completely 

abolish the scratch rhythm (Figure 2F, 2G), the E populations include an additional rhythmogenic 

excitatory neuron type that we propose is analogous to the Shox2-V2a neurons or the ipsilateral 
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V3 neurons (Dougherty et al., 2013; Zhang et al., 2008). The I populations include V1 and V2b 

neurons that are not intrinsically bursting but have adaptation currents. The preferential inhibition 

of flexor motoneurons by V1 neurons and extensor by V2b neurons (Britz et al., 2015) is reflected 

in the model by the I population innervating flexor motoneurons (IX) being mostly composed of 

V1 neurons, and the I population innervating extensor motoneurons (IF) preferentially composed 

of V2b neurons (Figure 4A, S4A). Moreover, since V1 neurons are twice as abundant as V2b 

neurons in the mouse spinal cord (U19-SCC, unpublished data), they account for a higher fraction 

of I neurons (Figure S4A). The strength of synaptic connectivity among the different neuronal 

populations is represented by the synaptic coupling conductance (J), separated into intra- (Jintra) or 

inter-module (Jinter), and differentiated based on the post- and pre-synaptic neurons (e.g. inhibitory-

to-excitatory conductance is denoted as JEI) (Figure 4A, STAR Methods).  

Neuromechanical model of oscillations around a single joint 

To relate our model CPG activity with limb movement, we constructed a biomechanical model 

of the mouse ankle joint. We modelled the ankle joint as a one degree-of-freedom, two-link 

segment model (STAR Methods), in which only the distal segment can rotate around an axis in 

the fixed proximal segment (Figure 4B). The distal segment is actuated by an antagonistic pair 

(flexor and extensor) of identical muscles, connecting the proximal and distal segments in a bow-

string configuration (Figure 4B). Next, we used a Hill-type muscle model to convert motoneuron 

activity into muscle force. This model includes known muscle properties: the low-pass filtering 

effects of muscle, the length-dependent muscle activation, force-length relationship, and a passive 

elastic element (Figure S7, STAR Methods). 

Increases in inhibition or excitation within a single module drive faster motoneuron bursting 

We first analyzed the dynamics of the three neuronal populations (E, I, and M) in a model of 

a single module (Figure 4C). Rhythmic firing of post-synaptic motoneurons (M) is driven by the 

bursting excitatory population (E) that is activated by an excitatory tonic input (Figure S4B, S4C). 

Firing of inhibitory (I) neurons is also elicited by the E neurons during their active phase and 

contributes to terminating E neuron bursting (Figure 4C). At the end of E neuron bursting, the 

adaptation current begins to decay, and the latency of its decay is determined by the beginning of 

the next active phase (Figure S4D). Strengthening the I-to-E inhibitory conductance ( J𝐸𝐼 ) 

decreases the adaptation current, therefore reducing the latency of its decay. This accelerates the 

termination of excitatory bursting and the beginning of a new active phase, thus effectively 
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increasing the frequency of motoneuron bursting (Figure 4D, S4E). Similar increases in frequency 

were obtained by strengthening the E-to-I excitatory conductance (J𝐼𝐸)  (Figure S4F). Thus, within 

a single module, the activity of E and I populations and the strength of their synaptic connections 

regulate the frequency of motoneuron bursting. 

The differential contribution of intra- and inter-module inhibition to oscillation frequency 

Three types of inhibitory synapses were included in our model: 1) inter-module I-to-I inhibition 

(Jinter
II ) between the IF and IX populations; b) inter-module I-to-E inhibition (Jinter

EI ) between the IF-

EX and IX-EF populations; and, 3) intra-module I-to-E inhibition (Jintra
EI ) between the IF-EF and 

IX-EX populations (Figure 4A). To examine the contribution of individual inhibitory synaptic 

conductances to rhythm generation, we determined how the oscillation frequency changes 

depending on the strengths of individual inhibitory connections. Decreases in inter-module I-to-I 

inhibition, Jinter
II , have almost no effect on the oscillation frequency (Figure 4E). Reducing the 

inter-module I-to-E inhibition, Jinter
EI , slightly elevates the frequency (Figure S4G). Remarkably, 

reductions in intra-module I-to-E inhibition, Jintra
EI , decrease the frequency (Figure 4F), consistent 

with our analyses of the dynamics in a single module model (Figure 4D). While reducing the intra-

module inhibition increases the rhythm, reductions in inter-module I-to-E inhibition slow it down. 

Therefore, the effects on frequency caused by reducing inhibition in the entire circuit (ablation 

efficiency of inhibitory neurons, p) will depend on the relative strength of the individual inhibitory 

synapses. For example, reducing overall inhibition decreases frequency for small (Jinter
EI  70-100 

μA/cm2) values of inter-module I-to-E inhibition and increases it for larger values (Jinter
EI  250 

μA/cm2) (Figure S4H). Notably, the strength of inter-module I-to-I inhibition does not affect how 

reductions in overall inhibition impact the oscillation frequency (Figure S4I). The analyses of our 

model suggest that the different inhibitory connections have distinct roles in rhythmogenesis, and 

the frequency of oscillations is set by the relative strengths of all the individual inhibitory synapses. 

In current spinal CPG models based on “half-centers” and “unit bursting generators”, the 

dominant rhythmogenic inhibitory connections are the ones between the “rhythm generators” 

(Ausborn et al., 2018; Dougherty and Ha, 2019). Each “rhythm generator” needs at least one slow 

variable to generate bursting: either an activation variable of a hyperpolarizing conductance or an 

inactivation variable of a depolarizing conductance (Rinzel and Ermentrout, 1998). Decreasing the 

inhibitory connections makes each module spend less time in its passive state, causing the slow 

variable to be larger at the beginning of the next active state, thus, effectively causing an increase 
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in frequency. However, the reduction in frequency caused by the ablation of inhibitory neurons 

observed in our experiments (Figure 3C, 3I) contradicts these predictions. Therefore, we propose 

that, during scratching, the dominant inhibitory connection is the intra-module I-to-E inhibition, 

Jintra
EI , rather than the inter-module I-to-E inhibition, Jinter

EI , or the inter-module I-to-I inhibition, Jinter
II . 

In sum, the strong intra-module I-to-E inhibition in our model is sufficient to explain how 

decreasing inhibition can effectively reduce the frequency of scratch oscillations (Figure 4F). 

Computed motoneuron firing patterns following perturbations of neuron activity  

To quantitatively describe our experimental manipulations, we computed the ablation of a 

population as a decrease in its total synaptic conductance output (see equations 3 and 4 in STAR 

Methods), and the activation as an increase in the input current received (see equations 5 and 6 in 

STAR Methods). The ablation efficiency is defined by the parameter p (see equations 3 and 4 in 

STAR Methods), which ranges from 0 (no ablation) to 1 (100% ablation). Activation efficiency 

is defined by the injected current, Iact, (see equations 5 and 6 in STAR Methods). Changing these 

two parameters to mimic either neuronal ablation or perturbations of their activity varies the 

dynamical states of the coupled modules, resulting in different patterns of MX and MF activity 

that range from regular anti-synchronous firing (Figure 4G) to constant (100%) co-contraction 

(Figure S4L). In the absence of any ablation (p=0), MF and MX fire anti-synchronously (Figure 

4G), driving oscillations (Figure 4H) at similar frequencies to what observed when mice scratch 

(Figure 1D). Low-efficiency ablation of V1 neurons (pV1=0.2), causes MF and MX to exhibit a 

phase difference () between 0 and 2π (Figure 4I). This is due to the asymmetrical inhibition 

exerted by V1 and V2b neurons onto flexor and extensor motoneurons (Britz et al., 2015), which 

skews MF and MX bursting (Figure 4I). Notably, this pattern of regular firing with asymmetric 

phase retains the ability to generate fluid limb movements (Figure 4J). High-efficiency ablation 

of V1 neurons (pV1=0.8) causes MF and MX to fire with an irregular, non-periodic pattern, in terms 

of both frequency and amplitude of oscillations (Figure S4J, S4K). High-efficiency ablation of 

both V1 and V2a neurons (pV1=pV2a =0.95) significantly weakens the inter-module I-to-I and I-to-

E inhibition, which causes simultaneous firing of MF and MX, driving a 100% co-contraction state 

(Figure S4L) and restricting the amplitude of joint movements (Figure S4M). High-efficiency 

activation of V1 neurons (Iact
V1 = 2 A/cm2) completely suppresses MF and MX activity (Figure 

S4N), causing the limb to settle into an atonia-like state (Figure S4O), as experimentally observed 

following chemogenetic activation of V1 neurons (Figure 3F). 
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Computed circuit dynamics following manipulations of activity of individual neuronal populations  

