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Background: Insulin regulates many aspects of brain function related to mild

cognitive impairment (MCI) or dementia, which can be delivered to the brain

center via intranasal (IN) devices. Some small, single-site studies indicated

that intranasal insulin can enhance memory in patients with MCI or dementia.

The pathophysiology of Alzheimer’s disease (AD) and diabetes mellitus (DM)

overlap, making insulin an attractive therapy for people su�ering from MCI

or dementia.

Objective: The goal of the study is to evaluate the e�ectiveness of IN insulin

on cognition in patients with MCI or dementia.

Methods: We searched the electronic database for randomized controlled

trials (RCTs) that verified the e�ects of insulin on patients with MCI or

dementia.16 studies (899 patients) were identified.

Results: The pooled standard mean di�erence (SMD) showed no significant

di�erence between IN insulin and placebo groups; however, statistical results

suggested a di�erence between study groups in the e�ects of ADCS-ADL; AD

patients with APOE4 (-) also showed improved performance in verbal memory;

other cognitions did not improve significantly.

Conclusion: In view of IN insulin’s promising potential, more researches

should be conducted at a larger dose after proper selection of insulin types

and patients.

Systematic review registration: http://www.crd.york.ac.uk/PROSPERO/,

identifier CRD42022353546.
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Introduction

In recent years, a large number of researches has found that

Type 2 diabetes mellitus (T2DM) may increase the incidence

rate of mild cognitive impairment (MCI) and dementia

(Biessels and Despa, 2018). Following 705 participants for 4.6

years, Callisaya et al. indicated that the domains of verbal

fluency, verbal memory, and working memory had a greater

decline in T2DM patients. Besides, they indicated that T2DM

patients had both worse ventricular and brain volume at

baseline (Callisaya et al., 2019). T2DM has been confirmed

to double the risk of cognitive disorders and dementia, such

as in Alzheimer disease (AD) and Vascular dementia (VaD)

(Biessels et al., 2006; Kopf and Frölich, 2009). Patients with

Parkinson’s disease (PD) have nearly six times more chance

of developing dementia than their counterparts without PD,

according to a study (Aarsland et al., 2017). Additionally,

elderly and long-term Parkinson’s disease patients are more

likely to develop dementia (Hely et al., 2008). Insulin, as

an important neurohormone, plays a critical role in brain

energy metabolism, cognitive function, axonal migration, and

neurogenesis (Chen et al., 2014). Insulin resistance (IR) has

been proved to be a pathogenic mechanism of cognitive

disorders (Sasaoka et al., 2014). More and more evidence

showed that disordered cerebral insulin signaling enhances

the development and progression of AD, prompting clinicians

to target the loop. Although traditional and contemporary

anti-diabetes drugs have shown hope in the fight against

insulin resistance (IR), IN insulin seems to be the most

effective method to improve brain insulin. IN insulin was more

effective than subcutaneous insulin in lowering fasting blood

glucose concentrations and in counteracting rises in blood

glucose concentrations (Pontiroli et al., 1982). Because of a

unique characteristic, insulin can affect the central nervous

system (CNS) without passing through the blood-brain barrier.

This has been demonstrated to contribute to enhancing the

cognitive performance of diabetics, particularly those who have

Alzheimer’s disease or MCI, as it has been demonstrated that

decreasing insulin levels in the brain have a detrimental effect

on cognitive function. This helps to reduce the peripheral

side effects of insulin in addition to reducing them (Gaddam

et al., 2021). Yet, significant open questions remain about

the safety, efficacy, and potential of insulin as an adjunct or

monotherapy (Chapman et al., 2018). Therefore, this review

aims to critically assess the available evidence and future

potential of IN insulin as a meaningful treatment for AD

and dementia. T2DM has been verified to increase the risk

of cognitive disorders and dementia, such as AD and VaD.

Besides, there may be a subgroup of dementia related to

specific DM-associated metabolic abnormalities (Hanyu, 2019).

