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Blast wave-induced traumatic brain injury (TBI) is one of the most common injuries to 
military personnel. Brain tissue compression/tension due to blast-induced cranial defor-
mations and shear waves due to head rotation may generate diffuse micro-damage to 
neuro-axonal structures and trigger a cascade of neurobiological events culminating in 
cognitive and neurodegenerative disorders. Although diffuse axonal injury is regarded as 
a signature wound of mild TBI (mTBI), blast loads may also cause synaptic injury wherein 
neuronal synapses are stretched and sheared. This synaptic injury may result in tempo-
rary disconnect of the neural circuitry and transient loss in neuronal communication. We 
hypothesize that mTBI symptoms such as loss of consciousness or dizziness, which 
start immediately after the insult, could be attributed to synaptic injury. Although empirical 
evidence is beginning to emerge; the detailed mechanisms underlying synaptic injury are 
still elusive. Coordinated in vitro–in vivo experiments and mathematical modeling studies 
can shed light into the synaptic injury mechanisms and their role in the potentiation of 
mTBI symptoms.
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iNtrODUctiON

Traumatic brain injury (TBI) has become the signature wound of military operations since service 
members are frequently exposed to roadside bombs and explosions. The majority of combat-related 
TBI cases are categorized as mild, primarily based on event history and post-injury assessment of 
behavioral and cognitive symptoms. Mild TBI (mTBI) typically induces a variety of heterogeneous 
symptoms, including concentration problems, blurred vision, irritability, headaches, sleep disorders, 
and depression. The symptoms may also be associated with cognitive and neurodegenerative disor-
ders, such as post-traumatic stress disorder (PTSD) and chronic traumatic encephalopathy (CTE) 
(1–3). In spite of its importance and many years of research, current understanding of the primary 
(biomechanics) and secondary (neurobiology) brain injury mechanisms is limited. Moreover, the 
link between primary injury biomechanics, the neurobiology of secondary injury and repair, and the 
resultant neuropsychological and neurodegenerative outcomes remain elusive.

In the last few years, several hypotheses have been proposed to explain the mechanism of blast-
induced primary brain injury. These include elastic and shear waves in brain, brain rotation relative 
to cranium, brain–skull contact, cavitation, electromagnetic pulse, axonal damage, micro hemor-
rhage, vascular elastic waves propagating from the blast loaded thorax to the brain, damage to the 
bridging veins, and others (4–9). In contrast to focal injury, diffuse axonal injury (DAI) occurs in 
a widespread area and is a common pathology observed in blunt and blast-induced TBI (10–13). 
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The primary micro-damage associated with it is manifested by 
impairment to neurofilament units of the axonal cytoskeleton, 
loss of membrane integrity, and Wallerian-type axonal degen-
eration (14–17). Although the mechanism of DAI is thought to 
originate from acceleration, deceleration, and rotational forces, 
its pathogenesis is largely attributed to the onset of secondary 
injury cascade. Non-invasive brain imaging studies of humans 
exposed to blasts with mTBI symptoms using advanced diffusion 
tensor MRI (DT-MRI) have confirmed DAI signatures (12).

In the acute injury phase, diffuse structural changes to the syn-
aptic clefts and postsynaptic densities (PSDs) cause temporary 
loss of neural circuit connectivity. This primary micro-damage 
initiates a cascade of biophysical and neurochemical events, last-
ing from minutes to hours, resulting in either axonal and synaptic 
repair or permanent damage (18, 19). Moreover, some mTBI-
relevant cognitive deficits, such as loss of consciousness (LOC) or 
dizziness, start immediately after the insult while others, includ-
ing headaches, fatigue, depression, learning/memory deficits, and 
neurodegeneration, take a longer time to evolve. However, it is 
difficult to attribute the temporal diversity of injury responses 
only to DAI. We posit that biomechanical micro-damage to axons 
as well as neuronal synapses and dendritic spines play a major 
role in the etiology of mTBI. Better understanding of the dynam-
ics of diffuse synaptic injury may offer a window of opportunity 
in which an appropriate treatment may modify an imbalance 
between post-injury excitatory and inhibitory processes.