To mechanistically define the contribution of individual neuronal populations to rhythm 

generation, we examined how changing parameters in the model to mimic our experimental 

perturbations modifies the firing pattern, the phase difference, and the oscillation frequency. To 

mimic in the model the experimental ablation of V2a neurons, we decreased the total synaptic 

conductance output of the subset of neurons within the E populations that corresponds to V2a 

neurons (pV2a). Ablation of V2a neurons in the model (pV2a) (Figure 5A) decreases the oscillation 

frequency (Figure 5B, S5A), in agreement with our experimental results (Figure 2F,2G). Since 

V2a neurons are symmetrically represented in the EF and EX populations, their ablation does not 

affect the phase difference () of MF and MX activity, which continues to display a regular firing 

pattern (Figure 5B). Since in our simulations the synaptic conductance output is equally decreased 

for all E connections, the extent to which ablation of V2a neurons reduces the oscillation frequency 

depends on the strength of the intra-module I-to-E inhibition (Jintra
EI ). Ablation of V2a neurons in 

the model causes a reduction in the intra-module E-to-I excitation conductance (Jintra
IE ) (Figure 

S5B). This decrease in intra-module E-to-I excitation becomes less effective in decreasing the 

oscillation frequency when the intra-module inhibition is weak (Jintra
EI  = 10 μA/cm2). In the absence 

of intra-module inhibition (Jintra
EI = 0), weakening the intra-module E-to-I excitation causes no 

further reductions in oscillation frequency (Figure S5B). Thus, reductions or increases in intra-

module excitation require effective intra-module inhibition to affect the oscillation frequency 

(Figure 4D, 4F). The effects of intra-module excitation on the oscillation frequency also depend 

on the strength of inter-module I-to-E inhibition (Jinter
EI ). Since reducing inter-module inhibition 

increases frequency (Figure S4G), a very strong Jinter
EI  would prevent our model from replicating 

the experimental observations. Notably, the role of intra-module excitation Jintra
IE  differs from other 

CPG models, in which the rhythm generating layer includes two excitatory populations that inhibit 

each other via two intermediate inhibitory populations (Ausborn et al., 2018). In these models, 

ablation of excitatory neurons, mimicked via reducing the intra-module excitation would result in 

increases in the bursting frequency.  

Ablation of the subsets of neurons within the I populations corresponding to V1 (pV1) or V2b 

(pV2b) neurons reduces the frequency of oscillations (Figure 5C, 5D, S5C, S5D), recapitulating 

our experimental results (Figure 3C, 3D, 3I, S3I). Motoneuron firing is regular at low-efficiency 

ablation, and becomes progressively irregular (Figure 5C, 5D) with larger phase differences as 
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the ablation efficiency of either V1 or V2b neurons increases (Figure S5E, S5F). Given the 

asymmetrical input that these two classes of inhibitory neurons exert on MF and MX, their ablation 

causes the coupled modules to exhibit large frequency differences that ultimately cause irregular 

dynamics (Figure 5C, 5D) (Schuster and Just, 2005). While V1 neuron ablation has strong effects 

in causing irregular firing (Figure 5C), ablation of V2b neurons has milder ones, with regular and 

irregular firing states coexisting, even at higher ablation efficiency (Figure 5D). The stronger 

effects induced by ablation of V1 neurons stem from the fact that these neurons are more numerous 

than V2b neurons and are asymmetrically distributed between the IX and IF populations (Figure 

S4A). Thus, ablation of V1 neurons leads to a stronger reduction in inter-module inhibition and to 

a higher asymmetry in the number of neurons remaining after ablation in the IX vs the IF 

population. The strength of inter-module I-to-E inhibition Jinter
EI  determines the extent to which the 

ablation efficiency of both V1 and V2b neuron populations affects the oscillation frequency 

(Figure 5E, 5F). The oscillation frequency accelerates as the intra-module inhibition Jintra
EI  

increases (Figure 4F) and the inter-module inhibition Jinter
EI  decreases (Figure S4G). Since ablation 

of V1 or V2b neurons reduces inhibition in the entire circuits, decreasing both intra- and inter-

module inhibition, the net effect on frequency depends on the relative strength of individual 

inhibitory synapses. Ablation of V1 or V2b neurons causes small reductions in oscillation 

frequency for strong inter-module I-to-E inhibitory conductance (Jinter
EI  = 250 μA/cm2), and larger 

decreases for weaker values (e.g. Jinter
EI  = 100 μA/cm2) (Figure 5E, 5F). Since the inter-module I-

to-I inhibition (Jinter
II ) does not affect the oscillation frequency (Figure 4E), changes in its strength 

do not modulate how V1 or V2b neuron ablation efficiency impacts frequency (Figure 5G, 5H). 

Activation of the V2a subset within the E populations (Figure 5I) increases the oscillation 

frequency (Figure 5J, S5G), as also shown in our experimental results (Figure 2I, S2I). This 

increase is due to facilitation mechanisms in the E neurons (Figure S5H-S5J). Low-efficiency 

activation of V1 neurons (Iact
V1 ≈ 0.5 A/cm2) causes irregular MF and MX activity, as the inhibition 

exerted by the two modules becomes asymmetric (Figure 5K). High-efficiency activation of V1 

or V2b neurons (Iact
V1 > 0.8 A/cm2 and Iact

V2b > 1.0 A/cm2) effectively silences the MF and MX 

populations, causing the circuit to reach a fixed point that represents an atonia-like state (Figure 

5K, 5L, S5K, S5L), again confirming our experimental results.  

In summary, our neuromechanical model not only recapitulates the results of our experimental 

manipulations but also predicts how perturbations of individual populations affect motoneuron 

firing pattern and phase differences (Figure 5B-5D, 5J-5L). Moreover, the model reveals the 
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relative contribution that individual synaptic connections make to set the rhythm of oscillation 

(Figure 5E-5H, S5B) and predicts the threshold at which activation of V1 and V2b inhibitory 

neurons drives atonia (5K, 5L, S5K, S5L).  

Distinct cooperation dynamics among the ipsilateral neuron populations in driving oscillations 

frequency 

Finally, we experimentally investigated how excitatory and inhibitory populations cooperate 

to drive the rhythm of scratch oscillations using our genetic approach to simultaneously manipulate 

the activity of excitatory V2a and inhibitory V2b neurons (Hes2iCre;hCdx2::FlpO) (Hayashi et al., 

2023) or inhibitory V1 and excitatory V2a neurons (En1Cre;Chx10Cre;hCdx2::FlpO).  

The simultaneous ablation of excitatory V2a and inhibitory V2b neurons (Figure 6A, S6A) 

reduced the frequency of scratch oscillations (Figure 6B) and the number of scratch bouts (Figure 

S6B) to the same extent as ablation of only V2a neurons. We then simulated this dual manipulation 

in our model, recapitulating the reduced frequency (Figure 6C, S6C, S6D). When V2a and V2b 

neurons are ablated with high efficiency (pV2a = pV2b = 0.95), MX and MF fire in irregular patterns 

(Figure 6C), as observed following the ablation of V2b (Figure 5D) but not V2a neurons (Figure 

5B). Intriguingly, when the V2a and V2b neurons are simultaneously removed, at an intermediate 

level of ablation efficiency (pV2a = pV2b = 0.7), an irregular pattern, which is not seen when V2a or 

V2b interneurons are individually ablated, emerges (Figure 6C). In sum, V2a and V2b neurons 

have partly redundant roles in the circuit, as the decrease in oscillation frequency induced by their 

simultaneous ablation is not stronger than the frequency reduction caused by the individual 

ablation of V2a neurons (Figure 6B). 

Simultaneous ablation of excitatory V2a and inhibitory V1 neurons (Figure 6D, S6E) strongly 

reduced the ability of mice to scratch (Figure S6F), with oscillation frequency falling to 1 Hz 

(Figure 6E). Simulating this perturbation in our model reproduces the experimental data (Figure 

6F, S6G, S6H), and shows a 100% co-contraction state at high-efficiency ablation (Figure 6F, 

6G, 6I). This 100% co-contraction state is observed when V2a neurons are co-ablated with V1 

neurons, but not V2b neurons (Figure 6I), likely because V1 neurons are more abundant than V2b 

neurons (Figure S4A). Together, these results suggest that V1 and V2a neurons function in 

synergy to control the oscillation frequency. 

Finally, we asked if the co-activation of excitatory V2a and inhibitory V1 neurons results in 

faster oscillations, as seen with V2a neuron activation (Figure 2I, S2I), in atonia, as caused by V1 
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neuron activation (Figure 3I), or in a different response due to distinct cooperation dynamics. The 

simultaneous activation of V1 and V2a neurons (Figure 6J, S6I) caused an increase in the 

frequency of scratch oscillations (Figure 6K) to almost the same extent (slightly smaller but not 

significantly different) as the activation of V2a neurons alone. No changes in the total number of 

scratch bouts were observed (Figure S6J). Simulating this perturbation in our model shows similar 

results, causing an increase in oscillation frequency that is somewhat smaller than the effect of 

activating only V2a neurons (Figure 6L, S6K, S6L). The simultaneous activation of both V1 and 

V2a neurons does not induce irregular firing nor atonia (Figure S6L). Our model also predicts that 

simultaneous activation of excitatory V2a and inhibitory V2b neurons (Figure S6M) will similarly 

affect the frequency of oscillations and not be stronger than what is observed by activating V2a 

neurons only (Figure S6N, S6O). 