T2DM is a recognized risk factor for dementia. T2DM and

Dementia have some common underlying pathophysiologies,

which makes people interested in the reuse of therapeutic

drugs for type 2 diabetes, which is beneficial to brain health

(Moran et al., 2019). In dementia, there is a progressive

deterioration of functional and cognitive abilities, eventually

causing a heavy burden on health and social services. The

global prevalence of dementia reached 35.6 million in 2010.

And the number is expected to double every 20 years (Prince

et al., 2013). Insulin increases serum glucose uptake in the

peripheral and central nervous system. Abnormal insulin

regulation can take place in the early stage of T2DM and

dementia, which is a promising therapeutic target to reduce

the risk of cognitive disorders (Cha et al., 2016; Arnold

et al., 2018). Considering the high concentration of insulin

receptors in multiple brain regions associated with dementia,

IN insulin inhalation as a treatment for dementia is of

great significance, even for people without T2DM (Zhao and

Townsend, 2009; Craft, 2012b). In AD patients with or without

T2DM, intravenous insulin and glucose normalization can

improve memory scores, but peripheral hypoglycemia remains a

risk. Contrary to this, IN insulin administration increased brain

insulin levels without having a peripheral effect (Craft et al.,

1996).

Materials and methods

Study registration

This study was registered in PROSPERO

(CRD42022353546). This study was constructed according

to the guidelines for preferred reporting items for systematic

reviews and meta-analyses (PRISMA 2020) (Page et al., 2021).

Qualification criteria

Qualification criteria for inclusion in the study were as

below: Types of studies: Only RCTs were included. Participants:

Studies of human participants with MCI or dementia eligible

for inclusion, all subjects were free from psychiatric disorders,

alcoholism, severe head trauma, hypoxia, neurological disorders

other than MCI or dementia, renal or hepatic disease,

diabetes, chronic obstructive pulmonary disease, congestive

heart failure, or unstable cardiac disease. Interventions: Studies

that include receiving any dose of intranasal insulin at any time.

Comparator: Any study containing a control group receiving

placebo treatment is eligible for inclusion. Outcomes: Studies

investigating the efficacy or progression of cognitive disorders

or performance (the study reported specific cognitive scores at

baseline and endpoints) and dementia (including subtypes of

dementia, such as AD or VaD) were eligible for inclusion.

Information sources

PubMed, Web of Science, Embase, Cochrane Library,

Clinical Trials (ClinicalTrials.gov), Chinese Biomedical

Frontiers in AgingNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnagi.2022.963933
https://ClinicalTrials.gov
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Long et al. 10.3389/fnagi.2022.963933

FIGURE 1

The flowchart of the study selection process.

Literature Database, Chinese National Knowledge Infrastructure

(CNKI), Wanfang database were searched for related published

studies as of December 20, 2021.

Search strategy

In the above databases we used the following search

query: “(Intranasal insulin OR nasal insulin) AND (Dementia

OR neurodegenerative disease OR Cognitive Dysfunction

OR cognitive impairment OR neuroprotective OR memory

OR cognition).”

Assessment of methodological quality
and data extraction

Critical appraisals were conducted by independent reviewers

using the risk of bias (RoB) assessment tool of the Cochrane

Collaboration Network assessment checklist (Higgins et al.,

2011) for experimental, case-control, cohort, and cross-

sectional studies. The consensus was reached through discussion

between reviewers. Researches that met >50% of the quality

criteria were eligible for selection. Templates used for data

extraction, including research method field, study design, data

source, inclusion criteria, exposure, country, sample size/event,

follow-up, results, result data, and statistical adjustment.

When additional data were needed, attempts to contact the

corresponding author by e-mail were unsuccessful: in these

cases, findings have been summarized narratively.

Statistical analysis

The combined cognitive performance score change was

calculated by the inverse variancemethod (random effectmodel)

as the standardized mean difference (SMD). Some of the data

of these articles (Reger et al., 2006, 2008a,b; Claxton et al.,
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2013, 2015; Rosenbloom et al., 2014) were obtained from

the following article (Lu and Xu, 2019). X2 test was used

for statistical heterogeneity. The Comprehensive Meta-analysis

software (version 3.3) and Review Manager (Revman, version

5.3) were used for data analysis.

