
RESEARCH ARTICLE

Multi-trait and multi-environment Bayesian

analysis to predict the G x E interaction in

flood-irrigated rice
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Abstract

The biggest challenge for the reproduction of flood-irrigated rice is to identify superior geno-

types that present development of high-yielding varieties with specific grain qualities, resis-

tance to abiotic and biotic stresses in addition to superior adaptation to the target

environment. Thus, the objectives of this study were to propose a multi-trait and multi-envi-

ronment Bayesian model to estimate genetic parameters for the flood-irrigated rice crop. To

this end, twenty-five rice genotypes belonging to the flood-irrigated rice breeding program

were evaluated. Grain yield and flowering were evaluated in the agricultural year 2017/

2018. The experimental design used in all experiments was a randomized block design with

three replications. The Markov Chain Monte Carlo algorithm was used to estimate genetic

parameters and genetic values. The flowering is highly heritable by the Bayesian credibility

interval: h2 = 0.039–0.80, and 0.02–0.91, environment 1 and 2, respectively. The genetic

correlation between traits was significantly different from zero in the two environments (envi-

ronment 1: -0.80 to 0.74; environment 2: -0.82 to 0.86. The relationship of CVe and CVg

higher for flowering in the reduced model (CVg/CVe = 5.83 and 13.98, environments 1 and

2, respectively). For the complete model, this trait presented an estimate of the relative vari-

ation index of: CVe = 4.28 and 4.21, environments 1 and 2, respectively. In summary, the

multi-trait and multi-environment Bayesian model allowed a reliable estimate of the genetic

parameter of flood-irrigated rice. Bayesian analyzes provide robust inference of genetic

parameters. Therefore, we recommend this model for genetic evaluation of flood-irrigated

rice genotypes, and their generalization, in other crops. Precise estimates of genetic param-

eters bring new perspectives on the application of Bayesian methods to solve modeling

problems in the genetic improvement of flood-irrigated rice.
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Introduction

Rice (Oryza sativa L.) is one of the most important crops in the world and is considered one of

the main annual crops in Brazil [1]. Rice breeding is primarily aimed at the development of

high-yielding varieties with specific grain qualities, resistance to abiotic and biotic stresses in

addition to superior adaptation to the target environment [2, 3]. In this case, the breeder needs

to realize mutual relationships and knowledge of the interdependence between agronomically

important traits that can improve accuracy selection [3].

Specifically, in the rice crop, evaluating multiple traits rather than a single trait aims to max-

imize grain yield and quality. This is possible through the exploration of genetic correlations

between traits. In multi-trait analysis, the prediction of secondary traits can be used to improve

the prediction of primary characteristics, especially when they have low heritability. Although

consideration of the genetic correlation between traits is essential, modeling interactions

between phenotypes provides essential information for developing breeding strategies that

cannot be carried out with conventional multivariate approaches alone [2, 4, 5].

Biometric methods available are useful for analyzing a single trait measured in a single envi-

ronment or across multiple environments with the genotype x environment (G x E) interac-

tion [6–9]. This interaction can be defined as the differential response of genotypes to

environmental variation [10], and offers an even greater challenge for the breeder [11]. The

information from a network of experiments obtains a multi-trait and multi-environment

(MTME) structure but presents limited statistical methodology that not correctly represents

genetic and phenotypic variation in the data [12]. Therefore, genetic correlations and G x E

interaction require more complex models that are difficult to converge in the context of mixed

linear models [11]. Thus, Bayesian inference has become a useful statistical tool for dealing

with complex models [13].

Bayesian inference has been used successfully in studies with complex models. [11] evalu-

ated the multi-trait and multi-environment Bayesian model considering the G x E interaction

for nitrogen use efficiency components in tropical corn. [13], applied such models through

Bayesian inference applied to the breeding of jatropha curcas for bioenergy. [14], used these

models in the genetic selection of soybean progenies. [15], demonstrate such models in pheno-

typic and genotypic data in corn and wheat. However, few studies combine models of multiple

traits in a multi-environment under a Bayesian point of view, mainly for rice cultivation.

