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A B S T R A C T   

Azithromycin, a member of the macrolide family of antibiotics, is commonly used to treat respiratory bacterial 
infections. Nevertheless, multiple pharmacological effects of the drug have been revealed in several in-
vestigations. Conceivably, the immunomodulatory properties of azithromycin are among its critical features, 
leading to its application in treating inflammatory diseases, such as asthma and chronic obstructive pulmonary 
disease (COPD). Additionally, azithromycin may directly inhibit viral load as well as its replication, or it could 
demonstrate indirect inhibitory impacts that might be associated with the expression of antiviral genes. 
Currently, coronavirus disease 2019 (COVID-19) is an extra urgent issue affecting the entire world, and it is 
caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Acute respiratory distress syndrome 
(ARDS), which is associated with hyper inflammation due to cytokine release, is among the leading causes of 
death in COVID-19 patients with critical conditions. The present paper aims to review the immunomodulatory 
and antiviral properties of azithromycin as well as its potential clinical applications in the management of 
COVID-19 patients.   

1. Introduction 

Coronaviruses (CoVs), belonging to the coronavirinae subfamily, can 
infect mammals and several other animals (Gorbalenya et al., 2020). 
While a group of CoVs (e.g., 229E, NL63, HKU1, and OC43) is recog-
nized as low pathogenic, the groups, such as severe acute respiratory 
syndrome coronavirus 1 (SARS-CoV-1), Middle East respiratory syn-
drome coronavirus (MERS-CoV), and severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) demonstrated highly pathogenic capabil-
ities. SARS-CoV-2 was discovered in December 2019 in Wuhan, China, 
and caused coronavirus disease in 2019 (COVID-19). The epidemic of 
COVID-19 was declared a pandemic in march 2020 by the World Health 
Organization (Li et al., 2020a; Lai et al., 2020; Organization, 2020). The 
symptoms of the so-called viral infection predominantly include a 
non-productive cough, fever, fatigue, myalgia, and dyspnea (Huang 
et al., 2020). Acute respiratory distress syndrome (ARDS), which is 
caused by dyspnea development, is the leading cause of mortality in 

COVID-19 (Ruan et al., 2020). The correlation between ARDS and hyper 
inflammation in COVID-19 is discussed in the following sections. 

Macrolides are a group of antibiotics that are originated from 
Streptomyces erythreus. They are demonstrated to inhibit the protein 
synthesis in bacteria through binding to their ribosome and are known 
for their effects on airway infection treatment (Gaynor and Mankin, 
2003). Azithromycin is a member of the macrolide family with oral 
administration and is structurally related to erythromycin (Peters et al., 
1992). 

The first step in the pathogenic mechanism of SARS-CoV-2 in the 
lung is entering the cells. The process occurs through the recognition of a 
host cell called angiotensin-converting enzyme 2 (ACE2). SARS-CoV-2 
recognizes ACE2 via receptor binding domains of the viral spike, a 
structural protein on the envelope (Zhou et al., 2020a; Kim et al., 2020). 
Following the entry to the cell, activation of inflammation pathways 
leads to cytokine storms, that is, the over-production of 
pro-inflammatory cytokines, by which the severity of the disease is 
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determined (Mehta et al., 2020). Therefore, the suppression of inflam-
matory pathways can be beneficial for alleviating respiratory symptoms. 
Anti-inflammatory properties of azithromycin in different respiratory 
diseases, such as chronic obstructive pulmonary disease (COPD) (Albert 
et al., 2011) and asthma (Gibson et al., 2017), could be generalized to 
COVID-19. Therefore, the present review aims to explain the potential 
mechanisms of azithromycin in suppressing the SARS-CoV-2-induced 
inflammation. Furthermore, the clinical studies in this area are dis-
cussed in the current review. 

