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Abstract: In the last decades, much research has been done to fasten wound healing and target-direct
drug delivery. Hydrogel-based scaffolds have been a recurrent solution in both cases, with some
reaching already the market, even though their mechanical stability remains a challenge. To overcome
this limitation, reinforcement of hydrogels with fibers has been explored. The structural resemblance
of fiber–hydrogel composites to natural tissues has been a driving force for the optimization and
exploration of these systems in biomedicine. Indeed, the combination of hydrogel-forming techniques
and fiber spinning approaches has been crucial in the development of scaffolding systems with
improved mechanical strength and medicinal properties. In this review, a comprehensive overview
of the recently developed fiber–hydrogel composite strategies for wound healing and drug delivery
is provided. The methodologies employed in fiber and hydrogel formation are also highlighted,
together with the most compatible polymer combinations, as well as drug incorporation approaches
creating stimuli-sensitive and triggered drug release towards an enhanced host response.

Keywords: fiber–hydrogel composite; biodegradable polymers; skin regeneration; drug delivery
platforms; controlled release

1. Introduction

Biomaterials are defined as nonviable materials, with potential for applications in
medical devices, that possess the ability to interact with biological systems to evaluate, treat,
replace or enhance the performance of any tissue [1]. Biomaterials are classified in different
ways; the most common refers to their chemical nature and is subdivided in metallic
materials (ferrous and non244-ferrous) and non-metallic materials (organic: polymers,
biological materials, and carbons; and inorganic: ceramics and glasses). Composites are
considered another very important class of biomaterials and result from the combination of
two classes of materials that work in synergy to improve the properties of the final product
above those of the individual components [1,2].

The continued research in this field has raised the specificity level of the biomaterials
developed and, therefore, has increased its impact in the healthcare global market [1].
Polymers represent a large portion of all biomaterials used in the biomedical field (about
45%) [2], and their application appears to have no end. They can be processed in the form
of particles, foams, films, membranes, hydrogels and fibers, and combinations of these 3D
structures can then be made to generated intricate, target-direct, specialized biomedical
systems. Biomedicine has resorted to these constructs to understand specific biological
processes and to engineer high-performance therapies to treat a variety of diseases. The
need to match the desired functions/characteristics of a given tissue or cell has driven the
combination of different classes of biomaterials in complex constructs (e.g., fiber–hydrogel
composite) that can effectively respond to the local demands and provide the necessary
tools to reach the desired goals. In recent years, fiber–hydrogel composites have been
disclosed as one of those systems that combine different structures to improve individual
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features and enhance inherent advantages to achieve successful outcomes. In biomedical
engineering, the importance of these constructs is particularly noticeable in wound healing
and drug delivery. In both areas, fiber–hydrogel composites can be a good alternative to
the use of antibiotics and/or their controlled administration.

The present review explores this subject further, starting with the introduction of
basic concepts associated with polymer properties and processing in the form of fibers and
hydrogels and then evolving towards the combination of these two structures in one to
successfully respond to specific needs. The most recent studies highlighting fiber–hydrogel
composites are here identified, giving particular attention to the engineering of wound
dressings and drug delivery systems.

2. Polymers Natural/Synthetic

The word polymer is derived from the Greek poly and meros, meaning many and
parts, respectively. Polymers are macromolecules that result from the repetition of smaller
molecules, the monomers [3]. The nature of the monomers and the specific bonds gener-
ated between them, and their spatial rearrangement, determine the properties of the built
polymer [4]. The process through which a polymer is formed is named polymerization and
can be described as a chemical reaction in which the combination of one or more monomers
occurs [3]. Polymers can also be biologically derived or synthetically produced [2]. Natural
polymers are created in nature during the life cycles of biological systems, such as plants,
microorganisms, and animals [5]. These polymers are widely used in scientific community,
namely, in tissue engineering, wound dressing and drug delivery systems [6–8], due to their
biocompatibility, non-toxicity, biodegradability and bioactivity, particularly their inherent
anti-inflammatory and antibacterial properties [9]. These polymers include polysaccha-
rides and polypeptides. Polysaccharides, the most abundant class of biopolymers, are
polymeric carbohydrate molecules formed by glycosidic bonds with different structures
and properties depending on molecular weight and chemical composition [8]. In particular,
polysaccharides, compared to polypeptides, are generally more stable and usually do not
denature on heating [10]. Regarding their chemical properties, they have polyfunction-
ality, high chemical reactivity, chirality, chelation and adsorption capacity, which allow
them to be chemically and biochemically modified very easily. These modifications result
in different polysaccharide derivatives, which increase the range of applications [6,8,11].
The alginate, hyaluronic acid (HA), cellulose and chitosan (CS) stand out between the
polysaccharides for being the most used in biomedicine (Table 1). Just like polysaccha-
rides, polypeptides are produced by microorganisms. Polypeptides are macromolecules
composed of repeated units of amino acids linked by peptide bonds. Their versatility,
flexibility, good performance in metabolic adaptation and imitation of the extracellular
matrix makes them good candidates for tissue scaffolding and drug/gene delivery [12].
The most common polypeptides used in biomedicine are collagen and gelatin (Table 1).
However, known limitations of natural polymers include their very low dimensional sta-
bility, susceptibility to immunogenic responses, possibility of pathogen transmission and
high batch-to-batch variability [12,13]. For this reason, biodegradable synthetic polymers
are frequently employed as alternatives.

Indeed, some of the key benefits of synthetic polymers are their reproducibility, which
allows mass production, and their ability to be tuned according to specific requirements.
Their degradation profile can also be easily manipulated via their hydrolytic groups [14],
even though bulk degradation can occur [15]. Moreover, synthetic polymers are biologically
inert, thus without a therapeutical impact, but may induce chronic inflammation [16]. In
biomedicine, poly(ethylene oxide) (PEO), poly(ε-caprolactone) (PCL), polylactic acid (PLA),
poly(lactic-co-glycolic acid) (PLGA), poly(vinylpyrrolidone)(PVP) and poly(vinyl alcohol)
(PVA) [15,17] constitute the most studied polymers in the field (Table 1) [18]. They may
additionally be combined with natural polymers. Hybrid polymers can result from the total
or part combination of natural and synthetic polymers. As is the case of the combination of
the PLGA (synthetic polymer) and the CS (natural polymer) that result in the PLGA-CS
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hybrid polymer that has been studied in several areas, namely in therapeutic delivery [19].
The choice of polymers for the formation of scaffolds, based on their characteristics, has
proved to be crucial in the properties and applicability of the final scaffold. Currently,
synergisms between synthetic and natural biomaterials in the form of 3D scaffolds, such as
hydrogels and nanofibrous mats, are in high demand for biomedical applications, being
frequently preferred over constructs made of polymers belonging to only one of these
categories [7,15,20].



Antibiotics 2021, 10, 248 4 of 34

Table 1. Origins and main properties of natural and synthetic polymers commonly used in wound healing, tissue engineering and drug delivery applications.

Polymer Structural Formula Origin/Synthesis Pathway Main Characteristics Known/Key/Main/Selected
Applications Reference

Natural

Hyaluronic acid Connective tissues of
any vertebrate

Non-sulfated anionic
glycosaminoglycan; linear
conformation; hydrophilic;

water-soluble; highly viscoelastic;
non-immunogenic; biodegradable

Wound healing; biomolecule
(e.g., ocatdecyl acrylate)
delivery; cartilage/bone
regeneration; bioink in

3D printing

[11,21–24]

Chitosan

Chitin (mostly found in the
exoskeleton of shrimps, crabs,

lobster and squid pens; cuticles
of insects; and in lesser amounts,

in cell walls of fungi, yeast
and plants)

Cationic linear polysaccharide;
hydrophilic; pH-dependent charge
density; physicochemical properties

dependent on the degree of
acetylation, crystallinity, molecular
weight and degradation; non-toxic;

biodegradable; non-antigenic;
biologically adhesive; hemostatic

effect; antimicrobial;
anti-inflammatory

Wound healing; bone/cartilage
regeneration;

antibiotic/antibacterial
agents/growth
factors delivery

[20,22,25–27]

Alginate
Brown seaweed or bacteria

(Azotobacter and
Pseudomonas specie)

Anionic linear polysaccharide; slow
gelation time; hydrophilic; water

soluble; low toxicity; low cost; water
retaining capacity; biodegradable

Wound dressings; burn
treatments;

protein/small chemical drug
delivery; bone/cartilage

regeneration

[5,28–30]

Cellulose

Plants (mainly derived from
cotton fiber, dried hemp and

wood), bacteria (e.g., Acetobacter,
Azotobacter,

Rhizobium, Agrobacterium,
Pseudomonas, Salmonella,

Alcaligenes and
Sarcina ventriculi species)

Linear homopolysaccharide;
hydrophilic; rigid; fibrous

morphology; relatively easy
extraction; non-toxicity; low cost;

biodegradable

Bone/tendon tissue
regeneration; wound

healing; loading
antimicrobial agents

and antibiotics

[31–34]
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Table 1. Cont.