Results

Search results

215 citations were found in the original search, which were

reduced to 156 after duplicates were eliminated. 125 studies

were identified after titles and abstracts were reviewed. The full-

text search and 31 studies were qualified. a further 15 studies

were excluded for protocol (Nct, 2021; Nitchingham et al.,

2021), studies other than RCTs (Bayés et al., 2006; Reger and

Craft, 2006; Xiaojiu and Xuan, 2015; Yanfang, 2016; Deng Yun,

2020; Tashima, 2020), or without enough data (Nct, 2007, 2012,

2019; Anonymous, 2008; Galindo-Mendez et al., 2020; Gwizdala

et al., 2021; Roque et al., 2021) leaving 16 included studies

(Figure 1).

Studies’ and patients’ characteristics

Three crossover studies (Rosenbloom, 2011; Rosenbloom

et al., 2014; Cha et al., 2017) out of the 16 papers we analyzed

were included in our meta-analysis, Two studies used a parallel

design (Craft, 2012a; Craft et al., 2020). The follow-up period

is from 1 day to 72 weeks. The sample size ranged from 9

to 240. One study was HIV Dementia (Rubin, 2017), one was

diagnosed with MDD(major depressive disorder) (Cha et al.,

2017), and two studies enrolled patients with PDD (Parkinson’s

disease Dementia) (Novak et al., 2019; Yufeng, 2020), the

others were about AD or MCI (Reger et al., 2006, 2008a,b;

Rosenbloom, 2011; Craft, 2012a,b; Claxton et al., 2013, 2015;

Rosenbloom et al., 2014, 2021; Craft et al., 2017; Yufeng,

2020). These studies were conducted in the following regions:

Canada (n = 1), China (n = 1), America (n = 14). The

publication year of the included articles ranged from 2006 to

2021. The mean age of patients ranged from 18 to 90 years.

The baseline characteristics of the eligible studies are shown in

Table 1.

Risk of bias

The bias risk of the randomized controlled trial was

independently assessed by two reviewers (Yunjiao Yang and

Tongyi Li) using the bias risk assessment tool of the Cochrane

Collaboration Network (RoB). All of the researches were

deemed to be low risk in the evaluation. For all studies,

the risk of “random sequence generation” is unclear, and

the RoB is unclear; The RoBs of the four studies were

not clear because the risks of “blinding of participants”

and/or “allocation concealment” were not clear (Reger et al.,

2006, 2008a,b; Novak et al., 2019). See Figures 2, 3 for

RoB evaluation details. A cross-over study of Rosenbloom

et al. was identified as low risk due to the design of

the study (AD is a disease with a persistent course),

randomization of the treatment sequence resulted in no

subsequent treatment effect.

Publication bias

We used The Comprehensive Meta-analysis software

(version 3.3) to analyze and make a funnel plot, as shown in

Figure 4. In order to further test publication bias, we further used

Egger’ test. The results of Egger’s tests indicates that there is no

publication bias. In this case the intercept (B0) is 0.28494, 95%

confidence interval (−0.76470, 1.33458), with t = 0.58223, df

= 14. The 1-tailed p-value (recommended) is 0.28483, and the

2-tailed p-value is 0.56967.

Cognitive performance

Combined cognitive performance outcome

The pooled SMD was 0.103 [16 studies; 95% confidence

interval (CI), −0.05 to 0.25; P = 0.18], showing no significant

difference between IN insulin and placebo groups (see Figure 5).

E�ects of ADAS-cog

There was no difference between study groups: (5 studies:

SMD= 0.15, 95% CI=−0.04 to 0.34; P = 0.12; see Figure 6).

E�ects of ADCS-ADL, MMSE, MoCA, UPDRS

Statistical results suggested a difference of ADCS-ADL

between study groups: (3 studies): SMD= 0.26, 95% CI= 0.05–

0.47; P = 0.01) (see Figure 7A); SMD favored insulin but not

statistically different of the effects of MMSE (2 studies): SMD

= 0.07, 95% CI = −0.50 to 0.64; P = 0.81; see Figure 7B); No

differences between study groups of the effects of MoCA (2

studies): SMD= −0.01, 95% CI = −0.81 to 0.79; P = 0.98; see

Figure 7C); There was no difference between study groups of the

effects of UPDRS (2 studies: SMD = −0.41, 95% CI = −1.00 to

0.18; P = 0.17; see Figure 7D).