2. Immunopathogenesis of hyperinflammation in COVID-19 

Excessive production of cytokines caused by hyperactivation of im-
mune cells is a cytokine storm associated with ARDS and introduced as 
the foremost cause of death in COVID-19 patients (Mehta et al., 2020; Li 
et al., 2020b). Major pro-inflammatory cytokines involved in 
SARS-CoV-2-induced cytokine storm are interferon-γ (IFN-γ), inter-
leukin (IL)-6, IL-33, IL-1β, IL-12, IL-18, transforming growth factor-β 
(TGF-β), and tumor necrosis factor- α (TNF-α) (Ronconi et al., 2020). The 
other cytokines and chemokines that are associated with cytokine storm 
are granulocyte colony-stimulating factor (G-CSF), 
granulocyte-macrophage colony-stimulating factor (GM-CSF), 
platelet-derived growth factor subunit B (PDGFB), vascular endothelial 
growth factor A (VEGFA), macrophage inflammatory protein-1β 
(MIP1β), interferon gamma-induced protein 10 (IP10), monocyte che-
moattractant protein-1 (MCP1), and MIP1α (Rothan and Byrareddy, 
2020). Following the binding of SARS-CoV-2 spike protein to the ACE2 
host cells, the virus enters the cell by transmembrane serine protease 2 
(TMPRSS2) intervention (Hoffmann et al., 2020). The spike protein 
holds two subunits called S1 and S2. The S1 subunit binds to its receptor 
on the host cells, and the RNA genome of the virus is released into the 
cell following the fusion through the cytoplasmic membrane by medi-
ating the S2 region. Cleavage of the spike protein within the S2 subunit 
is of excessive necessity for cell entry (Hirano and Murakami, 2020). 
SARS-CoV-2 induces an immune response by mediating T helper-1 
(Th-1) cells, leading to the production of pro-inflammatory cytokines, 
such as GM-CSF and IL-6. Pattern recognition receptors (e.g., Toll-like 
receptors) are responsible for recognition of viral genome, nuclear 
Factor kappa-light-chain-enhancer of activated B (NF-ҡB) activation, 
and eventually immune response induction (Li et al., 2020a, 2020b; 
Prompetchara et al., 2020; Yi et al., 2020). GM-CSF causes considerable 
quantities of TNF-α and IL-6 by CD14+ CD16+ inflammatory monocytes 
production (Zhou et al., 2020b). However, high expression of TNF-α and 
IL-6 is the leading cause of cytokine storm. According to a proposed 
mechanism (Hirano and Murakami, 2020), ACE2, which inactivates 
angiotensin II (Ang II), plays a critical role in cytokine release in 
COVID-19. ACE2 downregulation has been shown in lung injury models, 
and recombinant ACE2 inhibits ARDS development (Imai et al., 2005). 
Downregulation of ACE2 is associated with edema, bleeding, alveolar 
wall thickening, and the recruiting of inflammatory cells in different 
models of lung injury (Imai et al., 2005; Hung et al., 2016; Lin et al., 
2018; Kuba et al., 2005). Endocytosis of ACE2 with SARS-CoV contrib-
utes to the reduction of ACE2 on the surface of cells and eventually leads 
to the surge in serum Ang II (Kuba et al., 2005). Ang II can activate 
macrophages and the other immune system cells and intensify TNF-α, 
IL-6, and other inflammatory cytokines (Bernstein et al., 2018; Recinos 
et al., 2007; Yamamoto et al., 2011; Lee et al., 2002). Following the 
binding of Ang II to the angiotensin AT1 receptor, the activation of 
NF-ҡB, a disintegrin, and metalloprotease 17 (ADAM17) occur. 
ADAM17 causes maturation of TNF-α and epidermal growth factor re-
ceptor ligands, which leads to NF-ҡB stimulation (Eguchi et al., 2018). 
Additionally, the Ang II- angiotensin AT1 receptor axis causes the for-
mation of a soluble form of IL-6 receptor α (sIL-6Rα) by mediating 
ADAM17 (Eguchi et al., 2018). The binding of IL-6 to sIL-6Rα contrib-
utes to signal transducer and activator of transcription 3 (STAT3) acti-
vation in non-immune cells. Furthermore, full activation of NF-ҡB 