Polymer Structural Formula Origin/Synthesis Pathway Main Characteristics Known/Key/Main/Selected
Applications Reference

Natural

Gelatin

Skin and bone of bovine and
porcine, fish and marine
organisms (incomplete

denaturalization of collagen)

Linear polypeptide; hydrophilic;
water soluble (35 ◦C); soluble in
polyhydric alcohols and several

other organic solvents; cost efficient;
easily available; biodegradable;

non-antigenic; similarity to collagen

Wound healing; bone
regeneration; articular cartilage

repair; tendon
tissue engineering

[26,35–37]

Collagen

Collagen type I

Animals (e.g., Achilles tendon,
bovine skin, porcine skin,

and human
cadaveric skin)

Polypeptide; good surface-active
agent; enhanced water holding

capacity; highly hydrophilic;
twenty-eight different collagen

types; low antigenic and cytotoxic
responses; antioxidant;

biodegradable; most abundant
protein of animal origin

Wound healing; tissue
replacement and regeneration

(bone, cartilage, skin, blood
vessels, trachea, esophagus);

carriers for
drug/protein delivery

[38–41]

Synthetic

Poly(ethylene
oxide)

Anionic ring-opening
polymerization of ethylene

oxide (EO)

Neutral polymer; hydrophilic;
water soluble; low toxic;

biodegradable

Gene/drug delivery systems;
biomedical implants;

neocartilage tissue formation;
transdermal delivery

[42–45]

Poly(ε-
caprolactone)

Ring-opening polymerization of
ε-caprolactone monomer using a

wide range of catalysts

Semicrystalline; hydrophobic;
excellent mechanical strength; slow

degradation rate; nontoxic;
biodegradable

Tendon tissue engineering; skin
regeneration; vascular scaffolds [37,44,46,47]

Polylactic acid
Polycondensation of lactic acid

and ring opening
polymerization of cyclic lactide

Thermoplastic aliphatic polyester;
hydrophobic; poor ductility; low

strength; bioabsorbable;
biodegradable

Ligament and tendon repair;
vascular stents; bone

regeneration
[5,48–50]
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Table 1. Cont.

Polymer Structural Formula Origin/Synthesis Pathway Main Characteristics Known/Key/Main/Selected
Applications Reference

Synthetic

Poly(lactic-co-
glycolic

acid)

Ring-opening polymerization
of lactide

Linear aliphatic copolymer;
relatively hydrophobic;

enhanced flexibility;
thermal processibility; tunable
degradation/biodegradation;

minimal side effects

Wound healing; bone/
cardiac/periodontal tissue

regeneration;
protein/growth
facto/antibiotic/

gene delivery

[51,52]

Poly(vinylpyrrolidone)
Free radical polymerization

from the
vinylpyrrolidone monomer

Neutral polymer; amorphous;
hydrophilic; water soluble; stable;

nontoxic; adhesive power;
non-biodegradable

Wound healing; gene delivery;
biomedical implants
(orthopedic, dental,

vaginal, breast);
neural/cardiac/pancreatic

tissue regeneration

[17,53–55]

Poly(vinyl
alcohol)

Vinyl acetate with base
catalyzed transesterification

with ethanol

Linear polymer; hydrophilic;
semicrystalline; water soluble; pH
sensitive; high swelling capability;
excellent chemo-thermal stability;

transparency; high tensile; strength;
high elongation at break; flexibility;

non-toxic; non-carcinogenic and
bioadhesive properties;

non-biodegradable

Drugs/protein/growth
factor/nanoparticle/gene
delivery; skin healing and

reconstruction;
kidney regeneration

[48,56,57]
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3. Hydrogel

Hydrogels are 3D networks of hydrophilic polymers capable of absorbing and re-
taining significant amounts of fluids [58], which have also been widely applied in wound
healing [30,59]; cartilage tissue engineering [36,60]; bone tissue engineering [61]; and
delivery of proteins, growth factors and antibiotics [20,62].

Hydrogels can be classified based on their source, namely the composing polymers,
in natural or synthetic (Table 2). Thus, nature-derived hydrogels may consist of natural
polysaccharides or polypeptides [6,12], ergo carrying molecular recognition sites enabling
cell/tissue communication pathways and modulation towards a therapeutical effect [63].
However, as hydrogels, they tend to present low stability in aqueous medium, poor me-
chanical properties and quick degradation rates [63]. On the other hand, hydrogels based
on synthetic polymers are typically mechanically resilient and display superior elastic
properties. Still, their biological inertness, blocking any chances of tuning cell behav-
ior towards a healthier state, limits their use in biomedicine [63,64]. Hybrid hydrogels,
combining natural and synthetic polymers [65], have been proven useful to create smart
hydrogels (alginate-g-(PEO-poly(propylene oxide)-PEO) [66]), in biomedical materials
(PVA/collagen [67]) and in tissue engineering applications (CS/PCL [47]), to name a few
examples. Their polymer composition may also subdivide hydrogels in homopolymers,
copolymers, multipolymers or interpenetrating polymer networks (IPN) [68]. Homopoly-
mer hydrogels are made of crosslinked polymer networks derived from a single type of
basic structural unit (monomers) [69]. Copolymer hydrogels are frequently crosslinked
polymer networks made up of two co-monomer units with at least one hydrophilic com-
ponent (not soluble in water). These networks can assume three types of configuration,
arbitrary, block or may alternate between both along the chain [70,71]. Multipolymer
hydrogels are the result of the reaction of three or more co-monomers [72]. In turn, IPNs
are an important class made of two independent crosslinked synthetic and/or natural
polymer components, in which a new hydrogel polymeric network is polymerized within
a pre-existent [68,73]. In case only one polymer network from the two is crosslinked, the
hydrogels are designated as semi-IPNs. [68].

Table 2. General classification of hydrogels considering their source, polymers charge, polymer
composition, structural configuration, degradation, physical properties, response to stimuli, and type
of crosslinking [68].

Hydrogels Classification

Source Natural, synthetic or hybrid

Charge of polymers Ionic, non-ionic, amphoteric or zwitterionic

Polymeric composition Homopolymer, copolymer, multipolymer, IPN or semi-IPN

Configuration Amorphous, crystalline or semicrystalline

Degradability Biodegradable or non-biodegradable

Physical properties Conventional or smart

Response Physical, chemical, or biochemical/biological

Type of crosslinking Chemical or physical

Hydrogels may also be categorized as amorphous, crystalline or semi-crystalline,
depending on their physical organization and chemical composition. Semicrystalline
hydrogel networks are mixtures of crystalline as well as amorphous phases [74]. These
properties may also affect the hydrogel degradation rate, sub-divided in degradable or
non-degradable structures [68]. Most hydrogels used in tissue engineering and drug
delivery systems are biodegradable and are developed to degrade into biologically ac-
ceptable molecules (non-toxic degradation biproducts) [75,76]. The degradation rate of
biodegradable hydrogels may be manipulated via the polymers’ molecular weight [77],
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by the action of oxidizing agents [78], or by the presence of enzymes [79]. Tanan et al.
developed a semi-interpenetrating hydrogel (semi-IPN) consisting of a mixture of cassava
starch-g-polyacrylic acid/natural rubber/PVA. This hydrogel exhibited an excellent water
retention capacity and proved to be highly sensitive to salt concentration, type of cations,
pH and swelling time. In addition, it demonstrated good biodegradation with a rate of
0.626 wt.%/day [80].

In terms of their physical properties, hydrogels can be categorized as conventional or
smart. Conventional hydrogels are characterized by low response rates, in general. They
have a very low swelling rate due to their small matrix size. This limitation has triggered
a greater interest in macroscopic hydrogels, where the size of the pores allows a higher
swelling rate. Smart hydrogels are hydrogels that react to changes in environmental condi-
tions (external stimuli) by swelling or reversibly collapsing [81,82]. Hydrogels can be phys-
ical, chemical or biochemical/biological in relation to the type of response/stimulus [68].
Physical stimuli like temperature, electric field, magnetic field, light and pressure and
chemical stimuli like pH, solvent composition and ionic strength can change the swelling
state of the hydrogel. Hydrogels with biochemical/biological responses are capable of
interacting with the surrounding environment [81,83]. In terms of production, hydrogels
can be formed by physical [30] and/or chemical [21] crosslinking of polymers, which
will be discussed in the following sections. Hydrogels can also be classified based on
their charge in non-ionic (neutral), ionic (anionic or cationic), amphoteric (acidic and basic
groups) or zwitterionic (anionic and cationic groups in each structural unit) [68].