E�ects modulation by APOE genotype

In the study (Reger et al., 2006) insulin treatment facilitated

recall on two measures of verbal memory in memory-impaired

ε4– adults. Findings in this study (Reger et al., 2008a) suggests

that IN insulin administration dose-dependently modulates
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TABLE 1 Summary of general characteristics of the included studies.

References Country Study design Number and

patients,

characteristics

Treatment

duration

(days)

Cognitive test used Adverse event

Reger et al. (2006) USA Randomized no

blinding is

indicated

35 normal adults (27

ε4- and 8 ε4+)

13 AD patients (6 ε4-

and 7 ε4+)

13 MCI patients (8

ε4- and 5 ε4+)

15min Story recall Buschke

Selective Reminding.

Test self-ordered pointing task

Stroop color-word test visual

search task

Minor nosebleed (1),

nose soreness (1)

Reger et al. (2008b) USA Randomized

placebo- controlled,

pilot clinical trial

(all participants

were blinded)

25 subjects

AD or aMCI

21 days Memory savings scores

Stroop voice onset times errors for

concordant and discordant trials

DSRS scores

Headache (1), nasal

dripping (2), weakness

(1), sneezing (1), blood

glucose between 60 and

70 mg/dL (1)

Reger et al. (2008a) USA Randomized the

study was not

blinded

33 patients (11 ε4-

and 22 ε4+) with

either: probable AD

(13) or MCI or

multiple domain MCI

with amnestic

features (20)

59 normal adults (48

ε4–and 11 ε4+)

15min Story Recall and Hopkins Verbal

Learning Test

Self-Ordered Pointing Task

Not mentioned

Rosenbloom

(2011)

USA Randomized,

double-blind,

placebo-controlled,

cross-over designed

12 adults with AD 112 days Cognitive Performance

Trails B - Seconds

Trails B - Errors

Olfactory Function

No treatment related

severe adverse events

occurred

Craft (2012a) USA Randomized,

double-blind,

placebo-controlled

trial

104 adults

AD= 40

aMCI= 64

120 days Delayed story recall score

DSRS score

ADAS-cog

ADCS-ADL

No treatment related

severe adverse events

occurred

Craft (2012b) USA RCT parralle 36 adults with AD or

MCI

120 days Executive Function Composite (Sum

of Z Scores from Dot Counting Test

and Benton Visual Retention Test

Form F&G)

ADAS-Cog

No treatment related

severe adverse events

occurred

Claxton et al.

(2013)

USA Randomized

clinical trial (all

participants were

blinded)

104 patients, with

MCI (64) or AD (40)

ε4-: 32 men and 25

women

ε4+: 27 men and

20 women

120 days DSRS

ADAS-Cog

ADCS-ADL

No treatment related

severe adverse events

occurred

Rosenbloom et al.

(2014)

USA Phase II,

double-blinded,

randomized,

crossover study

9 mild-to-moderate

AD patients, ε4+

14±3 days RBANS

WAIS-IV

BNT

Trail-Making Test

No treatment related

severe adverse events

occurred

Claxton et al.

(2015)

USA Pilot, randomized

controlled trial

(blinded)

60 older adults: 39

with and 21 with

probable AD

21 days Verbal memory composite score (the

sum of z scores of immediate and

delayed story recall and immediate

delayed word list recall) verbal

working memory (Dot Counting

N-back)

No treatment related

severe adverse events

occurred

(Continued)
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TABLE 1 (Continued)

References Country Study design Number and

patients,

characteristics

Treatment

duration

(days)

Cognitive test used Adverse event

Cha et al. (2017) USA Randomized,

double-blind,

placebo-controlled

trial

36 adults with AD or

MCI

120 days Composite memory score (sum of Z

scores for delayed list and story

recall)