requires STAT3 (Murakami et al., 2019). Eventually, the production of 
VEGF, MCP-1, IL-6, and IL-8 occurs by activation of STAT3 and NF-ҡB 
through the IL-6 amplifier (Murakami et al., 2019). On the other hand, 
IL-6 induces energy-dependent neutrophil extracellular traps (NETs) 
formation (Joshi et al., 2013). NETs are capable of promoting fibrosis 
(Chrysanthopoulou et al., 2014) and lung damage (Lefrançais et al., 
2018) detected in lung samples of COVID-19 patients (Radermecker 
et al., 2020; Middleton et al., 2020). The other inducer of NET formation 
is myeloperoxidase (MPO), which can be complexed with DNA and is 
rising in COVID-19 patients (Radermecker et al., 2020). NET formation 
capability is a feature of activated neutrophils and increased neutrophil 
recruitment to the lungs, which may lead to auto-inflammation re-
actions (Barnes et al., 2020; Chen et al., 2020; Liu et al., 2020). Addi-
tionally, neutrophils may contribute to the stress oxidative, shown in 
patients with COVID-19, and leads to tissue damage (Abouhashem et al., 
2020; Laforge et al., 2020). Lymphocytopenia is an imperative clinical 
indicator of SARS-CoV-2 severity (Tan et al., 2020) which might be 
caused by infection of lymphocytes and recruitment of lymphocytes to 
the lung tissue (Wang et al., 2020b). On the other hand, it has been 
indicated that ACE2 is not expressed in the lymphocytes (Hamming 
et al., 2004). Therefore, there must be another receptor for SARS-CoV-2 
entry to the cells. It has been revealed that cluster of differentiation 147 
(CD147) (also known as EMMPRIN or Basigin) is the other receptor that 
could interact with the spike protein of SARS-CoV-2 (Chen et al., 2020). 
It has also been indicated that mepolizumab, an anti-CD147 monoclonal 
antibody, suppresses the virus entry. Besides, CD147 can escalate the 
production of matrix metalloproteinases, leading to invasion and 
metastasis of tumor cells (Biswas et al., 1995). The immunological ef-
fects of CD147 can regulate the activation of T cells (Igakura et al., 
1996). The involvement of CD147 in different inflammatory diseases, 
such as atherosclerosis, acute asthmatic disease, cardiac infarction, and 
rheumatoid arthritis, has been publicized (Schmidt et al., 2006; Gwinn 
et al., 2006; Schulz et al., 2011; Seizer et al., 2011; Wang et al., 2012). 
Additionally, CD147 promotes activation of NF-ҡB, leading to IL-1β 
expression (Xu et al., 2020), and inhibition of CD147 decreases reactive 
oxygen species (ROS) generation (Wang et al., 2020a). Moreover, 
CD147 is acknowledged as a co-receptor for entry into the human im-
munodeficiency virus 1 (HIV-1) (Pushkarsky et al., 2001) and the 
Plasmodium falciparum (Pushkarsky et al., 2001). Collectively, it can be 
cognized that a therapeutic approach may depend on the inhibition of 
SARS-CoV-2 entry to the host cells and the prevention of impaired hyper 
inflammation. 