In summary, we provide experimental and computational evidence that distinct circuit 

dynamics underlie the cooperation among the excitatory V2a and the inhibitory V1 and V2b 

neuron populations in controlling rhythm and phase of motoneuron firing.  

Discussion 

We have experimentally defined the key contributions of three cardinal classes of spinal 

ipsilaterally projecting neurons, the excitatory V2a and the inhibitory V1 and V2b neurons, to 

scratch rhythm generation. The reduction in scratch oscillation frequency caused by the loss of 

inhibitory V1 and V2b neurons (Figure 3C, 3D, 3I, S3I) contradicted predictions from other CPG 

models, like the classical “half-center” (Brown, 1911, 1914; Skinner et al., 1994) and the “unit 

burst generator” (Ausborn et al., 2018; Dougherty and Ha, 2019), in which decreasing inhibition 

results in increases in network bursting frequency. To address this discrepancy and mechanistically 

explain our experimental data, we built and analyzed a neuromechanical model, in which 

inhibitory-coupled flexor and extensor modules drive oscillations of a single joint. Using 

experimental and modeling approaches, we showed that non-linear cooperation dynamics underlie 

the contribution of excitatory and inhibitory populations to rhythm and phase of motoneuron firing. 

Our biomechanical model not only recapitulates our experimental observations but also makes 

predictions about the role of each synaptic conductance and circuit dynamics in the physiological 

and perturbed execution of the scratch reflex. 

Model hypotheses and their effects on neural dynamics 

Analyses of our model in physiological and perturbed conditions showed that three conditions 
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are needed for scratch-like oscillations to emerge and be altered in a way that mimics the responses 

to experimental manipulations of neuronal activity: a) each module should oscillate independently 

(Figure 4C), b) intra-module inhibition should be stronger than a critical threshold, whose value 

increases depending on the strength of the inter-module inhibition (Figure S4H), and c) synapses 

from excitatory neurons should have facilitation mechanisms (Figure S5H).  

First, we propose that the E populations act as self-bursting networks. Individual modules 

oscillate independently via an intrinsic mechanism in E neurons that involves two ionic currents, 

one for  depolarization and one, slower, for adaptation (Figure S4D, S4E). This intrinsic 

mechanism is of course not the only possibility for generating self-bursting networks. Alternative 

mechanisms include network bursting due to tonically firing excitatory neurons with adaptation 

currents (Van Vreeswijk and Hansel, 2001) or to excitatory neurons recruiting inhibitory neurons 

via facilitation mechanisms (Hayut et al., 2011; Melamed et al., 2008). Future electrophysiological 

recording experiments discriminating between these scenarios and defining the contribution of the 

other excitatory populations will help to clarify the mechanisms underlying network bursting. 

Second, the discrepancies on the role of inhibition in modulating rhythm between the 

predictions of other CPG models (Ausborn et al., 2018; Golomb et al., 2022; Soloduchin and 

Shamir, 2018) and our experimental data prompted us to evaluate the contribution of individual 

inhibitory synapses to rhythmogenesis. Decreasing the intra-module inhibition reduces the 

bursting frequency (Figure 4F), whereas decreasing the inter-module I-to-E inhibition increases 

frequency (Figure S4G). Therefore, to replicate our experimental results, reductions in the overall 

inhibition should weaken more intra-module than inter-module inhibition (Figure S4H). The 

predicted differences in synaptic strength of the distinct inhibitory synapses need to be validated 

using in vitro and in vivo recordings. An alternative hypothesis could be that there are specialized 

subsets within the V1 and V2b populations that differentially contribute to intra-module and inter-

module inhibition. Targeted anatomical tracings and manipulations of specific V1 neurons subsets 

(Bikoff et al., 2016; Trevisan et al., 2024), will start to reveal whether the different roles of the 

inhibitory connections between the I and E populations predicted by the model arise from different 

synaptic connectivity strenghts, distinct subsets of V1 and V2b neurons, or both mechanisms. 

Third, to explain the increase in scratching frequency observed following activation of V2a 

neurons (Figure 2I, S2I), our model hypothesizes the presence of facilitation mechanisms in E 

neuron synapses. Activation of V2a neurons increases the firing rate and, via facilitation (Figure 

S5H), increases the effective intra-module excitation that accelerates scratch oscillations (Figure 
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S4F). An alternative solution to facilitation mechanisms is that the activation-driven increase in 

bursting is due to intrinsic neuronal properties, as shown in other models (e.g. (Golomb et al., 

2006)), or is due to a combination of intrinsic properties and E-to-E synaptic connections (Van 

Vreeswijk and Hansel, 2001). In adult mice, serotonin decreases membrane input resistance in V2a 

neurons, facilitating evoked plateau potentials (Husch et al., 2015). Whether the increase in 

oscillation frequency is due to facilitating synapses, intrinsic mechanisms in V2a neurons, or a 

combination of synaptic and intrinsic neuronal properties remains to be assessed.  

Comparison with cell type-agnostic models for rhythmic scratching 

We developed a novel rate model, in which rhythm and phase of antagonist motoneuron firing 

are tightly linked in a single layer. In this model the rhythm is driven by a self-bursting population 

of excitatory neurons (E), while inhibitory neurons (I) have a dual function, i.e. controlling bursting 

frequency via the intra-module and inter-module I-to-E inhibition (Figure 4F, S4G) and the phase 

of flexor and extensor motoneuron firing via inter-module I-to-E and I-to-I inhibitory connections 

(Figure 4G-4J). Our approach addresses important gaps in the computational models used so far 

to describe scratching by providing a mechanistic explanation of how key CPG neuron populations 

contribute to determining the scratch rhythm and assessing in detail how the relative strength of 

intra- and inter-module inhibitory conductance affects the oscillation frequency. The robustness of 

our model with respect to recapitulating the effects of experimental perturbations was also tested 

by manipulating the activity of individual CPG neuron populations or combinations thereof.  

A balanced E-I neural network has been proposed for the generation of the scratch rhythm in 

turtles (Berg et al., 2007), with neural activity resembling “rotational dynamics” at the population 

level (Lindén et al., 2022). In the rotational dynamics model, synaptic coupling (Lindén and Berg, 

2021; Lindén et al., 2022) is strong (as defined in (Pehlevan and Sompolinsky, 2014; Van 

Vreeswijk and Sompolinsky, 1996)), random, and sparse, with the model exhibiting the hallmarks 

of a fluctuation-driven regime (Berg, 2017). Population frequency is modulated by adjusting the 

gain of selected “speed” or “break” neuronal subsets that are a mix of excitatory and inhibitory 

neurons. However, in contrast to our model, the rotational dynamics model does not differentiate 

between individual interneuron populations or predict how they contribute to rhythm and pattern 

generation. Moreover, its robustness in recapitulating experimental perturbations remains to be 

assessed. An intriguing future challenge would be to convert our rate model into a spiking, strongly 

coupled neural model, similar to the rotational dynamic model, while preserving our network 
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architecture and the strong intra-module inhibitory conductance. This will enable us to assess the 

irregular temporal dynamics of interneuron input onto motoneurons, and how this input determines 

motoneurons firing frequence and phase in physiological state and following perturbations of 

neuronal activity.  

A more recent version of the rotational dynamics model includes two sparse, randomly 

connected networks coupled via mutual inhibition, describing the behavior of individual neurons 

within a rhythm-generating population (Strohmer et al., 2024). In this model, excitatory neurons 

possess a slow current that enables bursting only in a subset of neurons (Strohmer et al., 2024). 

The intra-module inhibition widens the range of firing phases of each neuronal population 

(Strohmer et al., 2024), making the distribution of firing phases closer, but not equal, to what is 

predicted by the rotational dynamics model (Lindén et al., 2022). Increases in intra-module 

inhibition cause firing irregularities (a main hallmark of fluctuation-driven regimes), as observed 

in models of two coupled inhibitory populations (Golomb et al., 2022). However, in this model 

the relative contribution of intra- and inter-module inhibition to rhythmogenesis was not assessed.  