NeUrOtrANsMissiON AND 
NeUrOPLAsticitY

The human brain is organized as a highly interconnected struc-
tural network of neurons, glia, and supporting cells responsible for 
cognitive and physiological information processing. The structural 
integrity of brain neurons and glia is maintained by a complex 
network of extracellular matrix. It is estimated that the adult 
human brain contains ~1011 neurons, each of them equipped with 
~104 synapses (20, 21). This huge connectome of ~1015 intercon-
nects undergoes continuous remodeling in response to a variety 
of stimuli, a process termed as neuroplasticity (22). These changes 
include structural remodeling of presynaptic terminals, PSDs, 
dendritic spines, adhesion molecules, and the surrounding glial 
cells. The magnitude and direction of these changes depend on the 
duration and frequency of presynaptic stimulation. Synaptic plas-
ticity, a type of neuroplasticity, is the activity-dependent change 
in the synaptic strength and efficacy and forms the neurochemical 
basis of learning and memory. Below the level of the synapse, 
the physiological neuroplasticity involves complex mechanisms 
of gene expression, protein synthesis, receptor trafficking to 
and on the dendritic membrane, recruitment of new receptors, 
remodeling of synaptic adhesion proteins or even removal of 
some, and formation of new, synaptic clefts. It has been observed 
in magnetic resonance elastography brain imaging that brain 
neuronal structures are continuously modulated by physiological 
micromechanical loadings originating from intracranial pressure 
pulsations due to cardiac and respiratory rhythms as well as head 
movement (23). It is believed that these micro mechano-biological 

effects and their interaction with neurochemical pathways are 
essential for proper brain function and neuroprotection (24–28). 
On the other hand, non-physiological, high speed loadings, such 
as in accidental head impacts or blast waves, may cause acute inju-
ries to neuronal microstructures, such as axons, dendritic spines, 
and synapses, with neuropathological implications.

Figure  1 illustrates the distribution of neuronal synapses, 
neurotransmission, and our perspectives on synaptic injury 
mechanisms. Each neuron is connected to other neurons via large 
number of excitatory (E) and inhibitory (I) chemical synapses 
located on the dendritic arbor and cell body. The chemical syn-
apse is a highly organized structure consisting of a presynaptic 
terminal juxtaposed across a postsynaptic button on top of a 
dendritic shaft and is often surrounded by astrocytic processes 
(astrocytes not shown in Figure 1). The action potential arriving 
at the presynaptic terminal causes the release of a neurotransmit-
ter (NT) into the synaptic cleft: glutamate (Glu), norepinephrine, 
etc., at E-synapses and γ-aminobutyric acid (GABA) and seroto-
nin at I-synapses. The NT diffuses through this narrow cleft and 
binds to ion channels and receptors on the postsynaptic neuronal 
membrane. The influx of ions alters the postsynaptic voltage 
causing either a depolarization (E signal) or hyperpolarization 
(I signal) in the dendritic branch of the postsynaptic neuron. The 
number of E and I signals that a single neuron receives dictates its 
excitability and function. In other words, the likelihood of firing 
an action potential by the receiving neuron depends on the num-
ber of E and I synaptic potentials and the somatic summation. In 
the case of glutamatergic synapses, the small size of the synaptic 
cleft (~2  attoliters) facilitates rapid rise of Glu concentration 
in the cleft, rapid binding to PSD receptors, and fast clearance. 
The small size and precise organization of the synapse facilitate 
high frequency neurotransmission with rapid buildup of Glu 
concentrations of 1–5 mM in the cleft post-stimulation, followed 
by a fast clearance by Glu transporters, in <1 ms (29). Mechanical 
extension or shear deformation of synapses post-injury may have 
detrimental effects on neurotransmission.