3. Azithromycin for immunomodulation 

Azithromycin, a member of the macrolide family with anti- 
inflammatory properties, is employed to treat lower and upper respi-
ratory tract infections (Peters et al., 1992). The anti-inflammatory ef-
fects of azithromycin have led to its use in inflammatory lung diseases, 
such as asthma (Gibson et al., 2017), COPD (Albert et al., 2011), and 
cystic fibrosis (Cigana et al., 2006). It has been shown that azithromycin 
is capable of inhibiting NF-ҡB during lung and other tissue inflammation 
(Stellari et al., 2014). NF-ҡB is one of the leading transcription factors of 
inflammatory cytokines, such as IL-6 (Libermann and Baltimore, 1990). 
Phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway is one of 
the upstream regulators of NF-ҡB (Kane et al., 1999), which might be 
inhibited by azithromycin (Wang et al., 2018; Zhao et al., 2018). The 
other activator of NF-ҡB is extracellular signal-regulated kinase 1/2 
(ERK1/2) (Shim et al., 2011), which is also suppressed by azithromycin 
(Blau et al., 2007). Simultaneous inhibition of PI3K/AKT/NF-ҡB and 
ERK1/2/NF-ҡB by azithromycin contributes to the suppression of 
pro-inflammatory cytokines production (Wang et al., 2018; Blau et al., 
2007). The other transcription factors involved in the inflammation 
induction are activator protein 1 (AP-1) and STAT proteins (Schonthaler 
et al., 2011). These factors are activated by molecules such as TNF-α 
(Desai et al., 2012; Rahman et al., 2002; Guo et al., 1998; Miscia et al., 
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2002). Thereby, azithromycin can inhibit the inflammation induced 
through STATs and AP-1 by two mechanisms: the reduction of the TNF-α 
levels (Blasi et al., 2010) and the direct inhibition of STATs and AP-1 
activation (Haydar et al., 2019; Bosnar et al., 2011). Additionally, the 
accumulation of azithromycin in inflammatory cells, especially macro-
phages and neutrophils, have been demonstrated in different studies 
(Gladue et al., 1989; Wildfeuer et al., 1989, 1996). Azithromycin re-
duces the expression of adhesion molecules such as intercellular adhe-
sion molecule (ICAM) (Cigana et al., 2006) and vascular cell adhesion 
protein (VCAM) (Bartold et al., 2013), leading to neutrophil recruitment 
suppression (Tsai et al., 2004). It has been revealed that the ICAM and 
VCAM expression is controlled by the PI3K/AKT signaling pathway 
(Tsoyi et al., 2010; Lin et al., 2019). Consequently, the inhibitory effects 
of azithromycin on ICAM and VCAM molecules may be associated with 
inhibition of the PI3K/AKT signaling pathway. Regarding the impact of 
azithromycin on the formation of NETs, it has been indicated that 
pre-treatment with the drug reduces the release of NETs (Bystrzycka 
et al., 2017). The so-called effect might be associated with lowering the 
MPO activity proved in several studies (Culic et al., 2005; Legssyer et al., 
2006). The expression of GM-CSF, which has been indicated to regulate 
neutrophils activity and its high expression in lung injuries, is 
augmented by TNF-α through PI3K/AKT signaling pathway (Li et al., 
2014). Thus, the reduction of the GM-CSF expression by azithromycin 
may be linked to its effect on suppressing TNF-α expression (Ivetić 
Tkalcević et al., 2006) and PI3K/AKT signaling pathway. On the other 
hand, GM-CSF stimulates PI3K/AKT signaling pathway to induce its 
effect (Qiu et al., 2014). The other factor involved in inflammatory 
respiratory diseases (e.g., asthma) is a ligand for chemokine receptor 
CXCR3 called IP-10 that is expressed in epithelial/T cells and required 
chemotaxis of Th1 cells (Cole et al., 1998). It has been indicated that 
azithromycin suppresses the expression of IP-10 through NF-ҡB/p65 and 
mitogen-activated protein kinase (MAPK)– Jun N-terminal kinases 
(JNKs)/ERK pathways (Kuo et al., 2019). In addition to the stated ar-
guments, azithromycin enhances the phagocytosis of neutrophils or 
epithelial cells by alveolar macrophages (Hodge et al., 2006). Fig. 1 
represents the role of azithromycin in controlling the immune system. 

4. Azithromycin for opportunistic infections in viral diseases 

There is no adequate evidence concerning the effect of azithromycin 
on the viral load in various infections. Although it has generally been 
demonstrated that azithromycin holds antiviral properties, the actual 
mechanism is not distinctly understood. Even though Azithromycin 
might inhibit viral replication, the majority of studies accentuate 
boosting the immune system to fight against the virus rather than 
relying on Azithromycin. In a study by Beigelman et al. it has been 
observed that azithromycin reduces the inflammatory mediators after 
induction of viral bronchoalveolar infection in mice. Additionally, it has 
been indicated that azithromycin attenuates post-viral weight loss and 
reduces total leukocyte accumulation (Beigelman et al., 2010). 