Therefore, the objectives of this study were to propose a multi-trait and multi-environment

Bayesian model to estimate genetic parameters for the flood-irrigated rice crop. In addition to

comparing: (i) the complete model (considering the interaction between genotypes and envi-

ronment) with the restricted model (not considering the interaction); (ii) estimates of genetic

parameters of models with single and multiple traits, for grain yield and flowering.

Material and methods

Description of the experiment

The experiments were carried out in the State of Minas Gerais—Brazil, in the experimental

fields of Agricultural Research Corporation of Minas Gerais State (EPAMIG), in the cities of

Lambari (21˚ 58’ 11.24’’ S, 45˚ 20’ 59.6’’ W) and Janaúba (15˚ 48’ 77’’ S, 43˚ 17’ 59.09’’ W).

Twenty-five genotypes belonging to the flood-irrigated rice breeding program of the Southeast

region of the state of Minas Gerais were evaluated, and five of these genotypes were used as

experimental controls (Rubelita, Seleta, Ourominas, Predileta, and Rio Grande). These geno-

types were evaluated in comparative trials after multiple generations of selection, and in addi-

tion, they are known for their high yield, uniform growth rate and plant growth, resistance to
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major diseases, and for their excellent grain quality. Grain yield (GY, Kg ha-1) and flowering

period in days (FL) were evaluated in the agricultural year 2017/2018. The experimental design

was a randomized complete block design with three replications. The experiments were con-

ducted in floodplain soils with continuous flood irrigation. Grain production data in grams

per useful plot were used, later converted into kilograms per hectare. Management practices

were carried out according to recommendations for flood-irrigated rice in the region.

The useful area consisted of 4 m central of three internal rows (4 m x 0.9 m, totaling 3.60

m2). The soil preparation was carried out by plowing and harrowing around 30 days before

sowing. For planting fertilization, a mixture of 100 kg ha-1 of ammonium sulfate, 300 kg ha-1

of simple superphosphate, and 100 kg ha-1 of potassium chloride was used, applied in the plot,

and incorporated into the soil before planting. The fertilization in the top dressing was carried

out approximately 60 days after the installation of the experiments, with 200 kg ha-1 of ammo-

nium sulfate. The weeds were controlled with the use of herbicides and manual weeding. Sow-

ing was carried out in the planting line with a density of 300 seeds m-2. The irrigation started

around 10–15 days after the implantation of the experiments, and the water was only removed

close to the maturation of the materials. The harvest was carried out when the grains reached a

humidity of 20–22%. Grain production data were obtained by weighing all grains harvested in

the useful plot, after cleaning and uniform drying in the sun until they reached a humidity of

13%. Days for flowering correspond to the number of days from sowing to flowering when the

plot presented approximately 50% of plants with panicles.

Biometric analysis

Grain yield (GY) and flowering period in days (FL) were analyzed using single- and multi-trait

models using the Bayesian Markov Chain Monte Carlo (MCMC) approach. The objective was

to compare: (i) the complete model (considering the interaction between genotypes and envi-

ronments) with the restricted model (not considering the interaction); (ii) estimates of genetic

parameters of models with single and multiple traits, for grain yield and flowering period.

The multi-trait and multi-environment (MTME) model was given by:

y ¼ XbþW1r þW2uþ ε

which can be rewritten as:
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where: y is the vector of the phenotypic values of the two evaluated traits (grain yield, Y1; and

flowering period, Y2); X is the incidence matrix of the systematic effects represented by β,

assuming β ~ N(μβ, I�∑β) so that E1 and E2 represent the two environments studied; W1 it is

the incidence matrix of the random effect of the environment; r is the ambient effect vector, r

~ N (0, I�∑r); W2 is the incidence matrix of the effects of the genotype x environment interac-

tion; u is the random effects vector of the genotype x environment interaction, u ~ N (0,

I�Su); and ε is the residual effects vector, ε ~ N(0, I�∑ε).
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The (co)variance matrices are given by:

X
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where: y represents grain yield and h represents flowering period in days; 1 and 2 represent the

two environments studied. The variance-covariance matrices follow an inverted Wishart dis-

tribution, which was used as a priori to model the variance-covariance matrix [16].