MOrPHOLOGY OF DeNDritic sPiNes, 
e- AND i-sYNAPses

In the central nervous system, the majority of E- and I-synapses 
differ in their location, composition, structure, and function (33, 
34). The E-synapses are localized on dendritic spines, which are 
terminated with dense organelles (PSDs), hosting hundreds of 
scaffolding and signaling molecules involved in neurotransmis-
sion and synaptic plasticity. Most GABAergic I-synapses, on the 
other hand, are formed directly on dendritic shafts, as well as on 
the soma and proximal axonal regions. Endogenous regulatory 
mechanisms precisely maintain the E/I balance and any acute or 
chronic E/I perturbations may be responsible for various patholo-
gies, including epilepsy, depression, and other disorders (34–37). 
From a mechanical perspective, the postsynaptic dendritic 
spine of an E synapse looks like a cantilever beam having a big 
heavy head with weak thin neck. The dendritic head is typically 
~0.5–2 μm in diameter and is connected to the parent dendrite 
by a thin spine of ~0.04–1 μm in length (34). We conjecture that 
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FiGUre 1 | (A) 3D rendering of a segment of the dendritic shaft with excitatory and inhibitory chemical synapses, morphology of the synaptic cleft (30, 31) and 3D 
rendering of CAMs in the synaptic cleft [adapted from High et al. (32)] and (B) biomechanical representation of the cleft scaffolding proteins using spring-damper 
network and injury-induced perturbations.
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E-synapses located on tall dendritic spines could be more vulner-
able to mechanical damage during tension and shear loadings 
than I-synapses positioned at dendritic roots and soma.

Another mechanically sensitive synaptic structure is the 
synaptic cleft, with a typical dimension of 15–25 nm height and 
~300 nm diameter. It is filled with structural proteins as well as 
cell adhesion molecules (CAMs) that hold pre- and postsynaptic 
membranes together at the appropriate juxtaposition. Some of 
them, e.g., neurexins (NXs), neuroligins (NLs), SynCAMs, and 
integrins, localize at the center of the synapse, whereas others, 
such as Cadherins, reside at the synaptic periphery. However, 
transcleft elements in both E- and I-synapses typically avoid 
places where synaptic vesicles attach to the presynaptic mem-
brane (32). The extracellular domains of these CAMs, protruding 
from the opposite sides of the synaptic terminals, are “sticky,” 
and are bound by hydrophobic forces to each other in either 
homophilic (e.g., Cadherins) or heterophilic (e.g., presynaptic 
NXs and postsynaptic NLs) combination and mechanically 
maintain the synaptic structure. Their cytoplasmic domains bind 
to and mechanically modulate adaptor proteins that organize the 
synaptic structure and function as well as the morphologies of 
the presynaptic active zone (AZ) and PSD. Some CAMs, such 
as NXs and NLs, and cadherins require extracellular calcium to 
maintain their elasticity and binding affinity. At physiological 
conditions, CAMs behave as elastic springs and are under tension 
force (~10–20 pN) that makes them “longer” than in crystallo-
graphic dimensions. Calcium shifts from interstitial to intracel-
lular spaces following mechanical injury are often considered a 
major contributing factor to metabolic, excitatory, and apoptotic 

pathways in TBI (38). It is also possible that reduced synaptic 
calcium concentration can affect binding affinity and mechani-
cal stiffness of Ca-dependent binding of CAMs. In the absence 
of depleted intra-synaptic calcium, cadherins lose their elastic 
strength and behave as “loose and weak rope” (39). For example, 
NX-1β and NL1 form a strong transsynaptic heterotetramer 
only in the presence of 1–3  μM free Ca2+ (40). Atomic force 
microscopy measurements at slow loading rates have shown that 
rupture forces for CAMs range between 50 and 70 pN (41–43). 
Although astrocytes are not directly structurally linked to the 
synaptic cleft, astrocytic processes are in close apposition to the 
synaptic structures, form tripartite synapses and mechanically 
interact with them through the ECM. They also act as diffusion 
barriers to NT spillover, facilitate NT uptake, and provide local 
metabolic support. To better articulate the proposed hypothesis, 
in the following, we will focus only on bipartite synapses.