Furthermore, it has been reported that azithromycin induces the 
expression of antiviral genes such as IFNs and IFN-stimulated genes, 
including oligoadenylate synthase, melanoma differentiation-associated 
gene 5, a retinoic acid-inducible gene I, MxA, and viperin. Besides, it has 
been shown that azithromycin reduces the replication and release of 
rhinoviruses in bronchial epithelial cells (Gielen et al., 2010; Menzel 
et al., 2016). Zika virus is the next virus on which the effect of azi-
thromycin has been studied in terms of virus replication. In the study by 
Bosseboeuf et al. the impact of azithromycin was investigated on Zika 
virus-infected Vero cells, and it was indicated that azithromycin inhibits 
the Zika virus replication in Vero cells (Bosseboeuf et al., 2018). 
Moreover, in another study, Retallack et al. have demonstrated that 
azithromycin reduces the proliferation of the Zika virus and its cyto-
pathic effects (Retallack et al., 2016). Furthermore, it has been reported 
that pre-treatment with azithromycin has the same results against the 
Ebola virus (Kouznetsova et al., 2014; Du et al., 2020; Madrid et al., 
2015) and Dengue (Li et al., 2019). One of the most thought-provoking 
studies regarding the antiviral potential of azithromycin is the study on 
influenza A (H1N1) pdm09 virus infection. In the study by Tran et al. it 
has been demonstrated that although azithromycin validates no effect 
on the attachment of the virus to the cell surface, it suppresses virus 
entry into the host cell during the early phase of infection. Moreover, the 
effects of this drug were shown to be independent of anti-influenza 
conventional medicines (Tran et al., 2019). 

Fig. 1. The pathways which are inhibited by azithromycin leading to hyper inflammation suppression. Azithromycin suppresses two main pathways involved in pro- 
inflammatory cytokines production including janus kinase (JAK)/STAT and PI3K/AKT signaling pathways. As a result, azithromycin inhibits the activation of AP-1, 
NF-ҡB, and STAT dimerization by mediating these pathways suppression. Reduction of the expression of pro-inflammatory cytokines such as ILs, TNF-α is the result of 
this inhibition. AP-1: activated protein-1; IL: interleukin; JAK: Janus kinase; NF-ҡB: Nuclear Factor kappa-light-chain-enhancer of activated B; PI3K: 
Phosphatidylinositol-3-kinase; STAT: Signal Transducer and Activator of Transcription; TNF-α: tumor necrosis factor-α. 
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5. Azithromycin for management of COVID-19 