Hydrogels benefit from a high degree of flexibility, adjustable viscoelasticity, biocom-
patibility, high permeability to oxygen and essential nutrients, high water content and low
interfacial tension with aqueous medium [7,22]. The hydrogel biocompatibility, that is, its
ability to perform its intended function without inducing side effects in the host, is one
of its most crucial characteristics. Further, in case of wounds, for instance, their limited
adhesion may allow removal from the wound bed without causing additional trauma or
destroying the newly formed tissues [84,85].

Certain hydrogels even have capacity to alter their swelling state in response to
environmental variations; these function as triggers to change the physical and/or chemical
properties of the hydrogel. For example, in the case of pH-sensitive hydrogels, the polymers
that make up the hydrogel contain hydrophobic moieties that swell in water according to
the pH of the external environment. Thus, in the absence of this stimulus, the hydrogel
maintains its initial swelling state [81]. This property makes them good candidates for
drug delivery systems. In this case, altering the swelling state in response to a change in
pH opens opportunities for controlling the timing of drug release. Kwon et al. described
the synthesis via chemical crosslinking of pH-sensitive hydrogels based on hydroxyethyl
cellulose and HA for transdermal delivery of the drug isoliquiritigenin. At pH 7, the
electrostatic repulsions between the carboxylate groups of HA lead to the enlargement of
mesh and, consequently, to an increase in the amount of isoliquiritigenin released. The
authors observed an efficacy greater than 70% of the release of the drug due to the pH and
excellent adhesive properties of the hydrogel, which makes it a good candidate for treating
skin lesions [86].

Hydrogel Formation: Techniques

Considering that many hydrogels degrade very easily in biological systems or in
contact with water-based fluids, the purpose of the crosslinking process is to improve the
insolubility, mechanical strength, and rigidity of the polymer network. Hydrogels can
be physically or chemically crosslinked (Table 3) [87]. Physical hydrogels are networks
with transient junctions (reversible connections), traditionally disordered and fragile. They
result from interactions such as ionic bonding [88], hydrogen bonding [89], hydrophobic
interactions [90], and crystallization [91]. The physical properties of the polymers and
the gelation conditions determine the internal structure of the hydrogel, by modulating
properties such as gel density, porosity and mechanical performance (e.g., rigidity) [92].



Antibiotics 2021, 10, 248 9 of 34

Physical hydrogels tend to exhibit low mechanical strength and are often unstable [93].
The dissolution of physically crosslinked hydrogels can occur in response to changes in
temperature, application of stress, ionic strength, pH and solvent composition. Because of
their reversible character, the polymer solution resulting from the dissolution process may
undergo again gelation and restore the original hydrogel features [65,94].

Unlike physical, chemical hydrogels are polymer networks with permanent junctions,
formed via covalent bonds, which are capable of maintaining the structure integrity for
longer (increased degradation time) [95]. Chemically crosslinked hydrogels are known to
be mechanically strong. However, although they present a permanently fixed shape, they
have low fracture resistance and extensibility [93]. Further, certain chemical crosslinking
agents are toxic and can cause adverse reactions; thus, they must be extracted from the gels
before use [96]. Photopolymerization, enzymatic crosslinking, crosslinking molecules and
polymer–polymer crosslinking are the four major chemical crosslinking methods that can
be employed to form crosslinked hydrogels.
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Table 3. Properties and limitations of different types of physical and chemical crosslinking.

Hydrogels Crosslinking
Engine Concept Advantages Disadvantages Reference

Physical

Ionic/Electrostatic
Interaction

Interaction between a polyanion and a
multivalent cation or a polycation, and vice
versa (interaction between opposite charges)

Simple method; self-healing ability
Low stability in physiological

environments and limited
mechanical strength

[29,94,97,98]

Hydrogen
Bonding

Hydrogen bond between polymer chains
(electron-deficient hydrogen atom and a
high electronegativity functional group)

Absence of chemical crosslinkers High dilution and dispersion
rate over a few hours in vivo [85,99]

Hydrophobic
Interaction

Polymers with hydrophobic domains are
capable of crosslinking in aqueous

environments by means of reverse thermal
gelation (“sol-gel”) (increased temperature
leads to the aggregation of these domains)

Shape memory; autonomously
self-healing properties; high degree

of toughness
Poor mechanical properties [99–101]

Crystallization

The principle of freezing polymers at low
temperatures, followed by thawing at room
temperature causes the formation of crystals
which leads to the formation of hydrogels

Stability and mechanical properties
can be increased with increasing the
freezing time and freeze–thaw cycles;

simple method; not require
additional chemicals and high

temperature

Freeze/thaw processes
applied for long periods of

time can alter the behavior of
the hydrogel

[96,102–104]

Chemical

Photo-crosslinked

The crosslinking of monomers or oligomers
is initiated in the presence of an irradiation
of UV/visible light and a photoinitiator that,

when absorbing photons, is cleaved and
forms free radicals that trigger

polymerization

No toxic crosslinking agents are
required; excellent spatial and

temporal selectivity; low processing
cost and energy requirements

The photoinitiator can
produce free radicals with
effects on immunogenicity
and cytotoxicity responses

[105,106]

Enzymatic
Reaction

Certain enzymes (e.g., transglutaminases,
horseradish peroxidase and tyrosinase) help

to catalyze crosslinked reactions between
two or more polymers

Mildness of the enzymatic reactions
at normal physiological conditions;

high efficiency; selectivity;
non-toxicity; good biocompatibility;

fast gelation process; tunable
mechanical properties

Instability and poor
availability of some of the

enzymes
[107–109]



Antibiotics 2021, 10, 248 11 of 34

Table 3. Cont.

Hydrogels Crosslinking
Engine Concept Advantages Disadvantages Reference

Chemical

Crosslinking
Molecules

Crosslinkers (e.g., glutaraldehyde,
carbodiimide agents, genipin and citric acid)

are small molecules with two or more
reactive functional groups responsible for

the formation of bridges between
polymers chains

Easiness and versatility method
Possible cytotoxicity of the

crosslinking agent (e.g.,
glutaraldehyde)

[110–112]

Polymer-Polymer

Crosslinking reaction occurs between
pre-functionalized polymer chains with

reactive functional groups under favorable
conditions. Polymer–polymer bonds can be

formed by Schiff bases and by Michael
addition reactions

Not using crosslinking molecules
Requires the modification of

the polymer chains before
their conjugation

[113,114]
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Hybrid hydrogels result from the combination of physical and chemical crosslinking of
polymers. These double crosslinked hydrogels combine the advantages of both strategies,
namely, low surface tension, remarkable thermodynamic stability and elevated capacity of
solubilization [65,93].

Various chemical and physical hydrogels have been prepared from natural and/or
synthetic polymers for a variety of biomedical purposes. Chitosan hydrogels formed with
the crosslinking agent trisodium salt 6-phosphogluconic (6-PG-Na+) loaded with the drug
piroxicam were developed by Martinez-Martinez et al. The interaction between ionic poly-
mer cationic groups and anionic groups of the 6-PG-Na+ crosslinker led to the formation of
ionic hydrogels. The authors observed that the hydrogel had potential as a drug vehicle for
topical administration since at pH close to neutrality there was less degradation than at
lower pH, with a release of 90% of piroxicam during 7 h (release controlled by pH). This
hydrogel proved to be a good candidate as a wound dressing given its good adhesion
properties, non-toxicity and ability to induce healing and regeneration [115]. In another
study, Wang et al. developed a hydrogel based on gelatin methacrylamine/poly(ethylene
glycol)diacrylate (GelMA/PEGDA) via photo-crosslinking (with photoinitiator I2959). The
engineered hydrogel was shown to have stronger mechanical properties than pure GelMA
hydrogels and a degradation rate that lasted 4 weeks. Here, osteoblasts were able to adhere
and proliferate along the surface, showing great cell viability and biocompatibility. Such
characteristics make this hydrogel a good candidate for guided bone regeneration [116].
Table 4 lists some of the most recent examples physical, chemical and hybrid hydrogels
employed in biomedicine and their respective production techniques.

Table 4. Examples of hydrogel crosslinking systems employed in wound dressing, tissue engineering and drug delivery.