DO BLAst-iNDUceD FOrces AFFect 
MAcrOscOPic BrAiN BiOMecHANics 
AND NeUrONAL strUctUres?

At the macroscopic scale, there are multiple pathways for blast-
induced forces and energy content to impact the brain. Previous 
computational and experimental works have shown that the 
cranial bone is a good transmitter of elastic waves to the CSF and 
brain with little attenuation below 104–105 Hz (44, 45). During blast 
wave loading, the brain experiences two types of biomechanical 
events: (1) rapid elastic skull deformation causing compression/
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tension stress waves, which later dissipate as shear waves and (2) 
delayed head movement causing brain rotation relative to the skull, 
which then generates shear waves within the brain. Specifically, 
compression/tension waves propagate in the brain with the speed 
of sound (~1500 m/s), transform into shear waves and last only 
few milliseconds. Shear waves, on the other hand, are orders of 
magnitude slower (~10 m/s), dissipate due to viscous action and 
persist longer, up to hundreds of milliseconds (45). It has been 
documented that angular accelerations of the brain often lead to 
DAI, contusion, and acute subdural hematomas (14, 17, 46–53). 
Experimental tests on human volunteers (54) and cadavers (55, 56) 
have shown brain translation magnitudes of 4–5 mm and rotation 
of ±5° for ~300 ms at low-severity impacts in the sagittal plane. 
The macroscopic brain biomechanics is expected to be absorbed/
dissipated at the cellular scales for potentiation of cellular injury.

At the microscopic scale, the brain tissue behaves as a het-
erogeneous non-linear viscoelastic material with multiple strain 
rates (57). All cells in the brain experience continuous mechani-
cal forces from normal head movement and from intracranial and 
intracellular hydrodynamic and osmotic pressures, yet maintain 
their function. However, higher mechanical loads may cause 
inelastic structural damage to load bearing microstructures. For 
instance, the cantilever dendritic spines may undergo structural 
alterations when exposed to blast loads. Because the brain tissue is 
inhomogeneous, these strains concentrate at the micro-interfaces 
with impedance mismatch (e.g., disparate densities, morpholo-
gies) in the brain (7). In vitro and in vivo experiments show that 
tension and shear strains are much more damaging to the tissue 
than compressive strains (58). Intuitively, it can be explained 
that the surrounding water resists the compression and supports 
tissue structure while the tensile or shear force directly disrupts 
weaker (hydrogen, van der Waals) and stronger (covalent, ionic) 
bonds at the molecular level.

The rate of strain applied to viscoelastic brain tissue microstruc-
tures is also very important. At low strain rates, the tissue/cells are 
very ductile and can recover without damage from relatively large 
deformations. For example, experiments on human volunteers 
experiencing mild linear accelerations of ~1.5  G and angular 
accelerations of 120–140 rad s−2 show that significant regions of 
the brain exhibit 5–7% elongation strain (54, 59) and do not cause 
injury. However, at faster loads, the brain tissue becomes brittle 
and susceptible to micro-damage to brain cells/organelles, such as 
axons, synapses, vascular endothelium, membranes, cytoskeleton, 
ion channels, and other microstructures (14). This biomechanical 
“primary injury” lasting for a few milliseconds initiates a cascade 
of secondary injury (neurobiology) and recovery pathways last-
ing hours, days, and in some cases life times. Depending on the 
severity of the insult, some of the brain cells will rapidly transition 
to apoptosis and necrosis, while other injured cells and organelles 
may undergo a long lasting recovery process.