The package “MCMCglmm” [17] was used. A total of 10,000,000 samples were generated

and assuming a flare period and sampling interval of 500,000 and 10 iterations, respectively,

this resulted in a final total of 50,000 samples. The convergence of the MCMC was verified by

the criterion of [18], performed in two packages R "boa" [19] and "CODA" (convergence diag-

nosis) [20]. Even though Bayesian and frequentist structures were not directly compared, espe-

cially in the field of genetics [21], the same models were also adjusted based on the REML

estimation method (Restricted Maximum Likelihood).

The complete models (considering the interaction between genotypes and environments)

were compared with the null models (not considering the interaction) by the deviation infor-

mation criterion (DIC) proposed by [22]:

DIC ¼ Dð�yÞ þ 2pD

where is a point estimate of the deviation obtained by replacing the parameters with their later

means estimates in the probability function and pD is the effective number of model parame-

ters. Models with a lower DIC should be preferred over models with a higher DIC.

The components of variance, broad-sense heritability, coefficient of variation residual and

genetic, variation index, and genotypic correlation coefficients between genetic traits and val-

ues were calculated from the posterior distribution. The package “boa” [19] was used to calcu-

late the intervals of greater posterior density (HPD) for all parameters. The later estimates for

the broad-sense heritability of grain yield and flowering period in days for each interaction

were calculated from the later samples of the variance components obtained by the model,
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using the expression:
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where: s2ðiÞ
g ; s2ðiÞ

r , and s2ðiÞ
ε are the genetic, replication, and residual variations for each iteration,

respectively.

The genetic correlation coefficients between the pairs of traits in each environment were

obtained, as suggested by [23], using the expression below for all models:rlð1;2Þ ¼
sglð1;2Þffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
glð1Þ

s2
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p : genetic cor-

relation between environment and flowering period in days. All data analysis was conducted

using the statistical software package R version 4.1.0.

Results and discussion

Geweke’s convergence criterion indicated convergence for all dispersion parameters by gener-

ating 10,000,000 MCMC strings, 500,000 samples for burn-in, and a sampling interval of 10,

totaling 50,000 effective samples used for estimating variance components. Similar posterior

mean, median and modal estimates were obtained for variance components, suggesting nor-

mal-appearing density. However, all chains reached convergence by this criterion. According

to the deviation information criteria (DIC), there was positive evidence of interactions

between genotypes and environments for all analyzed models (Table 1). However, the DIC val-

ues were lower when using the complete model (considering the effects of genotype x environ-

ment interaction), in which the difference in relation to the complete model was greater than 2

(Table 1), which according to [22] the use of full model can lead to greater precision in estimat-

ing parameters (Table 1). Therefore, since the obtained DIC values were greater than two, it is

possible to indicate the superiority of the complete model over the restricted models. On the

other hand, as this component of the model is important, the “best” genotypes measured in

different environments cannot be the same. However, convergence was not achieved by the AI

(Average Information) and EM (Expectation-Maximization) algorithms.

The posterior inferences for mean and higher posterior density range (HPD) considering

the multi-trait and multi-environment (MTME) model are described in Table 2. The average

values for the grain yield trait varied from 4210.91–3901.56 kg ha-1 and flowering in days of

99.40–76.43, in environments 1 and 2, respectively (Table 2). The Bayesian credibility interval

(95% probability) for average grain yield corresponds to 4191.70–4227.86 kg ha-1, and

3852.60–3946.07 kg ha-1 (p<1e-05), in environments 1 and 2, respectively. In relation to the

flowering period in days, this interval corresponds to 98.09–100.69 e 74.56–78.22 (p<1e-05),

environments 1 and 2, respectively.

Table 1. Deviation information criteria for the full (considering the G x E interaction) and null (not considering

the interaction) models.

Deviance information criteria (DIC)

Model Trait Full Model Null Model

Mult-trait GY, FL -308.83 1967.79

Single-trait GY 1867.49 1868.28

Single-trait FL 162.19 697.67

GY: Grain Yield; FL: Flowering Period.