ADAS-Cog

DSRS, MRI volume changes in AD-

related regions of interest, and

cerebrospinal fluid AD markers

No treatment related

severe adverse events

occurred

Rubin (2017) USA Randomized

double-blind

placebo-controlled

clinical trial

21 adults with HIV

Dementia

168 days GDS

NPZ-8 Score

Cardiac event

(1),Kidney obstruction

(1), Hospitalization for

syncopehypotension (1)

Craft et al. (2017) Canada Randomized,

double-blind,

placebo-controlled,

crossover trial

35 adults with

Cognitive dysfunction

in MDD (major

depressive disorder)

90 days AGN (Correct Response)

ERT (Correct Response)

ERT (Response Time in ms)

Not mentioned

Novak et al. (2019) USA Proof of concept

randomized,

double-blinded,

placebo-controlled

trial

14 adults with

Cognitive impairment

in PD

28 days MoCA

HY classification

BDI

FAS total

UPDRS

No treatment related

severe adverse events

occurred

Yufeng (2020) China RCT 15 adults with PD-CI 28 days MMSE

MoCA

UPDRS

No treatment related

severe adverse events

occurred

Craft et al. (2020) USA Randomized

parallel assignment

240 adults with AD or

aMCI

504 days ADAS-Cog

MMSE

ADCS-ADL-MCI

CDR-SB

NPI score

No treatment related

severe adverse events

occurred

Rosenbloom et al.

(2021)

USA Single-center,

randomized,

double-blind,

placebo-controlled

study

35 adults with AD or

aMCI

50–90 years

224 days ADAS-Cog13

CDR-SOB

FAQ scores

No treatment related

severe adverse events

occurred

DSRS, Dementia Severity Rating Scale; ADAS-cog, Alzheimer Disease’s Assessment Scale–cognitive subscale; ADCS-ADL, Alzheimer’s Disease Cooperative Study–activities of daily living;

RBANS, Repeatable Battery for the Assessment of Neuropsychological Status; WAIS-IV, Wechsler Adult Intelligence Scale—Fourth Edition; BNT, Boston Naming Test, GDS, Global

Deficit Score; NPZ-8 Score, 8 neurocognitive performance individual Z-scores; MoCA, Montreal Cognitive Assessment; UPDRS, Unified Parkinson’s Disease Rating Scale; MMSE, Mini-

mental State Examination; HY classification, Hoehn and Yahr scale; BDI, Beck Depression Inventory; FAS, phonemic fluency and verbal memory; NPI, Neuropsychiatric Inventory; FAQ,

Functional Activities Questionnaire.

verbal memory, the acute clinical benefits of treatment were

greatest at 20 IU.

E�ects of Aβ42 and Aβ40

In two studies, IN insulin was found to affect plasma

amyloid levels Aβ42 and Aβ40 (Reger et al., 2008a,b). Another

two studies also cited the effects on CerebroSpinal Fluid(CSF)

Aβ42 and Aβ40 levels (Craft, 2012b; Craft et al., 2017). Rather

contradictory results emerged.

Metabolic data

In four studies, IN insulin therapy was shown to affect

plasma glucose and insulin levels (Reger et al., 2006, 2008a,b;

Rosenbloom et al., 2014). Blood glucose and insulin levels in
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FIGURE 2

Risk of bias summary for each risk of bias item for each included study.

FIGURE 3

Risk of bias graph authors’ judgments about each risk of bias item, presented as a percentage across all induded studies.

three of these studies did not change significantly after treatment

(Reger et al., 2006, 2008a; Rosenbloom et al., 2014). After 21 days

of treatment, fasting glucose or insulin levels did not change in

Rosenbloom et al.’s study. In spite of this, postprandial plasma

insulin levels decreased in the treatment group when compared

to the placebo group [F(1, 20) = 4.43, P= 0.0481)] (Rosenbloom

et al., 2014).