Cooperation of excitatory and inhibitory neurons in driving rhythm of scratch oscillations 

Our results reveal a number of interesting interactions between the V1, V2a and V2b 

populations with respect to rhythm and pattern generation. While the ablation of V1 and V2b 

neurons individually results in hyper-flexion and hyper-extension, respectively, which matches 

their anatomical asymmetry in innervation of flexor and extensor motoneurons (Britz et al., 2015), 

repeating these ablation experiments together with V2a neuron removal painted a more complex 

picture. Co-ablating V1 and V2a neurons severely impairs scratch movements (Figure 6E, S6E), 

in line with our model predicting the loss of both causes a 100% co-contraction state (Figure 6F-

6I). This was not observed following the co-ablation of V2a and V2b neurons (Figure 6B, 6C, 

6I). Similarly, ablation of V2a neurons rescues the leg hyper-extension phenotype observed in V2b 

neuron-ablated mice (Britz et al., 2015; Hayashi et al., 2023), whereas it severely worsens the 

coordination defects in flexor and extensor alternation observed in V1 neuron-ablated mice during 

locomotion (Gatto, Goulding unpublished data). Our behavioral and computational results show 

that V2b neurons have a complementary role to V1 neurons with regards to flexor and extensor 

specificity, but also suggest redundant functions at the circuit level, with the remaining V1 neurons 

able to compensate for the loss of V2b neurons (Figure 6B). This functional redundancy might 

simply be due to the higher number of V1 neurons in the cord (Figure S4A), which we included 
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in our model. Alternatively, it might be due to differences in the intrinsic properties and/or 

connectivity of these two populations. We know for example that V1 and V2b neurons receive 

distinct local, descending, and sensory inputs.  

Another important aspect that is not addressed in our rate model is the interneuron spike timing 

and the timing with which excitatory and inhibitory inputs reach motoneurons. In turtles, a 

balanced increase in excitatory and inhibitory neuron activity has been modeled to drive faster 

scratching movements (Berg et al., 2007). Similarly, in larval zebrafish, faster swimming is 

associated with the increased coincidence of excitatory and inhibitory input onto motoneurons 

(Kishore et al., 2014). Whether the timing of V1 and V2b neuron inputs onto motoneurons in mice 

follows distinct patterns in relation to V2a neuron input represents an intriguing hypothesis but 

remains to be assessed. Recording interneuron activity in scratching animals alongside the 

development of spiking models can help to address these important questions. 

 Divergence or convergence of spinal circuits for fast movements 

CPGs have been shown to generate diverse motor behaviors by modulating the timing and 

phase of motoneuron firing (Büschges et al., 2008; Friedman et al., 2009; Marder and Bucher, 

2001; Marder and Calabrese, 1996). Microcircuits within the CPG networks are thought to be 

responsible for the emergence of diverse rhythms, with distinct rhythmic behaviors in turtle and 

cat recruiting specialized subsets of spinal interneurons (Berkowitz, 2010; Berkowitz and Hao, 

2011; Frigon and Gossard, 2010), and swimming speeds in adult zebrafish driven by distinct 

subsets of interneurons and motoneurons (Ampatzis et al., 2014; Ausborn et al., 2012; Kimura and 

Higashijima, 2019; Song et al., 2018, 2020). To which extent this cellular and circuit logic is 

conserved in mice remains to be assessed. 

The activation of excitatory Chx10-V2a neurons accelerates scratching movements in mice 

(Figure 2I, S2I). While Chx10-V2a neurons are rhythmically active in fictive locomotor 

preparations (Dougherty and Kiehn, 2010; Zhong et al., 2010), their removal does not impact 

locomotor rhythm in behaving mice (Crone et al., 2009). By contrast, the Shox2-V2a neurons are 

necessary to set locomotor rhythm (Dougherty et al., 2013). As fictive scratch is ~2.3 times faster 

than fictive locomotion (Frigon and Gossard, 2010), an intriguing hypothesis is that scratch and 

locomotion in mouse, similar to swimming at different speeds in zebrafish, require two distinct 

subsets of V2a neurons – the Shox2-V2a neurons for slow locomotor rhythm and the Chx10-V2a 

for faster oscillations.  
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The V1 neurons also contribute to fast rhythmic activity during both locomotion and 

scratching. Ablating the V1 neurons in zebrafish impairs fast swimming due to aberrant 

recruitment of slow motoneurons (Kimura and Higashijima, 2019). In mouse, V1 neurons 

contribute to fast rhythm generation in vitro (Gosgnach et al., 2006), and we have also shown that 

they contribute to the scratch oscillation frequency (Figure 3B-3D). Taken together, these findings 

imply that inhibitory V1 and excitatory V2a might form a conserved circuit motif that is used to 

drive rhythmic movements, with distinct subsets of V2a neurons contributing to slow vs fast 

rhythms and inhibitory V1 supporting faster oscillations. 

On the other hand, V2b neurons are a conundrum. In zebrafish, suppressingV2b neuron activity 

increases the tail beat frequency (Callahan et al., 2019), whereas in mice ablating V2b neurons 

reduces the oscillation frequency (Figure 3H, 3I). This raises the question as to whether V2b 

neurons have acquired a novel function or become a more specialized subset in limbed animals? 

Future studies comparing V2b neuron heterogeneity and connectivity between zebrafish and 

mouse circuits should shed light on these hypotheses and might reveal novel configurations of the 

network architecture. 

In conclusion, our findings raise the intriguing theory that the speed-dependent microcircuits 

identified in zebrafish might also exist in rodents for selected behaviors, suggesting an 

evolutionary conserved strategy by which fast oscillations of a single joint might be driven by 

similar dynamics as those seen for undulatory movements in aquatic animals. 
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Star ⋆  methods 

Key resources table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Chemicals, Peptides, and Recombinant Proteins  

Chloroquine Sigma C6628 

Clozapine N-oxide (CNO) Sigma C0832 

Diphtheria Toxin (DTx) List Biological Lab #150 

Saline Solution APP Pharmaceuticals NDC63323-186-10 

Experimental Models: Organisms/Strains  

Mouse: Chx10Cre (Azim et al., 2014)  

Mouse: hCdx2::FlpO (Bourane et al., 2015a)  

Mouse: En1Cre (Sapir et al., 2004)  

Mouse: Hes2iCre (Hayashi et al., 2023)  

Mouse: R26ds-hM3Dq Jackson Laboratory #026942 

Mouse: R26ds-hM4Di (Bourane et al., 2015b)  

Mouse: Tauds-DTR (Duan et al., 2014)  

Software and Algorithms   

Adobe Creative Cloud Adobe www.adobe.com 

Excel-Office 2018 Microsoft www.microsoft.com 

Image J  imagej.nih.gov/ij 

Prism GraphPad www.graphpad.com 

R The R project r-project.org 

Python  https://www.python.org 

SIMI Motion SIMI http://www.simi.com/en/ 

 

Resource availability 

Lead Contact 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Graziana Gatto (graziana.gatto@uk-koeln.de). 
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Materials Availability 

All published reagents and mouse lines will be shared upon request within the limits of the 

respective material transfer agreements. 

Data and Code Availability 

All original code will be deposited and publicly available as of the date of publication on GitHub. 

Any additional information required to re-analyze the data reported in this paper is available from 

the lead contact upon request. 

Experimental model and subject details 

Mice were maintained following the protocols for animal experiments approved by the IACUC of 

the Salk Institute for Biological Studies according to NIH guidelines for animal experimentation, 

and by the local health authority in North Rhein Westphalia (LANUV). 6- to 10-week-old mice of 

both sexes were used for behavioral experiments. Analysis of the behavioral data showed similar 

responses in male and female mice. 

Methods 

Neuronal Ablation 

Mice carrying the En1Cre;hCdx2::FlpO, Chx10Cre;hCdx2::FlpO, Hes2iCre;hCdx2::FlpO, 

En1Cre;Chx10Cre;hCdx2::FlpO alleles in addition to the effector allele Tauds-DTR received i.p. 

injections of diphtheria toxin (DTx, 50 ng/gram of weight; List Biological Laboratories) at P28 

and P31. Hes2iCre;VGATFlpO;Tauds-DTR mice and littermate controls Hes2iCre;Tauds-DTR mice 

received intrathecal injections of diphtheria toxin (DTx, 10 ng; List Biological Laboratories) at 

P28, P30 and P32. FlpO negative mice injected with DT were used as controls. 

Drug Administration 

Chloroquine was dissolved in 0.9% sterile saline and injected subcutaneously in the nape at a final 

concentration of 200 µg. Clozapine-N-oxide (Sigma) was dissolved in DMSO and then diluted 

with 0.9% sterile saline such that the concentration of DMSO did not exceed 1% of the injected 

solutions. For chemogenetic silencing (R26ds-hM4Di) and activation (R26ds-hM3Dq), experimental mice 

received i.p. injections of CNO (2 mg/kg of weight). FlpO negative mice injected with CNO were 

used as controls. 