Hydrogels Crosslinking
Engine

Hydrogel
Composition Applications Reference

Physical

Ionic Interaction

6-PG-Na+-crosslinked CS Drug delivery; wound dressing [115]

CaCl2-crosslinked
alginate-pectin Wound dressing [30]

Poloxamer-heparin/gellan gum Bone marrow stem
cells delivery [117]

Al3+-crosslinked cellulose Drug delivery [118]

Hydrogen Bonding

PVA/poly(acrylic acid) Surgical sutures and
load-bearing fields [119]

1,6-hexamethylenediamine
(HMDA)-crosslinked cytosine
and guanosine modified HA

Injectable drug delivery; soft tissue
engineering;

regenerative medicine
[120]

Crystallization

PVA/poly(ethylene glycol) Wound dressing [121]

CS/PVA Anti-inflammatory drug loading
and release [102]

PVA/cellulose 2-layered skin model [122]

Chemical Photo-crosslinked

PEGDA Tissue engineered heart valves [123]

GelMA Tissue engineering; drug delivery;
regenerative medicine [124]

GelMA/PEGDA Bone regeneration [116]

GelMA/CS Tissue engineering [60]
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Table 4. Cont.

Hydrogels Crosslinking
Engine

Hydrogel
Composition Applications Reference

Chemical

Enzymatic Reaction

Horseradish peroxidase
-crosslinked HA/silk fibroin Tissue engineering [21]

Horseradish peroxidase
-crosslinked Silk fibroin-

tyramine-substituted silk fibroin
or gelatin

Cell delivery [125]

Transglutaminase-crosslinked
gelatin–laminin

Neuromuscular tissue
engineering [126]

Crosslinking Molecules

Genipin-crosslinked CS
Drug delivery systems in oral

administration
applications

[111]

Genipin-crosslinked CS/gelatin Drug delivery [127]

Glutaraldehyde-crosslinked CS Tissue engineering [128]

Polymer–Polymer CS/Alginate Neuronal tissue
engineering [129]

Hybrid
Chemical Crosslinking

followed by
Crystallization

Ethylene glycol diglycidyl
ether-crosslinked

microcrystalline Cellulose/PVA
Drug delivery [130]

4. Fiber

The use and production of polymer-based fibers by humans has been described since
pre-historic times. The earliest account of the biomedical use of fibers is suggested in
decorations of the Tassili caves, engraved between 5000–2500 BC [131]. Ancient records,
date the beginning of the use of cotton to the first half of the 6th millennium BC and the
cultivation of silkworms to produce silk fibers to the 4th millennium BC [132,133]. With the
industrial revolution, there was a need to create more efficient fiber production strategies. In
the 14th century, the spindle to manufacture wool and cotton fibers emerged. The evolution
in this field did not stagnate and the production of fibers continue evolving until the 19th
century, dramatically increasing the use of natural fibers in the 1940s [11,134]. Years later,
in the middle of the 20th century, the production of synthetic fibers began [11]. Nowadays,
this area is constantly evolving, being already available several high precision methods
of fiber production [133,135]. The application of fibers in biomedicine occurs in several
areas, namely in wound dressings [136], bone tissue engineering [137], drug-controlled
release [138], among others.

Fibers can be divided in two classes, natural and synthetic. Natural fibers can be
extracted from plants, animals or minerals. Synthetic or man-made fibers usually arise
from chemical processing [135]. In general, all plant-derived fibers are composed of
cellulose, while animal-derived fibers contain proteins [139]. Natural fibers are made of
millions of macrofibrils, which in turn are formed by microfibrils [140], composed mainly
of crystalline cellulose (30–90%, that varies depending on the part of the plant concerned)
surrounded by an amorphous matrix of lignin and hemicellulose [141]. These three fiber
components are linked together by covalent bonds [140], with the fiber properties being
defined by their composition, microfibril angle, crystallinity and internal structure. The
stiffness of the fibers depends essentially on the angle of the cellulose microfibrils, the
smaller the angle the greater the stiffness. Other properties, such as water absorption,
moisture resistance, swelling and integration of the fiber bundle are determined by the
other components, like hemicellulose [141]. In general, vegetable fibers are characterized
by their biodegradable nature, lightweight, renewable capacity, abundance, improved
mechanical properties, low cost and low density [142,143]. Because of these characteristics,
natural fibers can be processed in various forms, including rope, yarn and reinforcing
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agents for biocomposites [144]. However, as reinforcements, the quality and efficiency of
the final product are dependent on environment conditions which may be unpredictable
from batch to batch, generating heterogeneity between fibers with the same origin [142].
Cellulose nanofibers have been applied in areas such as drug delivery [145] and tissue
engineering [146]. Doench et al. reported the development of non-cellularized injectable
suspensions of viscous CS solutions, filled with cellulose nanofibers as a strategy for visco-
supplementation of the intervertebral disc nucleus pulposus tissue [146]. Natural fibers
derived from animal sources can be collected from wool, silk and hair, for instance [139]. In
the case of wool, depending on the animal it is collected from, be it sheep, lama or rabbit,
there are properties that vary, namely, the color and the weight of the fibers [147]. Keratin
is the main component of wool and hair [148]. This protein has excellent biocompatibility,
biodegradability and is capable of increasing scaffolds elasticity and mechanical resilience
by self-assembly and polymerization [149]. Silk fibers, on the other hand, are mainly made
up of two structural proteins, fibroin (mechanical strength) and sericin (coating) that can be
organized in a linear structure [150]. Silk fibers are characterized by being biodegradable
and biocompatible. Although in the past their use was limited to clothing, today, silk
is used in surgical knits, sutures, and wound healing. In addition, several researches
are now in course to examine their use in films, scaffolds, electroplated materials and
hydrogels [133,151]. In fact, the increase in research on polymeric composites reinforced
with natural fibers has emerged side by side with the use of synthetic fibers in polymeric
composites [143].

Synthetic fibers can be classified in inorganic or organic. Inorganic fibers are those that
are not made of organic compounds [152]. As such, organic fibers can be manufactured
either from natural or synthetic polymers. Most of the fibers used are of polymeric origin.
Thus, the molecular weight of the polymer fiber plays a crucial role in influencing the
tensile strength and the physical properties of the final construct [153]. Synthetic polymer
fibers can be prepared from various polymers, as can be seen in Table 5 [153]. However,
in biomedicine, those endowed with biodegradable features attract much more attention,
namely, the PLA and the PCL polyesters [154]. PLA has the potential to replace fossil-based
polymers [139]. It is biocompatible and its degradation biproducts are non-toxic, which
favors its application in health-related fields [155]. On its turn, PCL is a biocompatible,
linear polyester with improved elastic properties (despite having low tensile strength, it is
capable of very high elongation) [154] that make it highly desirable for tissue engineering
systems [156].

Table 5. Examples of natural and synthetic fibers [135,153].

Type of Fibers

Natural
Plant

Bast fibers (e.g., jute and flax); seed fibers (e.g., cotton and coir); leaf fibers (e.g., banana
and abaca); grass fibers (e.g., sugarcane bagasse and bamboo); straw fibers (e.g., rice, corn

and wheat); wood fibers (e.g., softwood and hardwood)

Animal-Based Wool; silk; hair

Synthetic

Inorganic Metals and alloys (e.g., metals fiber); metal or semi-metal compounds (e.g., glass and
ceramics fibers); carbon-based fibers (e.g., carbon and graphene fibers)

Organic
Synthetic polymers (e.g., polyamide nylon, polyethylene terephthalate,

phenol-formaldehyde, PVA, polycarbonate, polyvinyl chloride and polyolefins
(polypropylene and polyethylene)); natural polymer (e.g., chitosan and alginate)

Numerous researches describe the combination of synthetic polymers and natural
polymers as the key for a successful fiber production [157–159]. For instance, Hu et al.,
reported the production of alginate/PCL composite nanofibers by co-electrospinning to
enrich cancer stem cells (CSCs) constructs. The author studied the impact of the separated
PCL and alginate fibers and the alginate/PCL composite having observed that the appli-
cation of composite fibers is more effective in selecting cells than pure fibers. The fact
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that these scaffolds can be adjusted (composition proportion) to isolate CSCs from differ-
ent tissues may potentially facilitate cancer research [157]. Levengood et al. developed
CS/PCL nanofiber structures that combined the biological properties of CS and the stability
and mechanical integrity of PCL for prospective applications in skin tissue engineering.
Throughout the study, it was found that the nanofiber structure increased the wound
healing rate, promoted general closure, re-epithelialization, maturity of the neoepidermis
and collagen deposition when compared to the control. Such facts strengthen the potential
of CS/PCL nanofiber structures for skin repair [158]. The other section of synthetic fibers,
the inorganic fibers, can be subdivided in three main groups, which are the metals and
alloys, the metal or semi-metal compounds and the carbon-based fibers (Table 5).