https://doi.org/10.1371/journal.pone.0259607.t001
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Table 3 presents the subsequent inferences for mean and genetic variance; mode, mean,

median, and highest posterior density range (HPD) of heritability in the broad sense; and the

mode, mean, median, and greater posterior density interval (HPD) of the genetic correlation,

considering MTME. The grain yield trait in environment 2 was considered weakly heritable

with Bayesian credibility interval (95% probability): h2 = 4.36E-07–9.21E-06, and in environ-

ment 1, it was moderately heritable h2 = 0.39–0.757. The low estimate of heritability observed

does not depend on the number of samples evaluated, since the Bayesian structure used is

essentially recommended for situations involving small sample sizes. In addition, the grain

yield trait is largely influenced by the environment as it is a quantitative character [24], which

reflects this low estimate of heritability. In relation to flowering period, it is highly heritable by

the Bayesian credibility interval (95% probability): h2 = 0.039–0.80, and 0.02–0.91, environ-

ment 1 and 2, respectively. And the posterior mean of the genetic correlation between traits

was significantly different from zero (95% credibility intervals) in the two environments (envi-

ronment 1: -0.80 to 0.74; environment 2: -0.82 to 0.86) (Table 3).

Bayesian methods access the posterior density ranges of genetic parameters (Fig 1). The

genetic parameters of the flood-irrigated rice genotypes for each trait and their larger posterior

density ranges (HPD) were obtained to assist in the selection of genotypes.

In Fig 2, there is a unimodal distribution in which there is a mixture of two distinct popula-

tions for posterior density in relation to the genotypic correlation between traits for the com-

plete MTME model. The red line represents the posterior density for environment 1, while the

blue line represents the posterior density for environment 2.

Table 2. Posterior inferences for mean and highest posterior density range (HPD) considering the proposed com-

plete multi-trait multi-environment model.

HPD 95%

Trait EN post.mean LOWER UPPER

GY 1 4210.91��� 4191.7 4227.86

FL 1 99.4��� 98.09 100.69

GY 2 3901.56��� 3852.6 3946.07

FL 2 76.43��� 74.56 78.22

��� Significância estatı́stica: p � 0.001. GY: Grain Yield; FL: Flowering Period; EN: environment.

https://doi.org/10.1371/journal.pone.0259607.t002

Table 3. Resume of inferences for mean and genetic variance; mode, mean, median, and highest posterior density range (HPD) of heritability in the broad sense;

and the mode, mean, median, and highest posterior density range (HPD) of the genetic correlation, considering the complete model multi-trait and multi-

environment.

h2 HPD 95%

Trait EN Mode Mean Median LOWER UPPER

GY 1 0.11 0.28 0.18 0.39 0.757

GY 2 1.30E-06 3.32E-06 2.24E-06 4.36E-07 9.21E-06

FL 1 0.12 0.31 0.24 0.039 0.80

FL 2 0.06 0.27 0.13 0.02 0.91

Genotypic Correlation HPD 95%

Mode Mean Median LOWER UPPER

GY, FL 1 -0.0076 -0.027 -0.028 -0.80 0.74

GY, FL 2 0.037 0.018 0.019 -0.82 0.86

EN: environment; GY: Grain Yield; FL: Flowering Period; h2: heritability.

https://doi.org/10.1371/journal.pone.0259607.t003
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Variance estimate

The a posteriori estimates of the genotypic and residual variances for the reduced model

(MTME) were very discrepant among the environments (Table 4). The grain yield trait in the

Fig 1. Posterior density for the complete model proposed by multi-traits multi-environment (left: flowering

period and right: grain yield). The red line represents the posterior density for environment 1, while the blue line

represents the posterior density for environment 2.

https://doi.org/10.1371/journal.pone.0259607.g001

Fig 2. Posterior density for the genotypic correlation between the grain yield trait and flowering period in days

for the model proposed by multi-traits and multi-environment. The red line represents the posterior density for

environment 1, while the blue line represents the posterior density for environment 2.

https://doi.org/10.1371/journal.pone.0259607.g002
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reduced model obtained a greater estimate of genotypic variance in environment 1, corre-

sponding to a difference of approximately 60% greater, in relation to environment 2. This indi-

cates a greater influence of genetic components on environmental components in the

expression of traits. On the other hand, this estimate for the complete model showed less varia-

tion between environments, especially for the flowering period in days trait. This result showed

the best consistency for the complete model (MTME). Estimates of the variance of the greatest

interaction were observed for the flowering period trait.