Discussion

Main findings and conclusions

Based on our current study, there was no significant effects

of intranasal insulin on the improvement of cognitive function

in patients with MCI/dementia. However, Even though the

results were not statistically significant, this study illustrates the

potential of IN insulin efficacy. According to Mark A Reger’s

work, insulin dose-response curves vary by APOE genotype

and IN insulin treatment may offer therapeutic benefits without

the danger of peripheral hypoglycemia, the effect of APOE

genotype on cognitive and metabolic responses to insulin

may reflect a specific pattern of abnormal insulin metabolism

among ε4– subjects, differential cognitive responses to insulin

treatment by APOE genotype may result from differences in

insulin sensitivity (Reger et al., 2006, 2008a). There is growing

evidence that persons with AD who do not carry ApoE-ε4

may experience IR more frequently. Higher doses of insulin

are needed to elicit biological reactions that are typically seen
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FIGURE 4

Publication bias of studies. (A) Funnel Plot of Standard Error by Std di� in means (Plot observed and imputed); (B) The results of Egger’s tests. In

this case the intercept (BO) is 0.28494, 95% confidence interval (−0.76470, 1.33458), with t = 0.58223, df = 14. The 1-tailed p-value

(recommended) is 0.28483, and the 2-tailed p-value is 0.56967. The results of Egger’s tests indicates that there is no publication bias.

FIGURE 5

Forest plot of pooled standard mean di�erence (SMD) for combined cognitive score. The pooled SMD was 0.103 [16 studies; 95% confidence

interval (CI), −0.05 to 0.25; P = 0.18), showing no significant di�erence between IN insulin and placebo groups (weights and heterogeneity test

are from random-e�ects model).
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FIGURE 6

Forest plot for the E�ects of ADAS-cog (Alzheimer’s Disease’s Assessment Scale–cognitive subscale). There was no di�erence between study

groups: SMD = 0.15, 95% CI = −0.04 to 0.34; P = 0.12).

FIGURE 7

Forest plot for the e�ects of cognitive performance. (A) Forest plot for the e�ects of the Alzheimer’s Disease Cooperative Study–activities of daily

living Statistical (ADCS-ADL ): results suggested a di�erence between study groups: (3 studies): SMD = 0.26, 95% CI = 0.05 to 0.47; P = 0.01); (B)

Forest plot for the e�ects of Mini-mental Atate Examination (MMSE): SMD favoured Insulin but not statistically di�erent of the e�ects (2 studies):

SMD = 0.07, 95% CI = −0.50 to 0.64; P = 0.81; (C) Forest plot for the e�ects of Montreal Cognitive Assessment (MoCA): No di�erences between

study groups of the e�ects (2 studies): SMD = −0.01, 95% CI = −0.81 to 0.79; P = 0.98; (D) Forest plot for the e�ects of Unified Parkinson’s

Disease Rating Scale (UPDRS): There was no di�erence between study groups (2 studies): SMD = −0.41, 95% CI = −1.00 to 0.18; P = 0.17).

at lower insulin doses in healthy persons with IR, which is a

condition in which muscle, fat, and hepatic cell responses to

insulin are impaired. But evidence is still lacking to explain

the mechanism by which the ApoE4 genotype attenuates the

cognitive response to IN insulin. Statistical results also revealed

a difference between study groups in the effects of ADCS-

ADL. We also find some subtle but meaningful patterns of

improvement in cognitive function with intranasal insulin.
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TABLE 2 Characteristics of included studies.

References Treatment

regimens (acute

or chronic)

Patient

diagnosis

Therapeutic device Type and dose

of insulin

Possible impact

mechanism

Reger et al. (2006) Acute MCI or AD A needle-less syringe Novolin R

20 or 40 IU

Change brain energy metabolism

Reger et al. (2008b) Acute MCI or AD An electronic atomizer Novolin R

20IU Bid

Modulates plasma

Aβ and cortisol levels

Reger et al. (2008a) Acute MCI or AD A needle-less syringe Novolin R

10, 20, 40, 60 IU

Change brain energy metabolism

Rosenbloom (2011) Chronic AD MAD 300 device Glulisine

20IU

Not mentioned

Craft (2012a) Chronic MCI or AD A nasal drug delivery device

Kurve Technology

Insulin

20IU/40IU

Stabilize or improve cerebral

glucose metabolism

Craft (2012b) Chronic MCI or AD Not mentioned Detemir/Novolin R

40IU

Change insulin signaling in the

CNS

Claxton et al. (2013) Chronic MCI or AD A nasal delivery device Insulin

20IU or 40IU

Change brain energy metabolism

Rosenbloom et al.