Many of the inorganic fibers generally exhibit high strength, high thermal and chemical
stability and stability against any kind of organic solvent [152]. Regarding fiber glass,
they have a relatively low cost, high tensile strength, high chemical resistance and good
insulation properties. In case of carbon fibers, these have numerous advantages, such as
high stiffness and tensile strength, high chemical resistance, high temperature tolerance,
present low cost and low thermal expansion. Because of these characteristics, both glass
fibers and carbon fibers are often used as reinforcement in polymeric composites [143].
These fibers can be combined with other components. Naskar et al. described a composite
of regenerated silk protein fibroin reinforced with functionalized carbon nanofibers, loaded
with growth factors (BMP-2 and TGF-β1) essential to bone regeneration. The matrices
formed were porous, immune-compatible and bioactive when incubated in simulated body
fluid. Here, it was seen that the reinforcement of the nanofibers influenced the mechanical
property of the matrices, increasing the compression module up to 46.54 MPa [160].

Fibers can be classified according to their internal structure (uniform fibers or core-
shell) or orientation (aligned or arranged randomly). They can also be formed of continuous
monofilament yarns or multifilament yarns. Both natural and synthetic fibers can be
characterized physically (diameter, length, density and moisture gain) and mechanically
(tensile strength, specific strength young’s modulus, specific young’s modulus and failure
strain) [161]. Natural fibers have moderate mechanical properties, high thermal sensitivity,
low density, acceptable modulus-weight ratio, low cost, can be extracted from unlimited
sources, and display good recyclability and biodegradability. However, the high sensitivity
to humidity, higher variability of physical and mechanical properties and low durability are
some of the disadvantages of natural fibers. In turn, synthetic fibers have high mechanical
properties, low sensitivity to moisture and low thermal sensitivity. Limited sources and
moderate recyclability are some disadvantages of synthetic fibers. [162,163]. Even though
their mechanical resilience is highly attractive, the energy necessary to produce synthetic
fibers tends to be more than that required for natural [140].

Fiber Production: Techniques

As explained earlier, the fiber final properties depend on the polymer composition.
However, they are also dependent on the processing conditions. The four most used
fiber production methods include electrospinning, melt-spinning, wet-spinning and dry-
spinning (Table 6). The electrospinning is a technique that allows the generation of poly-
meric fibers with submicron or nanometric diameters while conventional techniques such
as melt-spinning, wet-spinning and dry-spinning can produce polymer fibers with diame-
ters up to the micrometer range.
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Table 6. Set up, concept, advantages and disadvantages of the most common fiber manufacturing techniques, namely, electrospinning, wet-spinning, melt-spinning and dry-spinning.

Electrospinning Wet-Spinning Melt-Spinning Dry-Spinning

Set Up

Concept

The polymer dissolved in an
appropriate solvent is injected by a
needle towards a collection plate.
Due to the high applied electric

field, potential difference generated
between the syringe (acts as an

electrode) and the plate (acts as an
electrode count), the polymer is

attracted by the collecting plate, and
the polymer solution is converted

into nanofibers

The polymer is dissolved in an
appropriate solvent and later
injected through a fiery into a
coagulation bath containing a

non-solvent liquid. In the
coagulation bath, continuous

polymerization of the filaments
occurs. After the formation of the
fibers, they are extracted from the

coagulation bath by means of
rollers-induced capture

The solid polymer is heated above
its melting point within the extruder
and is then expelled through a die,
solidifying on cooling. In a pick-up,

the fibers are then recovered and
mechanically stretched

The polymer is dissolved in a
suitable solvent (must be highly
volatile). The initial solution is

injected through the spinneret and
through a heating column that
causes the solvent to evaporate.

Consequently, the polymer
solidifies, and dry fibers are attained

Advantages

Fibers with a large surface area,
high porosity, great flexibility, and

excellent mechanical properties;
simple and straightforward process;

cost efficiency

Wet-spun structures have greater
intrinsic porosity and larger

interconnected pores; versatile
technique in terms of material

selection

Fabrication process is quick; Not
require added solvents

Enables spinning of polymers
vulnerable to thermal degradation

Disadvantages

Fiber thickness increases density
and reduces pore size in 3D

structures that can limited the
interaction of cells with the fibers;

toxicity of the solvents and the
instability of the jets; slow process

Long exposure to chemicals during
the processing and coagulation may

impact negatively on the cells’
microenvironments

Limited to thermically-resistant
polymers; unstable in the
production of fine fibers

Requires high temperatures which
can affect the

properties/characteristics of the
fibers/fiber surface

Ref. [164–170] [171–174] [175] [176,177]
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Depending on the fiber production method employed, several precautions must be
taken into consideration, such is the case with the processing of CS fibers via wet-spinning.
CS fibers have a very low tensile strength (due to their increased hydrophilicity) and, there-
fore, chemical crosslinking must be induced by Epichlorohydrin (ECH) to improve its wet
tenacity [178]. According to the chemical (e.g., composition and rate of degradation) and
physical (e.g., diameter, strength and porosity) characteristics, the electrospun nanofibers
can guide and interact with the injured tissue to improve wound healing [179].

5. Fiber–Hydrogel Composites

As seen in the previous sections, both hydrogels and fibers display great potential in
biomedicine, particularly in the wound healing and drug delivery areas [88,156,157,180].
Despite the many advantages that make these scaffolding systems promising, there are
still aspects that often limit their application. For instance, the low mechanical stability
of natural hydrogels and the not-so-great biocompatibility of synthetic hydrogels tend to
constrain their uses [63]. In the case of fibers, there is a limitation associated with the lack
of 3D network formations which can restrict cell migration/infiltration [181]. Given these
limitations, a number of researches are now dedicated in combining the advantages of
fibers and hydrogels to produce an optimal, highly functional composite system [182–184].
In this sense, the objective of these investigations is to optimize the mechanical/biological
functionalities of composites by promoting the combination of beneficial properties of
both components (fiber/hydrogel) and reducing the impact of their undesirable features in
the final application. The mechanical properties of hydrogels, in this case fiber–hydrogel
composites, are significantly influenced by the addition of fibers [185], as they serve as a
structural support for the hydrogel to surround, for instance [184]. Regev et al. reported that
the incorporation of bovine serum albumin fibers in dextran/gelatin hydrogels increases the
elasticity modulus of the hydrogel and decreases its gelation time [186]. Gelatin nanofibers
aligned and infiltrated in alginate hydrogels may also increase the tensile modulus and
rigidity of the overall hydrogel construct [187].

The fibers used in fiber–hydrogel composite can have different origins, natural or
synthetic, and, at a morphological level, they can also differ depending on the desired appli-
cation. Generally, the fibers used in these composites can be classified as long or short, and
within the composite, they can exhibit a continuous or discontinuous pattern. Specifically,
long and continuous fibers produced by electrospinning tend to possess small pores that
limit cellular penetration and growth [188]. Based on the potential application of the scaf-
fold, the organization of the fibers is a crucial element for the performance of the intended
function, which can be oriented uniformly or randomly [185]. Although the available liter-
ature is still limited, several methods of combining fibers with hydrogels for the creation of
composites with different structures have been reported. Of all, the most common arrange-
ments of composite fiber–hydrogel structures are the stacked, with hydrogels and fibers
forming layers (laminated composites) [189], the encapsulated, with fibers being enclosed
within the hydrogel matrix [190], the injectable composites [191] and the electrospinning
and electrospraying combination [192] (Figure 1). In fiber production, electrospinning is
one the most used techniques due to its simplicity, cost efficiency, flexibility, scalability
the advantage of mimicking the natural extracellular matrix (ECM) [16,166,193,194], so its
combination with hydrogel fabrication methodologies is very frequent.
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Figure 1. Structural arrangements of fiber–hydrogel composites and their applications in wound
healing and drug delivery. Fiber–hydrogel composites with laminated structure result from the
junction of individually manufactured fibers and hydrogels that can be organized in layers with
different orientations. The encapsulation of fibers in hydrogels can result from crosslinking of the
hydrogel solution directly into the fibers. In case of injectable composites, small individual fiber
fragments are added to the hydrogel solution, resulting in an encapsulated and injectable composite
structure. These composites can also be formed by the simultaneous combination of electrospinning
and electrospraying applied directly towards a single collecting system (shown in orange).