Chloroquine-induced scratching 

Mice were acclimatized to the plexiglass chamber for 1 hour for three consecutive days. On the 
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experimental day, 200 µg of chloroquine was injected subcutaneously in the nape using a 0.5 ml 

insulin syringe with a 29G1/2 needle (Exel). Animals were placed in 6 cm x 6 cm x 8 cm Plexiglas 

boxes and video was recorded (Panasonic SDR-S26) for 30 minutes after injection at 30 fps. A 

single scratch bout was defined as every time the mouse hindlimb executed a full circular trajectory 

around the nape. Videos were blindly scored by the experimenter, and for each scratch episode, 

the time of occurrence, the duration, and number of bouts were recorded. Raster plots were 

generated in R using the ggplot package. For kinematic reconstructions, mice were injected with 

200 µg of chloroquine and placed in 6 cm x 6 cm x 8 cm Plexiglas boxes for video recording using 

a high-speed camera (mV Blue Cougar XD; 200 frame/second). We collected 5-6 videos of 5-11 

sec for each mouse, sampling only a small part of the behavior, and tracked hindlimb 2D 

kinematics using SIMI Motion only in the videos when the scratching movement occurred in front 

of the camera and all the hindlimb joints/angles were visible.  

Neuronal activity manipulations and behavioral testing 

6- to 10-week-old mice of both sexes were used for behavioral testing following ablation or 

chemogenetic manipulations of neuronal activity. For ablation experiments, mice were tested 2 

weeks after the first DTx injection. For CNO-induced silencing and activation, 6- to 7-week-old 

mice were tested 10 and 20 minutes following i.p. injection of the drug, respectively. All tests were 

conducted in the morning to minimize circadian-induced variability in response. The experimenter 

was blind to the genotype of the animals during the recording and the analysis of the videos and 

manually annotated the beginning and end of each scratch episode and the number of oscillations 

(bouts) of each episode. These data were used to build frequency distribution plots of the 

oscillations for each mouse, which were then averaged for each genotype. The kinematic 

trajectories were reconstructed using the pattern recognition tracking option in SIMI Motion while 

manually correcting the mis-tracked points, and joint coordinates were used to derive the ankle 

angle changes. 

Statistical Analysis 

All statistical analyses were done in Prism. Depending on the number of groups and variables to 

compare, we used one-way ANOVA with Dunnett’s post-hoc test, two-way ANOVA with 

Bonferroni’s post hoc test, or two-tailed Student’s t-test (paired or unpaired according to the 

experimental group) as indicated in the figure legend. 
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Biophysical Neuronal Rate Model

Neuronal populations and synaptic conductance strengths. We build a rate model [Shriki

et al. (2003), Hayut et al. (2011), Golomb et al. (2022)] of a spinal cord circuit composed

of interneurons and motorneurons. We assume that the neuronal populations are segregated

into flexor (F) and extensor (X) modules. Each module includes an excitatory population (E),

composed mostly of V2a neurons; an inhibitory population (I), composed of V1 and V2b neu-

rons, and a motoneuron population (M). Each population is denoted by its neuronal type (first

letter) and its module (second letter), and there are 6 populations: EF, IF, MF, EX, IX and MX

(Figure 4A). Commissural interneuron populations are not included in the model as scratch is

executed as an unilateral hindlimb movement. Anatomical and physiological evidence show

that V1, V2a and V2b interneurons and motoneurons are synaptically connected [Sengupta

and Bagnall (2023)], although the strengths of the synaptic connections among the popula-

tions remains unknown. There is limited information on the connectivity between excitatory

interneurons in one module and antagonist motoneurons, but it is well established that flexor

and extensor inhibitory neurons synapse onto extensor and flexor motoneurons, respectively

[Britz et al. (2015)]. We neglect proprioceptive input because deafferentation (removing the

sensory feedback) did not affect the scratching frequency [Deliagina et al. (1975)]. The con-

ductance J iα;jβ denotes the synaptic coupling strength from the pre-synaptic population jβ

to the post-synaptic population iα, where α, β ∈ {F,X} and i, j ∈ {E, I,M}. For exam-

ple, JEX;IF is the synaptic conductance strength from the IF population to the EX popula-

tion. Based on published results [Dougherty and Kiehn (2010)], we assume the excitatory

conductance strength from excitatory populations (EF and EX) to be symmetrical between

flexors and extensors. Under this assumption, the index for flexor/extensor can be omitted.

We denote whether the conductance is "inter-" or "intra-" the flexor/extensor modules. The

conductance from population EF and EX is denoted for α, β ∈ F,X by

J IE
intra = J Iα;Eα

JME
intra = JMα;Eα (1)

JEE
inter = JEα;Eβ for α ̸= β

Similarly, we assume flexor-extensor symmetry between the inhibitory conductance strengths

and define:

JEI
intra = JEα;Iα

JEI
inter = JEα;Iβ for α ̸= β (2)

J II
inter = J Iα;Iβ for α ̸= β

JMI
inter = JMα;Iβ for α ̸= β
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We consider that the excitatory neuronal populations is composed mostly by V2a neurons

(proportion being κE = 0.8), and also includes a small fraction of either neurons, analogs

of Shox2+ neurons [Dougherty et al. (2013)] and/or V3 neurons [Zhang et al. (2008)]. For

inhibitory populations, we consider that V1 and V2b neurons differ in absolute numbers and

innervate flexor and extensor motoneurons asymmetrically [Britz et al. (2015)]. Specifically,

V1 neurons are twice as many as V2b neurons (Silverman, Goulding unpublished data) and

the fraction of V1 neurons is larger than the fraction of V2b neurons among the interneurons

that inhibit flexor motoneurons, and vice versa for extensor (Figure S4A). This asymmetry

in anatomy resulted in asymmetrical impairments of the duty cycle of flexor and extensor

muscles following ablation of V1 and V2b neurons [Britz et al. (2015)]. We model V1 and

V2b neurons as a single I population for both flexor and extensor modules. This simplification

aims to reduce the complexity of this nonlinear system, as well as to focus on a minimal

circuit that could recapitulate the experimental results. In this simplified network, we model

the asymmetry of V1/V2b by introducing scaling parameters. We define parameters κIα to

represent the relative number of V1 neurons in an α-th inhibitory population, with the relative

value of V2b neurons being 1-κIα .

Modification of synaptic conductance strength during neural ablation and activation. Neural

ablation is modeled as a reduction in the strength of the synaptic connections from a specific

population. We denote the ablation efficiency of a population by p with the superscript indi-

cating the population: V2a, V1 or V2b; p ∈ [0, 1]. Therefore, the ablated connectivity from

Eβ population to any population iα is calculated as:

J iα;Eβ
ablated = J iα;Eβ

(
(1− pV2a)κE + (1− κE)

)
(3)

The inhibitory conductance strength after ablation of V1 or V2b neurons is calculated as:

J iα;Iβ
ablated = J iα;Iβ

(
(1− pV1)κIβ + (1− pV2b)(1− κIβ)

)
(4)

Input currents and their modification with activation. The E and I neuronal populations

receive external excitatory input, mimicking input from the brain or the dorsal spinal cord.

This input enables the E neurons to fire and is modeled as an external depolarizing current

I iαinp. Activation of a population is modeled by injecting additional activation depolarizing

current to that population I iαact. Therefore, the total input I iαtotal is

I iαtotal = I iαinp + I iαact (5)

For I populations, when either V1 or V2b neurons are activated, the input current is calculated

as:

I iαtotal = I iαinp + IV1
act κ

Iα + IV2b
act

(
1− κIα

)
(6)
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Dynamics of neuronal populations. Each population is described by activation variables of

the synaptic conductance siα, firing rate riα, adaptation current aiα and depolarization current

diα. Synaptic facilitation is introduced into the model by setting the dynamics for facilitation

variable uiα [Tsodyks et al. (1998)]. The above-mentioned variables are described by the

following equations:

dsiα

dt
= −siα

τ iαs
+ uiαxiαriα (7)

riα = βiα
r [I iαtotal − aiα + diα − θiα +

∑
j=E,I
β=F,X

J iα;jβsjβ]+ (8)

ddiα

dt
=

−diα + J iα
d riα

τ iαd
(9)

daiα

dt
=

−aiα + J iα
a riα

τ iαa
(10)

duiα

dt
=

U − uiα

τ iαu
+ U

(
1− uiα

)
riα (11)

where τ iαs are synaptic time constants, τ iαa and τ iαd are the time constants of the adaptation

and depolarization variables respectively, βiα
r is slope of f-I curve (gain), I iαtotal is total input

current to a population (Eq. 5-6), θiα is threshold current, J iα;jβare the synaptic conductance

(Eq. 2-4) , J iα
a and J iα

d are ratio between aiα or diα and riα at steady state, and U is the

utilization of synaptic efficacy [Tsodyks et al. (1998)]. The Heavyside function [x]+ (Eq. 8)

is defined as

[x]+ =

{
0 , x ≤ 0

x , x > 0
(12)

The threshold current θiα is incorporated into the default input current Iinp, since they are both

constant. Note that the time scale for dynamics of aiα (τa ∼ 100ms) is significantly larger

than the time scale of siα (τs ∼ 1ms). This makes adaptation current a slow current in our

model, which is essential for generating bursting activities that were observed in experiments

[Rinzel and Ermentrout (1998)]. The values xiα are constants indicating available synaptic

resource. We use the values xEα = 0.92 for excitatory neurons and xIα = xMα = 0.48 for

inhibitory neurons and motoneurons. Equation 11 is used only for the EF and EX populations.