Regardless of the immunomodulatory role of azithromycin, its direct 
antiviral effects are also an important issue. In this regard, ACE2 and 
TMPRSS2 are the extra attractive goals. Concerning the ACE2, its 
downregulation leads to inflammation induction (Shi et al., 2013). 
There are two types of ACE2: the first type is attached to the membrane, 
and the other is the soluble form (Batlle et al., 2020). Based on the in 
silico studies, it has been estimated that azithromycin can target the 
binding interaction point between ACE2 and spike protein of the 
SARS-CoV-2 (Braz et al., 2020). As described earlier, the downregulation 
of ACE2 by the virus leads to increased Ang II levels. On the other hand, 
it has been demonstrated that Ang II induces the PI3K/AKT signaling 
pathway through the angiotensin AT1 receptor and eventually contrib-
utes to the inflammatory pathway (Zhang et al., 2016; Zhao et al., 2014). 
Thus, it can be concluded that azithromycin could suppress Ang 
II-induced inflammation through inhibition of the PI3K/AKT signaling 
pathway. Activation of the angiotensin AT1 receptor by Ang II contrib-
utes to the upregulation of the ADAM17 expression leading to cleavage 
of the membrane-anchored ACE2 and changing to an active soluble form 
(Xu et al., 2017). It has been shown that overexpression of ACE2 en-
hances the entry of SARS-CoV to the host cells in a mouse model (Yang 
et al., 2007). It seems that the overexpression of membrane-anchored 
ACE2 leads to an increase of the virus entry to the cells, and the solu-
ble form of ACE2 decreases viral entrance. It has been indicated that 
human recombinant soluble ACE2 inhibits SARS-CoV infection by two 
mechanisms: a) by neutralizing the virus without endocytosis b) by 
suppressing inflammation induced by the virus (Monteil et al., 2020; 
Xue et al., 2014). However, differences in the amino acid sequence of the 
ACE and ACE2 cause ACE inhibitors to have no effect on the COVID-19 
treatment (Crackower et al., 2002). Concerning the TMPRSS2 as the 
other therapeutic target, its expression is engaged with the PI3K/AKT 
signaling pathway (Mishra and Dey, 2021). The expression of TMPRSS2 
is upregulated by androgen receptors due to several androgen receptor 
elements located on the promoter of the TMPRSS2 gene, and it can be a 
reason for higher sensitivity of men to COVID-19 (Shen et al., 2017; 
Wambier et al., 2020). On the other hand, it has been demonstrated that 
IL-6 inhibits androgen receptors transactivation through the PI3K/AKT 
signaling pathway (Yang et al., 2003), and the activation of androgen 
receptors by androgens leads to PI3K/AKT signaling pathway activation 
(Sun et al., 2003). Therefore, as a target for azithromycin, although 
activation of this pathway may be a mechanism for TMPRSS2 expres-
sion, further research is required to approve the so-called notion. 
Additionally, it has been indicated that azithromycin suppresses the 
pathways involved in the TMPRSS2 expression (Renteria et al., 2020). 
On the other hand, the effect of azithromycin on influenza replication 
might be related to the downregulation of the TMPRSS2 (Bertram et al., 
2010; Tran et al., 2019). Besides, it has been demonstrated that the 
endocytosis of SARS-CoV-2 is performed through a clathrin-mediated 
pathway (Bayati et al., 2021). From a different perspective, the 
PI3K/AKT signaling pathway and clathrin-mediated endocytosis are 
shown to be in a mutual relationship with each other. PI3K/AKT 
signaling pathway regulates clathrin-mediated endocytic processes, and 
clathrin is required for AKT activation (Bhattacharya et al., 2016; Garay 
et al., 2015). 

Additionally, it has been represented that the activation of the PI3K/ 
AKT signaling pathway is required for bovine ephemeral fever virus 
entry to the host cells by enhancing the clathrin-mediated virus endo-
cytosis (Cheng et al., 2015). The involvement of this pathway in the 
entry of transmissible gastroenteritis virus, which demands clathrin for 
its endocytosis, has been shown in another study (Hu et al., 2018). Based 
on the aforementioned findings, the suppression of the PI3K/AKT 
signaling pathway by azithromycin may inhibit SARS-CoV-2 entry to the 
host cells through clathrin-dependent endocytosis. 

After all, the effect of azithromycin on SARS-CoV-2 replication has 
been evaluated in a study by Touret et al. In this study, which was 