(2014)

Acute AD LMAmucosal atomization device

(MAD)

Rapid-acting IN

insulin glulisine

20 IU

No significant effect on cognitive

outcome

Claxton et al. (2015) Chronic MCI or AD ViaNase nasal drug delivery device

Kurve Technology

Detemir

20 or 40 IU

No significant effect on cognitive

outcome

Cha et al. (2017) Chronic MCI or AD A nasal delivery device Detemir/regular

40IU

Modifying AD-related

pathophysiologic processes

Rubin (2017) Chronic HIV Dementia Insulin modifying therapy (IMT) Novolin R

40IU

Protect hippocampal neurons

against oxidative stress and

apoptotic cell death

Craft et al. (2017) Chronic Major depressive

disorder (MDD)

Administered via puffs Humulin R

40IU 4 times

No significant effect on cognitive

outcome

Novak et al. (2019) Chronic PD Nase device

Kurve technology

Novolin R

40IU

Increase resting-state functional

connectivity between hippocampal

and DMN regions

Yufeng (2020) Chronic PD Not mentioned Insulin aspart

20IU

Improve cognitive function of PD

patients by regulating DMN

Craft et al. (2020) Chronic MCI or AD Device1 (ViaNase)

Device 2 (I109 Precision

Olfactory Delivery)

Humulin-RU-100

40IU

No cognitive or functional benefits

were observed

Rosenbloom et al.

(2021)

Chronic MCI or AD Impel NeuroPharma I109

Precision Olfactory Delivery

Device

Glulisine

40IU

No enhancing effects of intranasal

glulisine on cognition, function, or

mood

Abbreviations: DMN regions:Default Mode Network(DMN) regions.

For example, the type of intranasal insulin, the treatment

course and the device used will affect the treatment, and these

studies suggest potential mechanisms of intranasal insulin in

MCI or dementia treatment: change brain energy metabolism,

modulates plasma Aβ and cortisol levels, stabilize or improve

cerebral glucose metabolism, change insulin signal in the

CNS, modifying AD-related pathophysiologic processes, protect

hippocampal neurons against oxidative stress and apoptotic cell

death, increase resting-state functional connectivity between

hippocampal and Default Mode Network(DMN) regions (see

Table 2). However, due to the lack of sample size, the amount

of data for specific analysis is not enough. In the future, we will

continue to pay attention in this field to see if we can dig out

some specific patterns of intranasal insulin treatment.

In light of those promising results, further studies with

larger sample sizes and longer duration are needed to verify

these findings. The effects of IN insulin on MCI/dementia needs

to highlight in future studies. With the rapid increase in the

aging population, effective treatments for MCI/dementia are in

short supply. Since MCI and dementia involve the imbalance of
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neuropeptide signals in the brain, neuropeptide in management

may be a promising therapeutic target, directly aiming at the

brain and restoring signals, and ultimately, cognition. In insulin

is expected to be a successful treatment for MCI/dementia.

Limitations

In insulin may be a new therapy for patients with MCI or

dementia, but for now, it has only been tested in a few clinical

trials, particularly for the treatment of dementia. In our study,

there only included 899 patients in all. No safe conclusions

can be drawn from such a small sample size. Further, there

are restrictions on the properties that can be attributed to the

results given that most included studies were conducted in one

country (the United States). The heterogeneity of the included

studies is another limitation of this research. The first factor that

was heterogeneous was the patients’ characteristics, particularly

their type of dementia, ApoE4 status, and cognitive tests (see

Table 1). Moreover, different researches have used different types

and doses of insulin (see Table 1). As a final point, the treatment

time was uneven (the treatment days ranged between 15min and

504 days). Therefore, it is not possible to conduct quantitative

analysis (meta-analysis) of the included studies.
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