For the other populations, u = 0.4 is a fixed value.

Parameters. The reference values of the parameter in our model are listed in Table 1, and are

consistent with published datasets [Bikoff et al. (2016),Husch et al. (2015)].

Single module model. To illustrate functions of neural circuit components, we simulated a

circuit model made up of a single module. Parameters for neuronal populations and synaptic
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coupling coefficients in the single module models are the same as in the full circuit, except

for some of the input currents and connectivity values that are modified to account for a

smaller circuit. Parameters for the model that includes E and M populations (Figure S4B-D)

are: JME = 130 µA/cm2 and IEinp = 0.1µA/cm2. Parameters for the model that includes E,

I and M populations (Figure 4C,D, S4E,F) aree, unless otherwise stated: J IE = 26 µA/cm2,

JEI = 10 µA/cm2, JME = 65 µA/cm2, JMI = 100 µA/cm2, and IEinp = I Iinp = 0.3 µA/cm2.

Biomechanical Model

To quantify the effects of spinal premotor interneuron manipulations on scratch frequency,

we actuate a biomechanical model of the mouse ankle joint using motoneuron outputs from

the neuronal model.

Link Segment Model. We model the mouse ankle joint as a one degree-of-freedom, two-link

segment model (Figure 4B). Only the distal segment is allowed to rotate around the axis of

the fixed proximal segment. The parameters used in the biomechanical model are detailed

in Table 2. The y-axis is parallel to the non-rotating segment, the x-axis points towards the

right and the z-axis points towards the reader. The unit vectors along the axes are êx, êy and

êz. The inertia of the distal segment around the axis of rotation is computed using the parallel

axis theorem as:

I = ML2
d/12 +Md2, (13)

where Ld is the length of the distal segment, M is the mass of the segment, and d is the

distance from the center of mass to the axis of rotation.

The distal segment is actuated by an antagonistic pair of identical muscles. The dynamics of

the distal segment’s movement are described by Newton’s second law as:

θ̈ =
1

I

[
−
(
TF
z + TX

z + T S
z

)
−B · θ̇

]
, (14)

where TF
z and TX

z are the torques in the z direction generated by the flexor and extensor

muscles respectively. The angle θ represents the ankle joint angle in radians, and θ̇ and

θ̈ denote its first and second derivatives. B defines the external viscosity, which is set to

3 · 109 dyn× cm× s. The fully extended ankle position is defined as θ = π with decreasing

joint angles representing dorsiflexion, or ankle flexion. The torque from viscoelastic stops,

TS,z, is used to constrain the range of motion using the following equation:

T S
z = −T S

A exp

(
θ − θmin

σS

)
+ T S

A exp

(
θmax − θ

σS

)
. (15)

where T S
A = 1000 dyn and σS = 0.01 rad. The maximum joint angle (i.e. the maximum

plantarflexion angle or extension), θmax, is set to 0.78 π (140◦), and the minimum joint angle

(i.e. the maximum flexion angle), θmin to 0.39 π (70◦).
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The flexor and extensor muscles are connected in a bow-string configuration with the origin

on the proximal segment a = 1.8 cm away from the rotation axis and the insertion on the

distal segment b = 0.1 cm away from the rotation axis (Figure 4B) (Charles et al., 2016). The

radius vector from the center of rotation O to the insertion point of the flexor muscle to the

distal segment is

rF = b sin θ êx + b cos θ êy (16)

The length of the flexor muscle is

LF =
(
a2 − 2ab cos θ + b2

)1/2 (17)

The vector force of the flexor muscle is

F⃗F = FF−b sin θ êx + (a− b cos θ) êy

(a2 − 2ab cos θ + b2)1/2
(18)

The torque of the flexor muscle is

T⃗F = FF ab sin θ

(a2 − 2ab cos θ + b2)1/2
êz (19)

For the torque generated by the extensor muscle, a calculation similar to Eqs. 16-19 applies

when θ > θc = − arccos (b/a), which corresponds to 1.63 rad (93.2◦) for our parameter set.

The length of the extensor muscle is calculated as

LX =
(
a2 + 2ab cos θ + b2

)1/2 (20)

The torque of the extensor muscle as

T⃗X = FX −ab sin θ

(a2 + 2ab cos θ + b2)1/2
êz (21)

For θ < θc,

LX =
(
a2 − b2

)1/2
+ b (θc − θ) (22)

T⃗X = −FXb êz (23)

Note that “muscle length” here means the total length of the musculotendon unit, i.e. muscle

fiber length (Lα
m) + tendon/aponeurosis length (Lα

t ) for α =F,X. For simplicity, we assume

inflexible tendon/aponeurosis and therefore length changes are all taken up by muscle fibers.

The optimal musculotendon length (the length of the musculotendon for which the active

force is maximal) is taked to be L0 = 0.473 cm for both muscles (Charles et al., 2016). The

maximal allowed length of the musculotendon is defined as αLL0 where αL = 1.1. Therefore,

the length of the tendon of the flexor is LF
t = LF(θmax) − αLL0 = 0.0131 cm (Eq. 17) and

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 8, 2025. ; https://doi.org/10.1101/2025.01.08.631866doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.08.631866
http://creativecommons.org/licenses/by-nc-nd/4.0/


that of the extensor is LX
t = LX(θmin) − αLL0 = 0.0137 cm (Eq. 22). As the total muscle

length Lα(t) varies, the length of the musculotendon unit Lα
m(t) is

Lα
m(t) = Lα(t)− Lα

t (t) (24)

Muscle Model. A muscle model converts motoneuron activity, rMF and rMX, and muscle

lengths into muscle forces, FF
m and FX

m respectively. In addition to the low-pass filtering

effects of muscle, we include the following known muscle properties: the length-dependent

muscle activation, force-length relationship, and a passive elastic element. These properties

are added to prevent drift in joint angles that would otherwise occur in a linear muscle model.

Both flexor and extensor muscles are modeled identically to reduce the complexity of the

model.

Muscle force. The muscle force (Fm) comprises forces from an active contractile element

(FCE), and a passive elastic element (FPE) (Figure S7A). FCE and FPE are represented as a

fraction of the muscle force, F0

Fm = (FCE + FPE) · F0 (25)

The maximum muscle force F0 is set to 2.13 ·105 dyn for both muscles (Charles et al., 2016).

Passive elastic element. The model includes a passive elastic element situated parallel to the

contractile element. This passive elasticity arises from connective tissues within the muscle

(Tsianos and Loeb, 2017). The force generated by this passive element, FPE, increases with

the muscle fiber length (Figure S7B) (Song et al., 2008):

FPE(L) = c1k1 ln

[
exp

(
Lm,norm/αL − Lr1

k1

)
+ 1

]
(26)

where the normalized musculotendon length is (Equation 24)

Lm,norm =
Lα
m

L0

=
L− Lt

L0

(27)

The parameters k1 and Lr1 are obtained from (Song et al., 2008). The value of c1, which

defines the asymptotic slope of the exponential function (i.e. stiffness), is adjusted to be 6

times larger than in the original model (Song et al., 2008) to account for the higher passive

stiffness of the mouse muscle (Meyer and Lieber, 2018; Smith et al., 2011).

Resting muscle length and joint angle. The resting joint angle θrest is the angle θ for which

θ̇ = 0 and θ̈ = 0 for zero active force. Assuming it is not near θmin or θmax,

TF,z + TX,z = 0 (28)
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for θ = θrest and FCE = 0 (Eq. 14). We solved Eqs. 28,19,21, 23,26 and obtained θrest =

1.31 rad (75◦). This angle, together with θ̇ = 0, is used as initial condition for simulations.

Active force. The amount of active force depends on the level of muscle activation, A, as well

as the activation-dependent force-length relationship of the contractile element, Af and AFL:

FCE = A · Af · AFL (29)

Muscle activation. Neural excitation (i.e. the activity of motoneurons) results in the activation

of cross-bridges within muscle fibers that can participate in active force generation, which

we refer to as muscle activation Aα(t); α =F,X. We used a model of second-order dynamics

(Todorov, 2005) to relate Aα(t) to the motoneuron firing rate rMα(t)

τA1 τA2 Äα(t) + (τA1 + τA2)Ȧα(t) + Aα(t) = tanh

(
rMα(t)

r0

)
, (30)

where rMα(t) is the population-average firing rate of the αth motoneuron pool (Eq. 8). and

r0 = 54Hz is a normalization constant. The tanh function in Equation 30 ensures that the

normalized neural input to the muscle model is less than 1. Aα(t) denotes muscle activation,

which ranges from 0 to 1. This second-order differential equation captures the low-pass fil-

tering effect of muscle (e.g. Baldissera et al. (1998)), arising from the biophysical properties

of muscle force generation. τA1 and τA2 are set to 10 ms to account for the faster contraction

capability of mouse muscles compared to humans and other animals (Martinez-Silva et al.,

2018).