accomplished in Vero cells, pre-treatment with 2.12 μM of azithromycin 
as EC50 inhibited the replication of the virus (Touret et al., 2020). 
Although the exact mechanism of this inhibition is not evidently 
cognized, according to a hypothesis, it may be related to the pH of the 
lysosome, which is required for the shedding of the viral genetic. It is 
proposed that an acidic environment may be required for uncoating of 
coronaviruses similar to the other enveloped viruses such as HIV and 
influenza (Greber et al., 1994). Because of the weak base feature of 
azithromycin, it can be declared that azithromycin upsurges the pH level 
and disrupts acidic conditions, which are compulsory for the uncoating 
process (Damle et al., 2020). The effects of azithromycin on the other 
SARS-CoV-2 receptor, CD147, are not fittingly scrutinized; however, 
there exist several hypotheses. The effect of azithromycin on reducing 
the MMPs’ expression related to CD147 formulates the hypothesis that 
azithromycin may inhibit CD147, and eventually, virus entry to the host 
cells (Ulrich and Pillat, 2020). Inhibition of Plasmodium falciparum 
invasion by azithromycin in different cases makes the idea extra potent 
(Wilson et al., 2015). On the other hand, it has been demonstrated that 
CD147 induces the PI3K/AKT signaling pathway activation, contrib-
uting to NF-ҡB induction and pro-inflammatory cytokines production 
(Chen et al., 2009; Fang et al., 2015). In addition to inflammation, 
PI3K/AKT signaling pathway is involved in the fibrosis induction in 
different organs (Zang et al., 2019; Qiu et al., 2019). Over-activation of 
this pathway by SARS-CoV-2 through CD147 and angiotensin AT1 re-
ceptor may be the major cause of fibrosis in COVID-19 patients. In 
addition, once the expression of TMPRSS2 is regulated by PI3K/AKT 
signaling pathway, its overexpression by the virus may lead to an in-
crease in the TMPRSS2 expression and eventually more virus entry to 
the cells. Fig. 2 represents the mechanisms of SARS-CoV-2 entry to the 
host cells, its pathogenicity, and possible mechanisms of azithromycin to 
suppress these processes. Most clinical studies on the effects of azi-
thromycin on the COVID-19 treatment have been conducted in combi-
nation with hydroxychloroquine. The first clinical study to inspect the 
effects of azithromycin in the treatment of COVID-19 was done in 
Marseilles, France. In this study, patients were divided into three groups: 
hydroxychloroquine received group, hydroxychloroquine + azi-
thromycin-treated group, and a group consisting of the patients with no 
hydroxychloroquine treatment as a control group. Based on the results 
of this study, twenty patients were treated in different groups, and a 
combination of azithromycin with hydroxychloroquine was shown to be 
more efficient for reducing viral load. All the patients who received 
hydroxychloroquine in combination with azithromycin had a negative 
SARS-CoV-2 test of nasopharyngeal polymerase chain reaction (PCR) in 
comparison with 57.1% of patients who received hydroxychloroquine 
alone, and 12.5% of patients in the control group on day 6 of post in-
clusion (Gautret et al., 2020a). In a pilot observational study, the effect 
of the combination of azithromycin and hydroxychloroquine on the viral 
load and clinical features of 80 patients was determined. In this study, 
reduced viral load was observed on days seven and eight in 83% and 
93% of patients, respectively. In addition, on day 5, the results of virus 
culture from the patients’ respiratory system samples were negative in 
97.5% of patients (Gautret et al., 2020b). According to the results of 
another study on 1061 patients with COVID-19, treatment with 
hydroxychloroquine + azithromycin is associated with a low mortality 
rate. In this study, patients were treated with azithromycin in a dose of 
500 mg on day one and 250 mg daily for the next four days and 
hydroxychloroquine in a dose of 200 mg three times a day for ten days. 
In 91.7% of patients, satisfactory clinical outcomes were observed, and 
the result of the PCR test was negative in almost all patients on day 15 
(Million et al., 2020). Treatment with hydroxychloroquine + azi-
thromycin was associated with a reduction in the mortality rate, the risk 
of hospitalization for more than ten days, and shortness of viral shedding 
duration based on a retrospective analysis (Lagier et al., 2020). In 
another retrospective study, the same results have been confirmed, in 
which 2541 patients with COVID-19 with a median age of 64 years were 
divided into four treatment groups, including hydroxychloroquine 
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alone, azithromycin + hydroxychloroquine, azithromycin alone, and 
control group. The overall mortality rate was 18.1% in the entire cohort. 
The mortality rates were 13.5% in the hydroxychloroquine alone group, 
22.4% among those receiving azithromycin alone, 20.1% among the 
hydroxychloroquine + azithromycin group and 26.4% for neither drugs. 
Thus, it can be deduced that treatment with azithromycin is associated 
with a significant reduction of COVID-19-related mortality (Arshad 
et al., 2020). In addition to the so-called studies, Albani and et al. 
(Albani et al., 2020) evaluated the impact of azithromycin on hospital 
mortality in COVID-19 patients alone or combined with hydroxy-
chloroquine. In this study, 1430 patients with COVID-19 were admitted 
to the hospital, and the outcome was available for 1376 of them. A group 
of 587 patients received azithromycin, and the other group with 377 
patients was treated with hydroxychloroquine alone or combined with 
azithromycin. According to the results of this study, treatment of 
COVID-19 patients with azithromycin was associated with lower 
in-hospital mortality, and hydroxychloroquine was not associated with 
reduced or increased mortality. A retrospective cohort study, including 
377 patients hospitalized for pneumonia caused by COVID-19 treatment 
with hydroxychloroquine combined with azithromycin, reduced the 
mortality rate compared to no treatment (Lauriola et al., 2020). Inter-
estingly, in this study, treatment with hydroxychloroquine alone was not 
associated with lower mortality rate and days of in-hospital remaining, 
whereas in combination with azithromycin was inversely associated. 
Conversely, several studies discussed the adverse effects of azithromycin 
and hydroxychloroquine combination or the antiviral power of the 
drugs. In a pre-proof study, it has been indicated that the combination 
treatment of azithromycin and hydroxychloroquine has no evidence of 