Relative variation index. The ratio of the coefficient of variation genotypic and the coeffi-

cient of variation residual (CVg/CVe) corresponded to the relative variation index. When this

index is greater than one unit, it suggests that genetic variation is more influential than residual

variation. This was observed in this study for both traits, in the reduced model proposed by

MTME (Table 5). For the complete model in the grain yield trait, this relationship was less

than one unit. The relationship of CVe and CVg higher for flowering period trait in the reduced

model (CVg/CVe = 5.83 and 13.98, environments 1 and 2, respectively). This trait has greater

variability and is highly promising for selection. This is due to its complex genetic inheritance

resulting from the involvement of several genes with little effect on the phenotype [24, 25]. For

the complete model, this trace presented an estimate of the relative variation index of: CVg/

CVe = 4.28 and 4.21, environments 1 and 2, respectively (Table 5). Then, this trait presented a

higher posterior density interval (HPD) for 80 and 91% heritability, environment 1 and 2,

Table 4. Genetic parameters for traits grain yield and flowering period in days, in two environments, using multi-trait multi-environment (MTME) models.

Component

Model Trait EM σ2
g σ2

r σ2
int

Multi trait Null GY 1 38.93 8.86 -

GY 2 23.19 6.13 -

FL 1 14.95 4.45E-5 -

FL 2 32.63 0.19 -

Full GY 1 2.63 7.24 4.64

GY 2 2.70 7.39 4.77

FL 1 3.35 0.18 7.57

FL 2 5.69 0.34 15.91

EN: environment; GY: Grain Yield; FL: Flowering Period; s2
g ; s

2
r ;s

2
int : are the genetic, replication, and interaction variations, respectively.

https://doi.org/10.1371/journal.pone.0259607.t004

Table 5. Coefficient of variation residual (CVe, %), coefficient of variation genotypic (CVg, %) and relative varia-

tion index (CVg/CVe) for the multi-trait and multi-environment model.

Model Trait EN CVg(%) CVe(%) CVg/CVe

Null GY 1 0.149 0.071 2.11

GY 2 0.122 0.063 1.92

FL 1 3.89 0.67 5.83

FL 2 7.47 0.57 13.98

Full GY 1 0.039 0.064 0.61

GY 2 0.042 0.070 0.60

FL 1 1.84 0.43 4.28

FL 2 3.20 0.76 4.21

EN: environment; GY: Grain Yield; FL: Flowering Period; EN: environment.

https://doi.org/10.1371/journal.pone.0259607.t005
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respectively, reinforcing the possibility of genetic gain (Table 3). This implies that the variabil-

ity observed in these traits has genetic predominance, which is interesting in the process of

genetic gain in a flood-irrigated rice breeding program. The coefficient of variation genotypic

for the grain yield trait was low in both environments. This is justified by the fact that these

genotypes belong to advanced comparative trials in which they have gone through several gen-

erations of selection.

One of the ways to succeed in breeding programs is related to the accurate prediction of

genotypic values, which is closely related to the adoption of adequate models. Thus, in this

study, we apply a new statistical approach for estimating variance components in floodplain

rice breeding schemes. The implementation of multi-trait multi-environment models Bayesian

is straight forward and currently has been widely used due to the possibility of considering a

priori knowledge in modeling. In addition to its application wide application in animal breed-

ing [26, 27], Bayesian multi-trait analysis has been reported in plant breeding [11, 13–15, 28].

Bayesian inference has been used since 1986 [29] and has been further explored in recent

years [2, 11, 13–15, 30, 31] due to major computational advances and new applications and

methodologies [32]. However, Bayesian analysis is based on knowledge of the posterior distri-

bution of the parameters to be estimated. This allows the construction of exact credibility

intervals for estimates of random variables and variance components [33]. Values for the 95%

distribution credibility interval for the broad-sense heritability parameter found in this study

(Table 3) were also presented in the study by [11] to estimate genetic parameters for efficiency

of uptake and efficiency of use of N under contrasting soil N levels via MTME models. Another

study, based on the estimation of genetic parameters for genetic selection of segregating soy-

bean progenies using the MTME model [14]. The difference between mean, mode, and

median of the broad-sense heritability estimates (Table 3) reflects some lack of symmetry in

the posterior distribution estimates. The lack of symmetry between mean, mode, and median

heritability estimates in posterior distribution estimates was reported by [11, 30].

