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1  |  INTRODUC TION

The protozoan parasites belonging to the genus Leishmania are 
pathogenic agents of a complex and non- contagious disease, leish-
maniasis.1,2 Different clinical manifestations are present for this 
tropical disease ranging from benign self- healing cutaneous (CL) and 
mucocutaneous (MCL) to a deadly visceral (VL) leishmaniasis.3 The 
major species to cause CL in the Old World consist of Leishmania 
major (L. major) and Leishmania tropica (L. tropica).4 Over 70% of the 
global CL cases occur in Algeria, Afghanistan, Colombia, Iran, Syria, 

Ethiopia, North Sudan, Costa Rica, Brazil, and Peru.5 Chemotherapy 
is a crucial measure to control leishmaniasis.3 Current treatments 
are based on pentavalent antimonials (SbV) such as meglumine an-
timoniate (Glucantime®) and sodium stibogluconate (Pentostam®) 
as the first- line drugs alone or combined with second- choice drugs 
including amphotericin B (Amp B), miltefosine (MIL), methotrexate 
(MTX), or cryotherapy. However, the toxic adverse effects of these 
drugs and difficulty with distribution make these options less than 
ideal. Unfortunately, therapeutic aspects of these drugs are now 
challenged because of clinical resistance in many parts of the world. 
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Abstract
Background: Pentavalent antimonials (Sb(V)) such as meglumine antimoniate 
(Glucantime®) and sodium stibogluconate (Pentostam®) are used as first- line treat-
ments for leishmaniasis, either alone or in combination with second- line drugs such 
as amphotericin B (Amp B), miltefosine (MIL), methotrexate (MTX), or cryotherapy. 
Therapeutic aspects of these drugs are now challenged because of clinical resistance 
worldwide.
Methods: We reviewedthe recent original studies were assessed by searching in elec-
tronic databases such as Scopus, Pubmed, Embase, and Web of Science.
Results: Studies on molecular biomarkers involved in drug resistance are essential for 
monitoring the disease. We reviewed genes and mechanisms of resistance to leishma-
niasis, and the geographical distribution of these biomarkers in each country has also 
been thoroughly investigated.
Conclusion: Due to the emergence of resistant genes mainly in anthroponotic 
Leishmania species such as L. donovani and L. tropica, as the causative agents of ACL 
and AVL, respectively, selection of an appropriate treatment modality is essential. 
Physicians should be aware of the presence of such resistance for the selection of 
proper treatment modalities in endemic countries.
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Resistance to these drugs has become a serious problem in the treat-
ment of leishmaniasis in some endemic areas.

Studies on molecular biomarkers involved in drug resistance are 
essential for monitoring the disease.6 This phenomenon is proba-
bly an interaction between efflux, uptake, sequestration, mutation, 
or downregulation of an uptake system controlled by Leishmania 
genes.7,8 The response rate to anti- Leishmania drugs varies between 
species and strains of Leishmania. However, this function's molec-
ular and biochemical mechanisms are unknown.9 The drug resis-
tance mechanisms have often been studied in laboratory- generated 
strains or field- resistant strains obtained from patients in endemic 
regions, suggesting the involvement of different pathways. Due to 
the increasing rate of drug- resistant leishmaniasis cases to control 
the disease globally, identifying genes in each species and country 
is highly vital. This article aimed to review genes and mechanisms 
underlying resistance to leishmaniasis. All studies conducted so far 
have been considered in this review. Also, the spatial distribution of 
these biomarkers in each country has thoroughly been investigated.

2  |  DRUG RESISTANCE GENE MARKERS

2.1  |  Aquaglyceroporin (AQP1)

AQP1 are channel proteins that pass through the water, glycerol, and 
other uncharged molecules such as Sb (III) across the membranes 
(Figure 1). AQP1 helps the cell afford the osmotic pressure.9 Sb (V) 
is a prodrug that is reduced within the human and parasite into the 
toxic trivalent form (Sb (III)).10 Sb (III) enters cells by AQP1 that is 
energy- independent.11 In in vitro studies, downregulation of AQP1 
and high levels of trypanothione (T[SH]2)12 have been evidenced.13 
Some studies propose that deletion of the AQP1 allele demonstrated 
to cause an increase in resistance to Sb (V) may be a mechanism 
resulting in downregulation of an uptake system.13 Recent studies 
have proposed that the neutral Sb (OH)3 species serve as the sub-
strate for AQP1 and transport within the parasite cell. The differen-
tial concentrations of Sb (V) and Sb (III) in Leishmania are evidence 
that Sb (V) uses a different way of entry.11

2.2  |  ATP- binding cassette (ABC) transporters

Sb(III) conjugate with (T[SH]2) or glutathione(GSH), and this com-
plex has packaged within vesicles or exited from the parasite by ABC 
transporters.14 LABCI4 belongs to the ABCI subfamily, which in-
creases the efflux of thiols and Sb(III), thereby producing resistance 
to antimonials in L. major. This transporter is in both the plasma mem-
brane and mitochondria in Leishmania. LABCI4 is a pump capable of 
distinguishing thiol- conjugated metals.15 The ABCC3 transporter lo-
calized in vesicular membranes near the flagellar pocket was known 
in trivalent arsenate (As (III)) and Sb (III) Leishmania- resistant isolates, 
and studies were proved that they offer the capability to transport 
thiol- conjugated metals. It has also been demonstrated that the 