clinical benefit and strong antiviral activity in severe patients (Molina 
et al., 2020). Besides, Furtado et al. (2020) evaluated the impact of 
azithromycin in addition to the standard of care treatment in patients 
admitted to the hospital with severe COVID-19. In this clinical trial, 214 
of 397 patients received azithromycin compared with 183 patients as 
the control group. It was shown that in severe COVID-19, patients 
treated with azithromycin did not improve clinical outcomes. In 
response to this study, it can be referred to another study that examined 
the effect of azithromycin on patients with COVID-19 at the onset of 
early symptoms. This study included 1061 patients treated with azi-
thromycin combined with hydroxychloroquine prior to the occurrence 
of COVID-19 complications demonstrated a low mortality rate and 
decent clinical outcome in patients (Million et al., 2020). Based on the 
results of other studies, QT interval prolongation, which is the widely 
acknowledged adverse effect of hydroxychloroquine, is increased once 
hydroxychloroquine is combined with azithromycin for COVID-19 
treatment (Chorin et al., 2020a, 2020b; Maraj et al., 2020). 

6. Conclusion 

Although various studies have been conducted to gauge the effect of 
azithromycin on COVID-19, the majority of these studies have examined 
its adjuvant impact along with hydroxychloroquine. There is a lack of 
adequate information concerning the combination of azithromycin with 
the other drugs employed for COVID-19 treatment. Due to the effect of 
azithromycin on the suppression of the SARS-CoV-2-induced inflam-
mation and its replication in human cells, it can be utilized in combi-
nation with other medications such as corticosteroids, antiviral agents, 

Fig. 2. SARS-CoV-2 entry to the host cells, its pathogenicity pathways, and possible mechanisms of azithromycin to suppress these processes. SARS-CoV-2 binds to 
ACE2 and causes its downregulation on the cell surface. Eventually, the levels of Ang II increases leading to PI3K/AKT signaling pathway activation by mediating 
angiotensin AT1 receptor and inducing the expression of the pro-inflammatory cytokines such as IL-6. First, azithromycin prevents the binding of the virus spike to 
ACE2 because of its more affinity with the ACE2, secondly, azithromycin inhibits PI3K/AKT signaling pathway activation and suppresses Ang II-induced inflam-
mation and fibrosis. On the other hand, the other SARS-CoV-2 receptor, CD147, activates the PI3K/AKT signaling pathway that contributes to inducing the expression 
of the pro-inflammatory cytokines. Thus, azithromycin suppresses CD147-dependent inflammation through this pathway. The effect of azithromycin on the 
expression of the TMPRSS2 and CD147 and its exact mechanisms are not understood yet. ACE2: angiotensin-converting enzyme 2; IL-6: interleukin-6; PI3K: 
phosphatidylinositol-3-kinase; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TMPRSS2: transmembrane serine protease 2. 
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and antibodies. In addition, since azithromycin affects the transcription 
of numerous factors, its usage in the early stages of the disease might 
play a crucial role in its efficacy. However, it requires further investi-
gation in order to prove the consistency of the results. 
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