PersPectives ON sYNAPtic iNJUrY iN 
BLAst-iNDUceD mtBi

Synaptic injury mechanisms are largely unknown and have only 
recently begun to attract interest of neuroscientists partially 

because of experimental challenges at such small length and 
timescales (9, 25, 60–62). Recent experimental analyses have 
shown that the synaptic loss may be the secondary effects of DAI 
as a result of axonal fiber loss and synaptic terminal degenera-
tion (63). In vitro experiments applying magnetic tweezer forces 
on neuronal structures have shown that mechanical damage to 
integrins, and potentially other CAMs, may be an important 
mechanism underlying the initiation of cell and sub-cellular 
injuries ultimately responsible for the diffuse axonal and syn-
aptic pathology (64). Mechanical damage to neuronal micro/
nano-structures, such as CAMs, cytoskeleton, membranes, and 
ion channels, is strain rate dependent. In sports and automobile 
related head injuries, the damage is caused by rotation-induced 
shear waves with large strains and typical strain rates of 100 s−1. 
Blast TBI involves very fast compression–tension wave followed 
by fast but slower shear waves with potentially smaller strain 
but much higher strain rates of the order of 1000 s−1 (65). The 
high strain rate of viscoelastic damage to neuronal micro/nano-
structures may be more important in blast wave TBI, while slower 
but larger strains may be responsible for blunt and inertial TBI. It 
is also possible that the synaptic injury may be present in all types 
on mTBI. The detailed role of synaptic injury in blast and blunt 
loading patterns remains to be elucidated.

Experimental study of synaptic injury mechanisms is chal-
lenging. To date, it has been observed only in in vitro neuronal 
cultures subjected to a mechanical stretch (66, 67) and in brain 
slices of rodents exposed to shock waves (68, 69). Further studies 
of blast-induced synaptic injury mechanisms would be required 
using well-characterized blast waves or shock tubes for both 
in  vitro cell/slice cultures (16, 65, 70) and in  vivo animals (71, 
72). Mechanical tension and shear waves may cause temporary 
disconnects and micro-damage of CAMs, synapses, and dendritic 
spines, which in turn may be manifested as temporary cognitive 
impairment (62, 67, 73). Moreover, reduced concentration of NTs 
and calcium in the deformed synapse may alter the connectivity 
of CAMs. As mentioned above, lower synaptic Ca2+ concentra-
tion reduces the elasticity of cadherins and diminishes the de 
novo hydrogen bond formation and would not allow cadherins 
to reassociate after injury. At the same time, it is also likely that a 
large number of mechanically deformed synapses in mTBI may 
self-restore by hydrophobic, electrokinetic, and other biophysical 
mechanisms due to other CAMs (39, 74).

Figure  1B schematically shows the structural response of 
CAMs to mechanical forces, which may cause their separation. 
Rapid tension or shear loads may cause separation of pre- and 
postsynaptic membranes, loss of contact between CAMs, plasma 
membrane mechanoporation and rearrangement of the cytoskel-
eton and scaffolding in the PSD and spinal neck. If the initial 
deformation is subcritical in the context of sufficient “healing” 
time, the CAMs may be able to reconnect and reestablish synaptic 
connection. This phenomenon may be one aspect of the neuro-
recovery mechanisms. Transmembrane proteins, such as integrins 
and connexins, are responsible for structural reinforcement and 
alignment of both neuronal chemical synapses and electrical gap 
junctions. They also modulate a variety of intracellular pathways 
that are activated with the exertion of mechanical force on the inte-
grin. It is likely that an inelastic damage to CAMs, integrins, and 
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other focal adhesion molecules in brain injury affects not only the 
synaptic morphology but also the conductance of the ion channels 
and cytoskeleton remodeling. Recent experimental observations 
show that integrin-mediated activation of Rho may be a contribu-
tor to the DAI in mTBI (75) and suggest that a similar mechanism 
may be involved in synaptic injury as well (64). It is also possible 
that mechanical damage to N-cadherin–catenin complex, which 
stabilizes the cytoskeleton through Rho-family GTPases, may 
cause postsynaptic actomyosin contraction in dendritic spines and 
probable loss of excitatory synapses (76), similar to that observed 
in axon growth inhibition and retraction experiments (77).