Laminating is the simplest method to yield a fiber–hydrogel composite scaffold. Lami-
nated composites consist of the junction of individually manufactured hydrogels and fibers
in different layers. The number of fiber layers influences the mechanical properties of the
composite. These composites can be formed by a single layer of fibers or by multilayers,
with different orientations (e.g., 0◦, 45◦ and 90◦). The orientation of the fibers within the
composite allows to control the toughness and strength of the final structure. These con-
structs exhibit significantly improved tensile properties compared to hydrogels alone [195].
However, they can undergo delamination very easily after water absorption due to the
weak interactions between layers [196]. Additionally, the 2D structure of the fibers becomes
a limitation for applications where it is essential to mimic the ECM, since this structure
makes cell migration very challenging [197]. Encapsulating fibers in hydrogels can be
accomplished by crosslinking the hydrogel directly into fibers with a pre-determined archi-
tecture or by immersing the fibers in a hydrogel precursor solution. In this process, the gaps
between the fibers are occupied by the hydrogel precursor solution that later crosslinks.
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Based on encapsulation fibers in hydrogel, McMahon et al. hypothesized a composite with
a tubular structure with circumferential mechanical properties similar to coronary artery
vessels [187,190]. Papaparaskeva et al. projected prefabricated fibrous mats of PVP/silver
nanocomposites incorporated within semi-IPN hydrogels in two unique forms of laminated
dispersion (a prefabricated electrospun fibrous mat was placed in the circumference of
the fiber/hydrogel composite) and homogeneous (a 2D circular fibrous mat was homo-
geneously encapsulated within a 3D hydrogel matrix). They noted that the dispersion
mode of electrically spun fibrous mats within the hydrogel significantly influences the
mechanical performance of the resulting composite [198]. Injectable composites have been
considered an alternative to produce fiber–hydrogel constructs with homogeneous qual-
ities. In this type of composite, small individual fiber fragments (smaller sizes facilitate
injectability) are added to a hydrogel precursor solution. Subsequently, these fibers are
incorporated into the crosslinked hydrogel matrix (in the desired environment), playing
a reinforcing role. This production strategy is minimally invasive; however, the absence
of connections between fibers can become a restriction for certain applications [188,199].
The electrospraying process has been used to form fiber–hydrogel composites. Here, the
hydrogel solution is sprayed in fine droplets on fibers produced by electrospinning. These
drops, which are deposited on the fibers, can have different sizes, from nanometers to
several micrometers. The electrospinning–electrospraying has therefore low cost and is
easy to operate. Furthermore, it allows to obtain a composite fiber–hydrogel with different
structures and with adjustable size and morphology [200–202]. Despite the formation
processes of fiber–hydrogel composites mentioned above, which are already used in in-
vestigations, a less positive aspect can be highlighted. This focuses on the differences in
hydrophilicity between the fibers and the hydrogels that can cause some incompatibility,
which then may result in a separation of the compound. In this sense, the modification of
the fiber surface is considered a potential solution to improve this limitation [203–205].

There are several approaches that have been used to improve the properties of fibrous
scaffolds and hydrogels, namely the development of fiber–hydrogels composites (Figure 1).
As seen, these composites continue to conform to the same guidelines applied for the
fabrication of the individual parts, with peculiarities related to their fabrication being, as
expected, associated to polymer and solvent selection and combination of compatible pro-
cessing methodologies. In general, the applications of scaffolds depend on their mechanical
and biological properties and, as such, many possibilities have emerged in recent years.

6. Applications of Fiber–Hydrogel Composites

Recently, research on fiber–hydrogel composites has increased significantly. These
scaffolding systems have been investigated for a range of applications, including wound
healing [206], regeneration of corneal stroma [184], nucleus pulposus regeneration [201],
bone tissue engineering [207], antibiotic delivery [208] and heart valve tissue engineer-
ing [209]. Scaffolds with an architecture that mimics native ECM and allows cell infiltration
and differentiation has emerged as a prospective solution for the treatment of various
health complications. For instance, the fibrous structure in fiber–hydrogel composites is
considered of enormous importance for a greater efficiency of the scaffold. This is because
tissues have biological fibers with specific composition and architecture that contribute to
the normal function of the tissues. Thus, with this, it is possible to simulate biological fibers,
approximating the foreign scaffold to living tissue and, thus, enhance cellular growth and
maturation (e.g., cell differentiation) [184]. In the following sections, we will contextualize
and list in more detail some recent examples of fiber–hydrogel composites applied in
wound healing and drug delivery.

6.1. Wound Healing

Wound healing is a complex physiological response that involves a cascade of cells,
matrix components and other biological factors [16]. In healthy people, wound healing
includes four important phases: hemostasis, inflammation, proliferation, and remodel-
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ing. This complex process allows skin functions to be restored. Wounds that fail the
normal healing process in a predictable amount of time are considered chronic wounds
(CW) [210,211]. Currently, wound care is based on the application of a wide variety of
wound dressings (gauzes, absorbent cotton and bandages), debridement, vacuum assisted
closure and grafts. Even though they are considered the therapy of choice, wound dressing
have some limitations, they are incapable of maintaining the moist environment necessary
for wound healing and tend to adhere to the wound, which may cause discomfort to the
patient when the dressing is removed [212]. CW treatments are often associated to high
economic costs, an increase in surgical procedures and the greater susceptibility of the
patient to infection. Microorganisms such as Acinetobacter baumannii, Enterococcus faecalis,
Pseudomonas aeruginosa and Staphylococcus aureus have the ability to colonize and infect
wounds, which complicate the healing process [6,210]. In the most severe cases, patients
with infected wounds, such as diabetic foot infections, include mainly antibiotics in their
therapy [213]. The impact of excess and inappropriate use of antibiotics has been explored
in relation to the various adverse effects, such as bacterial resistance, which has been
highlighted as a serious global concern [135]. Several alternatives have been developed for
a more efficient wound healing in order to prevent infection to evolve and, in the case of
CW, to try and shorten the treatment period [212,214–217]. There are some properties that
ideally a modern wound dressing should have, specifically, the capacity for mechanical
protection and adaptation to the shape of the wound, without adhering to wound tissue
per se, so as not to cause pain to the patient when removed. Absorption capacity, cyto-
compatibility, flexibility, ability to ensure a balanced moist environment, induce wound
healing, facilitate ECM regeneration, protect the wound from external contaminants and
promote debridement are also important features in the development of an effective wound
dressing [6,33,166,212]. Wound dressings can be classified based on the affinity of the dress-
ing with the wound into four distinct groups: passive, interactive, advanced and smart
dressings [211]. Modern dressings take the most varied forms, including hydrogels, films,
sponges, foams, nanofiber mats and, more recently, fiber–hydrogel composites [33,206].
The hydrogel has the ability to absorb exudates and maintain a balance of moisture at
the wounded site. In turn, the fiber mimics the fibrous structure of ECM. Since both
structures present limitations, the fibers do not facilitate cell migration and hydrogels have
low mechanical stability, scaffolds combining both have been the research target of many
investigations in order to uncover alternatives for the treatment of wounds [206,217,218].
The combination of the two structure in one scaffold is expected to facilitate healing by
generating an environment conducive with cell recognition and attachment (ECM mimick-
ing) with a moist and breathable atmosphere required for a healthy tissue formation. It is
known that a large part of mammalian ECM has an aqueous matrix (gel) containing diverse
fibrous proteins, essentially collagen, elastin and fibronectin. These proteins surround and
guide cells in vivo and act as an anchoring matrix [219,220]. In humans, fibrillar collagen
provides tensile strength for ECM, which limits tissue/organ distensibility as is the case of
the skin [221]. The ECM is mainly responsible for cell adhesion, migration, proliferation,
and regulation of their action. For a complete and effective skin regeneration, it is important
that a scaffold is created that mimics the structure and normal skin conditions. Studies
have shown that the reinforcement of hydrogels with fibers improves cell function, differ-
entiation and proliferation, as well as structural stability [182,183,195]. Indeed, Schulte et al.
described the manufacture of an artificial ECM scaffold consisting of biofunctionalized
fibers incorporated in a semi-synthetic hydrogel of HA that allowed the control of cell
adhesion [220].