Force-length relationship. The maximum amount of force a muscle can generate depends on

its fiber length, known as the force-length relationship. This relationship scales muscle force

as a function of the normalized muscle fiber length, Lm,norm (Eq. 27) (Song et al., 2008).

The force-generating capability of a muscle decreases when the muscle becomes longer or

shorter than its optimal muscle fiber length (Lm,norm = 1) (Rassier et al., 1999; Tsianos and

Loeb, 2017). This property is thought to arise from the extent of myofilament overlap at

different muscle lengths (Herzog et al., 1992). This nonlinear relationship is modeled by

scaling muscle force by AFL (Song et al., 2008):

AFL = exp

[
−
∣∣∣∣Lm,norm

βFL − 1

ω

∣∣∣∣ρ
]
, (31)

where the values of model parameters, ω, βFL, and ρ (Table 2) are those for fast-twitch units

(Song et al., 2008).

We also include the dependence of muscle activation on muscle fiber length previously re-

ported for mammalian skeletal muscles (Brown et al., 1999) (Figure S7C). This is thought

30

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 8, 2025. ; https://doi.org/10.1101/2025.01.08.631866doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.08.631866
http://creativecommons.org/licenses/by-nc-nd/4.0/


to arise from mechanisms independent of myofilament overlap such as changes in the rate

of cross-bridge formation and detachment (Brown et al., 1999). We model this by adding a

scaling factor, Af , to muscle activation, whose value ranges from 0 to 1 (cf. Eq. 29).

Af = 1− exp

[
−
(

feff
af nf

)nf
]
,

nf = nf0 + nf1

(
1

Lm,norm

− 1

) (32)

where

feff = 1.5A+ 0.5, (33)

The parameters af , nf0 and nf1, are taken from those for fast-twitch units in the original

model (Brown et al., 1999). The total muscle-length curve is Af · AFL (Figure S7C)

Calculation of oscillation frequency and identification of dynamics categories.

Frequency calculation. We use the function find_peaks in the python package scipy.signal to

identify peaks in the simulated dynamics of MF and MX firing, as well as in the simulated

joint angles. The number of peaks within a time interval Tinterval is noted as Npeaks with a

superscript "F", "X" or "movement", corresponding to peaks in rMF, rMX and θ respectively.

We defined the movement frequency as the number of joint movements varying more than

±5◦ from the balanced angle position (75◦) per time unit, in sequences of "flexor-extensor" or

"extensor-flexor" movements: fmovememt = Nmovememt
peaks /Tinterval. Therefore, if the movement

does not reach 5◦ in both directions, the joint is not considered to be oscillating (Figure

6F,6G).

A diversity of motoneuron dynamics emerge in our simulations. We divide the temporal

dynamical states into four categories. In addition to regular, periodic firing, there are states

of irregular oscillations, 100% co-contraction and atonia. Except during atonia, we compute

the range of peak heights during a large time interval.

Regular oscillations (Figure 4G-J) are characterized by periodic oscillations with a non-zero

phase difference between the MF and MX populations, and by the range of peak heights

(difference between maximum and minimum peak heights) being less than 5% smaller than

the mean.

Irregular oscillations (Figure S4J,K) are states in which the range of peak heights is 5% larger

than the mean. The dynamics may be aperiodic.

In 100% co-contraction states (Figure S4L,M), the MF and MX populations oscillate in phase

and simultaneously reached their maximal value, leading to the joint angle being stuck or

flexed or extended only in one direction. The dynamics are periodic and regular.
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Atonia (Figure S4N,O) refers to a fixed point in the dynamical system, where its variables,

including MF and MX, are constant with time.

Co-contraction rate calculation. Besides 100% co-contraction states, partial co-contraction

also happen in irregular oscillation states, during which some but not all MF/MX peaks os-

cillate in phase and simultaneously reach their maximal value (Figure S4J). To quantify the

effects of ablation or activation of neuronal populations on the occurrence of co-contraction,

we define co-contraction rate rco-contract (Figure 6I) as

rco-contract =
N co-contract

peaks

N total
peaks

(34)

where N co-contract
peaks is the number of peaks in which MF and MX populations oscillate in phase

and simultaneously reach their maximal values, and N total
peaks is the total number of peaks.

During irregular oscillations, due to asymmetry, N total
peaks can be different for MF and MX, in

such case we define N total
peaks = min

(
NF

peaks,N
X
peaks

)
. The value rco-contract can be equivalently

calculated from joint angle dynamics as N co-contract
peaks = N total

peaks−Nmovement
peaks . We categorize trials

with rco-contract > 0.99 as "100% co-contraction".

Simulations and visualization

Numerical methods. Simulations of the neuro-mechanical model are performed using Euler’s

method with time step ∆t = 0.1ms.

Simulations with random distributed connectivity values. For each tested parameter set, we

repeated the simulations for 50 realizations with the values of synaptic conductance coeffi-

cients generated from a uniform distribution ranging between ±10% of their assigned value

(Table 1).

The computed values of a variable, such as oscillation frequency or phase difference between

motoneuron populations, are plotted in graphs as mean ± standard deviation (SD). There

are cases in which there is almost no variability in the computed values despite variation in

parameter set. For example, there is almost no variability in the phase difference between the

flexor and extensor motorneuron populations (MF and MX) for V1 or V2b ablation efficiency

above 0.30 (Figure S5F). This lack of variability is explained by the fact that bursting activity

of one population occurs just after the activity of the other population. For example, the phase

difference in Figure 4I (but not in Figure 4G) is dictated by the width of the burst.

Initial conditions. For each realization of random connectivity values, the first simula-

tion started with the following initial values: aiα(0) = 0.5µA/cm2, diα(0) = 0µA/cm2,

uEα(0) = 0.1, sMα(0) = sEX(0) = sIX(0) = 0.01, sEF(0) = 0.011, sIF(0) = 0.012. The
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initial values of siα are chosen to introduce a slight asymmetry between flexor and extensor

at initialization, but the attractor dynamics are not sensitive to the choice of this asymmetry.

Unless otherwise stated, trials following the first simulation are simulated using the final state

of the last simulation as initial conditions.

Computing the fractions of various dynamical categories. Each simulated trial is categorized

as regular, irregular, 100% co-contraction or atonia (only in V1 or V2b activation case). The

fraction of each dynamical category among the 50 realizations is computed. Only categories

with fractions larger than 14% (7 out of 50 realizations) are plotted to ensure the generation

of a sufficient amount of data to compute the statistics.

Fourier analysis. To illustrate how the irregularity in oscillations changed following perturba-

tions of population activity, Fourier spectrum of the joint angle dynamics is computed using

scipy.fft.rfft. For each figure panel, a Fourier spectrum is computed for a randomly selected

trial from the realizations.
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Figure Legend 

Figure 1. High-frequency flexor and extensor oscillations during scratching. 

A) Schematic illustrating the injection of a pruritogen (chloroquine) in the nape of mice to induce 

scratching. 

B) Raster plot showing multiple episodes of scratching in a single wild-type mouse following the 

injection of chloroquine. Frequency of oscillations of each episode is color-coded, as indicated in 

the legend. 

C) Image of a mouse during the oscillation phase of scratching, with tracked knee (green), ankle 

(dark orange), and hindpaw (light orange) landmarks. The ankle angle () is indicated in purple. 

D,E) Line graphs representing the height (y-coordinates) of knee (green), ankle (dark orange) and 

hindpaw (light orange) (D) and the ankle angle (E) during scratching, N=10 episodes from 3 mice. 

Episodes with similar duration and frequency across three animals were chosen and averaged. 

F) Frequency distributions of the speed of oscillations (bouts/second) of all episodes occurring in 

the 30 minutes of recorded scratch response, N=30 mice. A bout is defined as the completion of 

one circular trajectory around the nape (one oscillation).  

Data presented as mean  SEM, SEM represented as shaded area. 

Figure 2. Ipsilateral excitatory V2a neurons drive high-frequency scratch oscillations 

A-B,D,H) Schematics illustrating the neuronal populations in the ventral spinal cord constituting 

the central pattern generators (CPGs) [MN: motoneurons], the intersectional genetic approach to 

drive the expression of DTR (Tauds-DTR) in spinal excitatory V2a neurons using hCdx2::FlpO and 

Chx10Cre (B), the timeline of DTx injection and behavioral testing (C), and the ablation (D) and 

the CNO-driven activation (H) of V2a neurons. 