The mechanical stretch or shear of the synaptic cleft will also 
alter the cleft volume, NT concentration, and diffusion distance 
and delay NT clearance. For instance, small changes in synaptic 
cleft height and geometry could retard Glu clearance and affect 
ion flux kinetics through ion channel, while higher Glu con-
centrations in the cleft may cause prolonged depolarization and 
excitotoxicity in postsynaptic neurons. Adverse neuroplasticity 
due to unnatural changes in synaptic morphology may affect LTP 
and/or LTD. Partial transient mechanoporation of dendritic and 
spinal membranes may cause ion leakage, affect the dynamics of 
de- and repolarization, induce calcium-mediated excitotoxicity, 
and cause increased energy demands and energetic “exhaustion” 
and oxidative stress. Additionally, Glu may also diffuse to a neigh-
boring synapse and may inadvertently activate their receptors, 
illustrated in Figure 2.

cONcLUsiON AND FUtUre DirectiON

It is now clear that neural synapses transmit not only biochemical 
and electrophysiological information but also communicate using 
mechanical signals. Synaptic CAMs provide direct mechanical 

link between presynaptic vesicular release machinery and post-
synaptic cytoskeletal and molecular organization. Composition, 
structural and elastic properties as well as intra-synaptic distri-
bution of CAMs may be responsible for mechanical injury and 
repair pathways such as those involved in CTE but may also be 
implicated in developmental, cognitive, and neurodegenerative 
diseases, including autism (78), chronic stress and depression 
(79, 80), Alzheimer’s disease (81), schizophrenia (82), and other 
diseases (83, 84). Mechanobiology of axo-glial CAMs may be 
also implicated in the damage of myelinated axons in response 
to mTBI. Mechanical damage to axo-glial CAMs in response to 
TBI and the subsequent de/re-myelination are yet to be explored. 
Emerging evidence suggests that axo-glial CAMs, including 
NXs, NLs, and Nectin-like molecules, located in the narrow 
gap between the axonal membrane and the surrounding myelin 
sheath, are responsible for axon myelination and the so called 
“white matter plasticity” (85, 86). Finally, neuronal CAMs may be 
a promising pharmacological target for modulating the synaptic 
“connectome,” impaired in brain disorders and neurotrauma (87).

Coordinated in vitro–in vivo experiments and mathematical 
modeling studies should be conducted to shed light into the 
synaptic injury mechanisms and to determine whether the diffuse 
synaptic injury plays a prominent etiological role in mTBI. From 
a modeler’s perspective, it would be beneficial to collect in vitro 
and in vivo experimental data of geometry, morphology, and elec-
trophysiology of a synaptic structure at various times post-injury. 
State-of-the-art fixing or high-pressure freezing, tomography, and 
electron microscopy of ultrathin sliced cell or tissue cultures can 
reveal the internal structure of synapses in exceptional 3D spatial 
resolution (32, 88). These techniques could be used to analyze the 
morphology of the synaptic ultrastructure post-injury. Less pre-
cise but equally helpful experiments could use super-resolution 

FiGUre 2 | illustration of synaptic injury due to mechanical tension and shear and disruption to neuronal synaptic cAMs.
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fluorescence microscopy techniques, such as STED or RESOLFT 
microscopy, to obtain time resolved synaptic remodeling data 
(89). Experimental elasto-mechanics studies of synaptic CAMs 
for various strain rates could provide not only the insight into 
their mechanobiology but also on the elasto-dynamic constants 
and damage thresholds, relevant for future mathematical models 
of synaptic injury. Better understanding of the role of CAMs in 
synaptic and axo-glial injury will require “animal models” that can 
be “molecularly engineered.” Genetically manipulated Drosophila 
and mouse models have been already developed and used for TBI 
research (62, 90, 91). Both models should be further pursued and 
complemented with the corresponding computational models to 
expedite the development of new treatments, diagnostics, and 
protective measures in blast-related neurotrauma.
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