There are several polymers used in fiber–hydrogel composites, namely gelatin [206,217,222].
The combination of two separate scaffolds (bilayer scaffold) was studied by Franco et al.
for a possible application in skin regeneration. The formulation consisted of a first layer
based on a PCL/PLGA membrane (80:20) formed by electrospinning and a second layer
of CS/gelatin hydrogel (50:50) crosslinked with glutaraldehyde. The first layer showed
excellent mechanical properties and biocompatibility. In the case of the second layer, they
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obtained a porous structure, capable of swelling more than 500% of its dry size (excellent
absorbent properties). The junction of the fibrous membranes provided better mechanical
support to the scaffold and, at the same time, reduced the rate of degradation of the layer
formed by the hydrogel [222]. In the same light, Zhao et al. through a chemical reaction
of the methacrylamide groups with gelatin formed a prepolymer to produce fibers by
electrospinning (GelMA). The electrospun GelMA nanofibers were crosslinked by photo-
crosslinking, with UV radiation. By manipulating the degree of modification of the gelatin
with the methacrylamide groups and the photo-crosslinking time, it is possible to adjust
the physical and biological properties. Characteristics such as water vapor permeability,
water retention, mechanical resistance and kinetic degradation can be adapted by adjusting
the time of UV light radiation. These GelMA scaffolds, which mimic the structure of the
native ECM, demonstrated a better orientation of the cellular processes (e.g., cell migration
of fibroblasts) and biocompatibility compared to the controls (gelatin and PLGA). The
in vivo tests reinforce the potential of this scaffold since it was visible that they accelerated
wound repair [217]. Sun et al. went a step further and reported the ability of the GelMA to
improve the elastic biodegradable mechanical properties of the construct and its ability
to improve cell adhesion, proliferation and vascularization [223]. In turn, Li et al. reports
the use of gelatin for the development of a hydrogel fibers. Initially the gelatin-based
compound hydrogel fibers were prepared by gel-spinning with PEG6000. Subsequently,
the crosslinking agent dialdehyde carboxymethyl cellulose (DCMC) was incorporated in
order to improve the thermal and mechanical properties of the hydrogel fibers composed
of gelatin-PEG. This scaffold showed a strong capacity to absorb free water due to its 3D
structure and porous network. The higher the DCMC content in hydrogel fibers, the more
slowly they degrade. In addition, DCMC increased the compatibility of the hydrogel fibers
with blood [206]. HA nanofibers are reported to promote wound healing. Due to their
high solubility in water, crosslinking is required to increase their water stability. Chen
et al. developed an electrospun a mixture of maleicated hyaluronate/poly(vinyl alcohol)
methacrylate (MHA/MaPVA) that allowed the formation of mats with the capacity to swell
and form fibrous hydrogels. The weight ratio of the nanofiber components influenced the
morphology and diameter of the nanofibers. This structure was cytocompatible, promoted
cell fixation and displayed high water absorption capacities [218]. PVA has also been
combined with PCL to form double layer structures resultant from the combination of
PCL nanofibers (hydrophobic) and PVA hydrogel (hydrophilic). After exposure to water,
the PVA fiber layer was completely dissolved, and a hydrogel-like structure was formed.
Despite this change, the defined shape of the scaffold was maintained due to the stability
of the PCL layer in water-based environments. Several aspects were tested in this scaffold,
namely, its morphology, wettability, and adhesion and proliferation of mouse fibroblasts.
Here, it was seen that fibroblasts exhibited greater proliferative activity on the PCL side
of the double layer. In the case of the PVA layer, the same was not seen, which may
be a consequence of the greater hydrophilicity of the layer. Based on the behavior and
characteristics of the double layer scaffold, the authors concluded that the scaffold had the
potential to be used as a dressing or in the prevention of abdominal adhesions [194].

The rapid dissolution of fibers in an aqueous medium becomes a limitation for their
application in active wound dressings. In the case of PVP fibers, their rapid solubility
remains a problem despite their self-adhesive properties and their ability to incorporate
molecules. Recently, to overcome this limitation Contardi et al. proposed to develop
PVP-based fiber hydrogels containing hydroxycinnamic acid derivatives. A controlled
release of p-cumaric and ferulic acids (derived from hydroxycinnamic acid) from the fibers
was observed due to the incorporation of these in the hydrogel. The author also observed
in burned skin a reduction in the levels of enzymes known to be positively regulated
by reactive oxidative species in burned skin [224]. By electrospinning/electrospraying
methods, Azarniya et al. reported the production of a hybrid fiber–hydrogel by combining
fibrous mats and hydrogel particles. Through electrospinning, keratin/bacterial cellulose
(BC) fibers were produced and simultaneously sprayed with thermosensitive hydrogel par-
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ticles. The chemically crosslinked hydrogel was composed of non-ionic triblock copolymers
(PEO99-PPO65-PEO99; Pluronic F127) conjugated with Tragacanto gum (TG). Due to the
low spinning power of keratin, poly(oxide of ethylene) (PEO) was added to the formulation
forming the keratin/BC/PEO fibers. Reductions in the diameter of keratin/PEO fibers from
243 ± 57 nm to 150 ± 43 nm and hydrophobicity were observed with the addition of 1% or
more of BC. However, despite the reduction of pores, TG and BC modified mats promoted
cell fixation and proliferation in fibrous structures. It was seen that the hydrogel particles
were uniformly incorporated into the junction of the fibrous network. This modification
improved several features of the scaffolds, including hydrophilicity, modulus of elasticity
(31%), tensile strength (35%) and ductility (23%) [225]. More recently, Loo et al. developed
“intelligent” peptide hydrogels, in which the short aliphatic peptides had the tendency to
self-assemble into helical fibers, forming nanofiber hydrogels. These nanofibrous hydrogels
were found to possess regenerative properties and to display potential to accelerate the
healing of burn wounds [226].

6.2. Drug Delivery

In conventional therapies, rapid degradation and excretion of drugs during the cir-
culation process in the body is frequently detected. Consequently, only a small amount
of medication will have therapeutic effects in places of interest [227]. Several research
groups have focused on the development of new controlled drug delivery systems to
allow an effective distribution of drugs in the intended locations at a controlled release
rate [193,228]. A drug delivery system is used to transport therapeutic substances in the
body more effectively and safely, having the ability to control the amount, the time and the
targeted place for drug release [229]. Several scaffolds have been used to encapsulate and
deliver therapeutic drugs, namely, fibers and hydrogels [102,230–232].

Electrospinning systems allow drugs to be incorporated into the fibers, giving them
a high drug loading capacity, increased initial burst, sustained release, and prolonged
circulation. Methods of incorporation include blend (or co-, the drug is mixed in the
polymer solution), side-by-side (vehicle/polymer solution and the biomolecules are loaded
in a separate spinneret), multi-jet (use of multiple nozzles with one or more jets, or a
nozzle with different jets), co-axial (two concentric aligned capillaries connected to a high
voltage source) and emulsion electrospinning (the drug is encapsulated in an appropriate
solvent to be protected from the fiber/solvent system) [48]. Just as there are different
ways to incorporate drugs into fibers, drugs may also be released via three distinct mech-
anisms: desorption of the fiber surface, diffusion in the solid state through the fibers,
and fiber degradation [233]. The fiber morphology and its high therapeutic load capacity
are beneficial properties that make them potential candidates for drug delivery systems.
Electrospun fibers have several advantages especially due to their large surface area and
their absorption/release properties [234]. However, large-burst drug release, uncontrolled
duration of drug release, and incomplete drug release are recurring problems. The possible
agglomeration of bioactive agents on the surface of the fibers becomes a disadvantage of
the electrospinning method since it can trigger an initial burst release, which may cause
toxicity of the release site [48,224,235]. Such limitations may have implications in the
scaffold biomedical goals.

To incorporate drugs into hydrogels, they can be loaded into the precursor solutions
before crosslinking or can be absorbed after gelation [236]. Regarding drug release, swelling
is an important property in some stimulus-sensitive drug delivery system. Certain changes
in the environment may trigger swelling that allows the release of the drug due to the
alterations in mesh size of the polymeric network [237]. Features like hydrophilicity, bio-
compatibility and tunable mechanical properties are the reason why hydrogels have been
used extensively for the controlled release of drugs [193]. Although hydrogels are widely
used in controlled release systems, there are some limitations that must be overcome. These
scaffolds suffer from low mechanical resistance, which may be responsible for inhomo-
geneous release [236]. In most hydrogels, their ability to absorb large amounts of water
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and the presence of large pore sizes may trigger a rapid drug release [208]. In accordance,
some investigations have developed/obtained better kinetic release profiles when there is
a combination of hydrogels with other structures, namely fibers [193]. The effectiveness of
fiber–hydrogel composites for drug administration has been demonstrated [208,227,228].
Nanofiber–hydrogel scaffolds as biofunctionalized platforms appear as attractive alterna-
tives to the ineffective treatments related to direct drug administration.