E) Raster plots showing the occurrence of scratching episodes in control and V2a neuron-ablated 

mice following injection of chloroquine. Frequency of oscillations of each episode is color-coded, 

as indicated in the legend. 

F) Bar graph showing the reduction in average oscillation frequency in V2a neuron-ablated mice 

compared to controls. Statistical analysis performed using two-tailed Student’s t-test, p < 0.0001.  

G) Frequency distributions of the speed of oscillations (bouts/second) of all episodes occurring in 

the 30 minutes of recorded scratch responses in control (red, N=8) and V2a neuron-ablated (brown, 

N=9) mice. Statistical analysis performed using two-way ANOVA (interaction genotype x speed, 
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p < 0.0001) with Bonferroni’s post-hoc test, p < 0.0001 for genotype comparison at 2, 4, and 6 

bouts/sec. 

I) Frequency distributions of oscillations (bouts/second) during spontaneous scratching in controls 

(red, N=4) and in mice with CNO-activation of V2a neurons (dark red, N=7). Statistical analysis 

performed using two-way ANOVA (interaction genotype x speed, p = 0.0004) with Bonferroni’s 

post-hoc test, p < 0.0001 for genotype comparison at 6 bouts/sec. 

Data presented as mean  SEM. Individual mice represented as filled grey circles in F, SEM as 

shaded area in G and I. 

Figure 3. Ipsilateral inhibitory neurons modulate the frequency of scratch oscillations 

A,E,G) Schematics illustrating the ablation (A) and the CNO-driven activation (E) of V1 neurons, 

and the ablation of V2b neurons (G). 

B) Raster plots showing the occurrence of scratching episodes in control and V1 neuron-ablated 

mice following injection of chloroquine.  

C) Bar graph showing the reduction in average oscillation frequency in V1 neuron-ablated mice 

compared to controls, p < 0.0001. 

D) Frequency distributions of the speed of oscillations (bouts/second) of all episodes occurring in 

the 30 minutes of recorded scratch response in control (azure, N=16) and V1 neuron-ablated 

(cerulean, N=12) mice. SEM represented as shaded area. Statistical analysis performed using two-

way ANOVA (interaction genotype x speed, p < 0.0001) with Bonferroni’s post-hoc test, genotype 

comparison p < 0.0001 at 2 bouts/sec, p = 0.0004, at 6 bouts/sec, p = 0.0105 at 8 bouts/sec.  

F) Bar graph showing the lack of motor response (atonia state) in mice following CNO-induced 

activation of V1 neurons, p = 0.0009. 

H) Raster plots showing the occurrence of scratching episodes in control and V2b neuron-ablated 

mice following the injection of chloroquine.  

I) Bar graph showing the reduction in scratching oscillation frequency in V2b neuron-ablated mice 

compared to controls, p = 0.0178. 

Data presented as meanSEM. Individual mice represented as filled grey circles. In raster plots in 

panels B and H the frequency of each episode is color-coded, as indicated in the legend. Statistical 

analysis performed using two-tailed Student’s t-test, unless otherwise indicated. 
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Figure 4. Neuromechanical model for high-frequency flexor and extensor alternation. 

A) Schematic illustrating the circuit architecture of the neuromechanical model divided into flexor 

(F) and extensor (X) modules, each comprising excitatory (E), inhibitory (I), and motoneuron 

populations (M). 

B) Schematic illustrating the mechanical model of the ankle joint including a static and a rotating 

segment coupled by flexor and extensor muscles. 

C) Schematic illustrating an individual module including coupled excitatory (E) and inhibitory (I) 

neurons and a motoneuron (M) population driven by E.  

D) Computed dynamics of a single module. Time traces of motoneuron (M) firing rates are plotted 

for distinct strengths of I-to-E inhibitory conductance J𝐸𝐼. 

E,F) Simulations of the oscillation frequency generated by the neuromechanical model as a 

function of the strength of the inter-module I-to-I inhibition (Jinter
II ) (E) and the intra-module I-to-E 

inhibition (Jintra
EI ) (F). Red arrowheads and numbers indicate the value of synaptic strength used as 

reference parameter in the rate model (Table 1). Data presented as mean  SD of 50 realizations 

of synaptic conductance parameters, SD represented as shaded area. 

G,H) Simulated firing rates of flexor (MF) and extensor motoneurons (MX) (G) and joint angle θ 

(H) generated by the neuromechanical model using the reference parameter set in Table 1. 

I,J) Simulated firing rates of MF and MX (I) and joint angle θ (J) generated by the neuromechanical 

model when 20% of V1 neuron-driven inhibition is eliminated (pV1=0.2). 

Figure 5. Computed circuit dynamics following manipulations of activity of individual 

neuronal populations.  

A,I) Schematics illustrating the simulations of neuronal ablation (A) and activation (I). 

B-D) Graphs showing the computed oscillation frequency and types of motoneuron firing pattern 

as a function of the ablation efficiency (p) of V2a (B), V1 (C), and V2b (D) neurons. The bars 

above the graphs represent the occurrence of distinct motoneuron firing patterns (e.g., regular and 

irregular, see also STAR Methods) as a function of the percentage of ablated neurons.  

E-H) Graphs showing oscillation frequency as a function of the ablation efficiency (p) of V1 (E,G) 

and V2b (F,H) neurons and of the strength of inter-module I-to-E inhibition (Jinter
EI ) (E,F) and I-to-

I inhibition (Jinter
II ) (G,H). Only results for regular oscillations are included in this plot. 

J-L) Graphs showing the computed oscillation frequency and types of motoneuron firing pattern 

dependence on the activation current Iact injected into V2a (J), V1 (K), and V2b (L) neurons. The 
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bars above the graphs represent the occurrence of distinct motoneuron firing patterns as a function 

of the addition of input current. 

Solid and dashed lines represent regular and irregular oscillations, respectively. Data presented as 

mean S D of 50 realizations of synaptic conductance parameters, SD represented as shaded area. 

Figure 6. Distinct cooperation dynamics among the ipsilateral neuron populations in driving 

oscillations frequency.  

A,D,J) Schematics illustrating the ablation of V2a and V2b neurons (A), the ablation of V1 and 

V2a neurons (D), and the CNO-driven activation of V1 and V2a neurons (J). 

B) Bar graph showing the reduction in scratching oscillation frequency in V2a neuron-ablated, 

V2b neuron-ablated, and dual V2a and V2b neuron-ablated mice compared to littermate controls, 

p = 0.0002 V2a and V2b control vs ablated, p = 0.0009 V2b vs V2a ablated, p = 0.1719 V2b vs 

V2a and V2b ablated, p = 0.1270 V2a ablated vs V2a and V2b ablated. 

C) Graphs showing the computed oscillation frequency and types of motoneuron firing pattern as 

a function of the ablation efficiency (p) of V2b, V2a, and both V2a and V2b neurons.  

E) Bar graph showing the reduction in scratching oscillation frequency in V1 neuron-ablated, V2a 

neuron-ablated, and dual V1 and V2a neuron-ablated mice compared to littermate controls, p = 

0.0003 V1 and V2a control vs ablated, p = 0.0057 V1 vs V2a ablated, p = 0.0027 V1 vs V1 and 

V2a ablated, p = 0.0151 V2a ablated vs V1 and V2a ablated. 

F) Graphs showing the computed oscillation frequency and types of motoneuron firing pattern as 

a function of the ablation efficiency (p) of V1, V2a, and both V1 and V2a neurons. The arrow 

points to the value p = 0.95 (panels G,H). 

G,H) Simulated time traces of motoneuron firing rate (G) and joint angle (H) when V1 and V2a 

neurons are ablated with high-efficiency (above 90%), causing a constant co-contraction state. 

This state is not considered as an “oscillation” in panel F because the movement does not exceed 

the threshold (5°; see STAR Methods) in the extensor direction. 

I) Graphs showing that the 100% co-contraction state occurs following high-efficiency ablation of 

V1 and V2a neurons but not following other manipulations. 

K) Bar graph showing the atonia in V1 neuron-activated mice, and the increase in frequency 

following V2a and V1 and V2a neuron activation, p < 0.0001 V1 control vs activated, p = 0.0028 

V1 and V2a control vs activated, p = 0.1596 V2a activated vs V1 and V2a activated. 

L) Graphs showing the computed oscillation frequency and types of motoneuron firing pattern as 
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a function of the injected current (I) in V1, V2a, and both V1 and V2a neurons.  

Experimental data presented as mean  SEM, individual mice represented as filled grey circles, 

SEM as shaded area. Statistical analysis performed using two-tailed Student’s t-test. Modeling 

data presented as mean  SD of 50 realizations of synaptic conductance parameters, SD 

represented as shaded area. The bars above the line graphs in panels C, F, and L represent the 

occurrence of distinct motoneuron firing patterns (e.g. regular, irregular) as a function of the 

ablation efficiency (C,F) or the addition to input current (L).  
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