The low broad-sense heritability observed in the traits does not depend on the number of

samples evaluated, since the Bayesian structure used is essentially recommended for situations

involving small samples. On the other hand, quantitative traits of agronomic interest, deter-

mined by several genes, demonstrate low expression and significantly influenced by the envi-

ronment [24], reflected in the traits grain yield and flowering period in days.

Based on the results of heritability estimation in the broad sense for the GY and FL traits

varied in: h2 = 0.39–0.757 and h2 = 4.36E-07–9.21E-06; h2 = 0.039–0.80, and 0.02–0.91, envi-

ronment 1 and environment 2, respectively (Table 3). [34] found heritability estimates of 0.48

and 0.94 for GY and FL, respectively, using 198 rice progenies by the ANOVA technique. [35]

evaluated upland rice genotypes, by this same technique, and obtained an estimate of h2 for

GY and FL traits 0.35 and 0.77, respectively. [36] obtained results of h2 ranging from 0.44–0.87

for GY, 0.46–0.94 for FL. [37] applied a mixed model in studies using FL and GY traits, found

an estimate of h2 de 0,88, and 0,71, respectively. [38], using the ANOVA method, found h2 of

0.76 for FL and [39] estimate of 0.30 for GY. Regarding the estimate of CVs using the ANOVA

method for the FL and GY traits, representing 2.98% and 15.28%, respectively [34].

The amounts of data that breeding programs around the world are generating continue to

increase; consequently, there is a growing need to extract more knowledge from the data being

produced. For this, MTME models are commonly used to take advantage of correlated traces

to improve parameter estimation and prediction accuracy. However, when there are a large

number of features, implementing these types of models is a challenge. Therefore, it is neces-

sary to develop efficient models of multiple trait and multiple environments for selection, in

order to take advantage of multiple correlated features. In this work, was proposed an alterna-

tive method to analyze MTME model data that could be useful for genotype selection, and
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estimation of genetic parameters in flooded rice in the context of an abundance of traits and

environments.

Full-model multi-trait analysis tends to be powerful and provide more accurate estimates

than single-trait analysis because the previous method can take into account the underlying

correlation structure found in a multi-trait dataset. However, Bayesian and non-Bayesian

inferences from the MTME model analysis are complex and computationally demanding [40].

[28] argue that Bayesian multi-trait analysis is more appropriate than ANOVA to perform ana-

lyzes and select superior genotypes for genetic improvement since the Bayesian model can cap-

ture small genetic differences between families, while ANOVA cannot. In this study, was

explained how to make Bayesian inference using a multi-trait multi-environment Bayesian

model in plant breeding. These results showed that the approach was efficient in estimating

genetic parameters in flooded rice.

The correlation study revealed favorable associations for the traits in studies in two settings.

This result indicates that the selection of genotypes characterized by longer flowering period

favors grain yield in flood-irrigated rice, which is desirable for rice cultivation since later plants

tend to be more productive. However, late cycle cultivars tend to be more productive in rela-

tion to the early cycle, since they obtain an increase in the amount of photoassimilates that are

translocated to grains [3]. This result justifies the significant correlation between the traits.

According to [24], correlations between traits may be the result of pleiotropy or genetic link-

age. Thus, if the undesirable correlations are caused by genetic linkage, these associations can

be broken by recombination caused by crossing or self-fertilization; consequently, these factors

do not necessarily become major impediments to breeding programs [41–43].

Another point that we would like to highlight is that our proposed model is of MTME, but

with the restriction that an identity matrix is assumed for the variance-covariance matrix of

the environments. However, even with this restrictive assumption in the variance-covariance

matrix of the environments, the model has the advantage of taking into account the terms of

interaction x trait, genotype x trait, and the environment x genotype x trait. Furthermore, it

takes into account the correlated traits. The program of irrigated rice program aims to obtain

the desired results in a short period and with precision, therefore, the choice of the model will

be use as breeding strategies.

Conclusion

The multi-trait and multi-environment Bayesian model were efficient to estimate genetic

parameters for the flood-irrigated rice crop.

The estimates of genetic parameters bring new perspectives on the application of Bayesian

methods to solve modeling problems in the genetic improvement of flood-irrigated rice.
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Investigation: Antônio Carlos da Silva Júnior, Cosme Damião Cruz, Camila Ferreira Azevedo,

Plı́nio César Soares.
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