Persistent neurological dysfunctions are usually triggered by spinal cord injuries due
to failure in axon regeneration. Nguyen et al. synthesized lined mats of poly(ε-caprolactone-
co-ethyl ethylene phosphate) (PCLEEP) by electrospinning and distributed them in a colla-
gen hydrogel matrix. Both the fibers and the hydrogel contained neurotrophin-3 (model
protein) known for promoting neuronal survival, axonal sprouting and regeneration. Ad-
ditionally, the hydrogel contained miR-222 (model microRNA) known to contribute to the
control of local protein synthesis at distal axons. Overtime, it was seen that degradation
occurred within the collagen hydrogel, but the PCLEEP fibers maintained their morphology
and alignment after 3 months. The composite framework allowed localized and sustained
drug/gene delivery, while aligned nanofibers acted to direct remyelination of the injured
area. Furthermore, they observed the regeneration of the animal model axon [227]. In a sim-
ilar study, small fragmented nanofibers of poly(3-caprolactone-co-D,L-lactide) (PCL:DLLA)
and collagen were individually dispersed in a hyaluronane-methylcellulose hydrogel
(HAMC). These fiber–hydrogel composites were used as a cell-transport system multipo-
tent neural/progenitor stem cells (NSPCs) for the treatment of spinal cord injuries. The
results showed that the incorporation of fibers in the HAMC hydrogel influenced the behav-
ior of the NSPC cells, highlighting a better neuronal and oligodendrocytic differentiation
in the scaffold PCL:DLLA/HAMC compared to collagen/HAMC [199]. In both studies,
the complex generated from the combination of fibers and hydrogels allowed for a faster
cell development and consequent regeneration.

A laminated fiber–hydrogel composite based on PCL electrospun fiber mats coupled
with poly(ethylene glycol)-poly(ε-caprolactone) diacrylate (PEGPCL) hydrogels processed
by UV polymerization was developed to control the release of a model hydrophilic protein
(e.g., bovine albumin serum, BSA). To study the release of the hydrophilic protein, BSA was
added to the system before crosslinking. The results reported by Han et al. suggested the
relevant role of PLC fibers (diameter of approximately 0.45 µm) in the release of the drug in
a uniform and delayed manner, by reducing swelling of hydrogels and water penetration
rates and by increasing the length of the diffusion path and the diffusivity of the drug. In
addition, the bioactivity of proteins after release was proven since extension of PC12 cell
neuritis was detected. In general, the PCL fibers in the PEGPCL hydrogel demonstrated an
important role in three main areas: control of the release kinetics of the hydrophilic protein,
reduction of burst release (initial) and increased duration of drug release (more than two
months) [193].

Osteomyelitis is a bone disease caused mainly by methicillin-resistant Staphylococcus
aureus (MRSA). Various antibiotics are administered to reduce this infection, namely the
glycopeptide vancomycin hydrochloride (vanco-HCl). The bacterial plaque that forms
around the infected area limits treatment by preventing the diffusion of the antibiotic
vanco-HCL to the infected site, which then requires the administration of high doses.
This overuse of antibiotics in addition to their impropriate function can lead to systemic
toxicity. To try and solve this problem, Ahadi et al. developed a scaffold made of poly(L-
lactide) (PLLA) fibers produced by electrospinning followed by aminolysed, encased in
a hydrogel of silk fibroin/oxidized pectin. PLLA fibers were loaded with vanco-HCl to
promote a more sustainable release of the antibiotic at the affected site, resulting in a 61%
reduction in drug release. This scaffold revealed better mechanical properties compared
to the single hydrogel (without fibers), namely, a higher crosslinking density (52%), a
higher compression module (30%) and a lower expansion rate (15%). Biologically, the
fiber–hydrogel composite was seen to have activity against MRSA and to be cytocompatible
with cells, largely due to the presence of fibers aminolized with drugs [208]. Ekaputra



Antibiotics 2021, 10, 248 24 of 34

et al. developed by electrospinning/electrospraying a hybrid mesh of PCL/collagen and
HA hydrogel, HeprasilTM, loaded with vascular endothelial growth factors (VEGF) and
platelet-derived growth factors (PDGF). It was seen that the fiber–hydrogel composite
PCL/collagen-Heprasil was successful in allowing a double simultaneous loading of the
growth factors VEGF165 and PDGF-BB and to promote their controlled release over a period
of five weeks, in vitro [192]. Recently, biocompatible vehicles for the release of the crystal
violet drug (CV) have also been described, in which polydopamine microfibers (PDA) were
incorporated in a pullulan (PHG) hydrogel crosslinked by poly(ethylene glycol) diglicidyl
ether (chemical crosslinker). PDA fibers attributed the pH-responsive drug release behavior
to the PHG hydrogel. This happens in response to the acidic conditions, which increase
the electrostatic repulsion force between the PDA (protonated and positively charged) and
the drug CV (positive charge). This repulsion promotes the release of the drug, with a
detectable a cumulative release of 60.3% (pH 7.4), which increased to 87% with a decrease
in pH to 5. In addition, the incorporation of PDA fibers and the adjustment of their content
allowed to regulate several properties of the composite PHG-PDAs, namely, its viscoelastic
characteristics, mechanical performance, mesh size and swelling/disintegration properties
of the PHG hydrogel. The developed scaffold proved to have great potential to be used in
drug delivery systems, given its good cytocompatibility, non-toxicity and easily adjustable
properties for a controlled release of CV [238]. Overall, data demonstrated the ability of
the engineered systems to promote a controlled drug delivery, in which the fibrous mesh
guaranteed the mechanical stability of the construct while the hydrogel released the loaded
active compounds.

A new physical approach based on hydrogel and nanofibers (or NEEDs) for cell
encapsulation has been described in the work of An et al. Here, tubular constructs with
different compartments were developed, consisting of Nylon 6,6 nanofibers, manufactured
by electrospinning, being subsequently impregnated in different hydrogel precursor so-
lutions (alginate, chitosan or collagen) and crosslinked. Fibers had an average diameter
of 200 nm with 1 µm interconnected pores. Compartmentation proved to be an asset for
co-encapsulation, co-culture and co-distribution of different individual cells and cellular
aggregates (islets), with cell viability being observed. Finally, the potential application of
NEEDs for cell therapies using a type 1 diabetic model was tested, and the disease was
corrected (in 8 weeks), which proved the therapeutic potential of NEEDs within primary
rat islets (without the disease) [228].

In wound healing, it is important to pay attention to the biomaterials used to produce
wound dressing. To achieve the desired objectives, the properties of each biomaterial are
optimally combined. Studies have shown that local administration of therapeutic agents
through wound dressings can improve the wound healing process [16]. In fact, a bioactive
dressing of fibers of silk fibroin (SF) produced via electrospinning was developed and
then combined with the alginate hydrogel (ALG) capable of supplying amniotic fluid
(AF). This dressing had the ability to release AF, highly enriched with various therapeutic
agents, at the wound site. The AF release profile was related to the concentration of
ALG (greater release of AF in lower amounts of ALG). The increase in cell proliferation
and collagen dissemination and secretion due to AF in fibroblast cultures strengthens the
potential of the SF/ALG fiber–hydrogel composite to accelerate the healing process in
severe wounds [239]. In a similar study, a bi-layer dressing of gelatin nanofiber mats loaded
with epigallocatechin gallate (EGCG)/PVA hydrogel was produced for the treatment of
acute wounds. The hydrogel was used as a protective and hydrating outer layer of the
bi-layer dressing. Jaiswal el al. observed that the decrease in crosslinking time led to a
slower EGCG release profile. This increased in the 2-4 days release period demonstrating
the ability of this scaffold to guarantee a gradual drug release. Faster wound contraction,
improvement in angiogenesis, reepithelization and less inflammatory response compared
to control were also observed [240]. More recently, Chen et al. developed CS/gelatin
hydrogels with polydopamine-intercalated silicate nanoflakes (PDA-Silicate). These were
electrospun in the form of nanofibers loaded with the antibiotic tetracycline hydrochloride
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(TH). In this sandwich-like nanofiber/hydrogel composite (NF-HG) the incorporation of
the fibers in the hydrogel resulted in a restriction in the release of antibiotic TH. However, it
allowed a sustained release rate of TH in NF-HG for long-term protection. In addition, this
structure reduced the toxicity of the drug associated to the rapid release. Furthermore, the
excellent adhesiveness and anti-infectious properties demonstrated by the NF-HG, turned
this formulation particularly attractive to be used as a wound dressing [241].

7. Conclusions

The world of biomaterials, specifically polymers, continues to significantly impact on
the field of biomedicine. The diversity of polymers and the different ways of using them in
scaffolds have evolved considerably in the last years, proposing active solutions for daily
problems. In recent decades, combinations of different scaffolding systems in one solution
have been researched, demonstrating great potential in wound healing and drug delivery
systems, particularly in the fight against antibiotic-resistant pathogens. Indeed, hydrogel
and fiber composites have been engineered as effective therapies, overcoming many of
the mechanical, physical, and biological limitations of fibers and hydrogels when used
in individual systems. Although research in this field is still very limited and is basically
taking the first steps, the potential is clear. In the next years, it is expected the research on
these composites to continue evolving and growing, as the need for more adaptable and
specialized biomedical devices grows as well.
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