MRPA- enriched vesicles possibly cooperate in a secretion pathway 
that reduces antimony concentration. It is also significant that ei-
ther increased efflux or decreased influx of Sb (III) has been stud-
ied in Leishmania- resistant mutants overexpressing MRPA.16 There 
was also no link between MRPA expression in the parasite and the 
degree of antimony intracellular concentration.16 The other studies 
have shown that the overexpression of Pgp- like and MRP1- like pro-
teins was illustrated in both of the antimony- resistant isolates of L. 
donovani, and overexpression was illustrated in both Sb (V)- resistant 
isolates of L. donovani and the plasma membrane of macrophages 
(MQ). This parasite effluxes the drug, reducing concentration Sb (III) 
in intracellular and parasite survival. On the other hand, efflux pump 
overexpression was not shown in antimony- sensitive Leishmania 
infected MQ.17 This document proves the vesicle- mediated cross- 
talking between Leishmania and host cells.18

ABCG transporters even have been related to drug resistance.19 
LiABCG6 is located at the Leishmania plasma membrane. This half- 
transporter confers resistance to the sitamaquine and miltefosine 
when overexpressed by reducing intracellular drug concentration 
and short- chain fluorescent phospholipid analogs of phosphatidy-
lethanolamine, phosphatidylserine, and phosphatidylcholine. As a 
whole, these results indicated that LiABCG6 could be implicated in 

F I G U R E  1 Schematic	models	of	drug	delivery	in	antimony	
resistant and sensitive Leishmania. AQP1, aquaglyceroporin 1; 
MRPA, multidrug resistance- associated protein A; EP, efflux pump; 
EC, the extracellular concentration of Sb; IC, the intracellular 
concentration of Sb; VC, the vacuolar concentration of Sb; T, rate 
constant for passive transport; Tma, transport rate constant by 
MRPA or ATe; Te, rate constant of active efflux; Ts, rate constant 
for secretion
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drug resistance and phospholipid trafficking.19LABCG4 transporter 
has been preoccupied with phosphatidylcholine transport and con-
fers resistance to MIL.20 LABCG2 is in vesicles that connect with 
the plasma membrane throughout exocytosis. Overexpressing the 
LABCG2 transporter gene in resistant isolates showed a decreased 
Sb (III) concentration due to increasing drug existence. Also, LABCG2 
was capable of exporting thiols with Sb (III).

Leishmania LABCG2 transporter creates resistance to antimony 
drugs by exocytosis through flagellar pocket and packaging metal- 
thiol in vesicles.21 When LABCI4 was overexpressed in L. major con-
fer resistance to antimonial drugs, As(III), and metal ions Cd (II).15 
LABCI4 is localized in both plasma membranes and mitochondria 
of the Leishmania and forms dimers to efflux the thiol- conjugated 
metals through a thiol- X- pump.15 MIL is used to treat these diseases 
effluxes through ABC transporter and P4 ATPase. P4 ATPase by the 
cdc50 protein transfers MIL from the outer to the inner cell and ex-
trudes from the parasite by the ABC transporter protein, the energy- 
dependent mechanism. The principal genes in the Leishmania amplify 
the portions of a gene that encodes P4 ATPase and ABC transporter 
and participate in resistance to MIL.22 pentamidine resistance pro-
tein 1 (PRP1) is another ABC transporter that is produced resistance 
to pentamidine (PTD) in L. infantum.23

P- glycoproteins (Pgps) are also the ABC transporters.24 They 
extrude drugs from the parasites25 and tumor cells,26 thus offering 
a multidrug- resistant (MDR). Pgps contain two domains, the trans-
membrane domain (TMD) participated in medicine efflux, and a cy-
tosolic nucleotide- binding domain (NBD) involved in hydrolysis and 
ATP binding.27 Some sesquiterpenes and flavonoids are effective 
against Leishmania MDR phenotype.28 The flavonoids join the NBD, 
interact with the TMD,28 and reverse the L. tropica resistance pheno-
type.29 Also, some sesquiterpenes efficiently defeat the Leishmania 
MDR phenotype by increasing drug accumulation.30 Overexpression 
of the LtrMDR1 leads to the weakness in drug internalization and 
production of the resistance to MIL in Leishmania.30 The data showed 
that L. donovani mitogen- activated protein kinase 1 (LdMAPK1) reg-
ulates the expression of the Pgps reversely. The reduced activity in 
the Pgps pump with an increase in Ld- MAPK1 expression may cause 
an increased concentration of antimony in the Leishmania, producing 
it more sensitive to this drug.31 Overexpression of PgpA has been 
studied in resistant isolates of L. infantum. The transfection of this 
gene demonstrates antimony resistance upon amastigotes and pro-
mastigotes of L. infantum.32 The recent data have shown that the 
expression level of the PgpA gene in resistant L. major strains was 
5- fold higher than in sensitive strains. Therefore, overexpression of 
this gene can create resistance isolates.33

2.3  |  Protein 14- 3- 3

This protein is in all eukaryotes, from mammals to plants, and more 
than 100 binding partners have been known so far. The targets of 
protein 14- 3- 3 are in all subcellular sections, and their functions are 
varied. They include biosynthetic enzymes, transcription factors, 

cytoskeletal proteins, apoptosis, signaling molecules, and tumor 
suppressors.34 Protein 14- 3- 3 is capable of joining phosphorylated 
proteins participating in the apoptosis pathway. This protein is over-
expressed in resistance Leishmania isolates.35

2.4  |  Protein 299 (P299)

This	 gene	 encodes	 a	 299 kDa	 polypeptide	 that	 displays	 no	 simi-
larities to other proteins or functional motifs. Recent experiments 
propose that in L. infantum this gene is part of a 44 kbp duplicated 
loci	 on	CHR29	 and	CHR08	 chromosomes.	Overexpression	 of	 this	
gene in L. infantum confers protection against Sb(III) but also against 
miltefosine.36

2.5  |  Histone

Histones exist in nuclei in eukaryote cells which are alkaline pro-
teins that pack the DNA into structural units named nucleosomes. 
They are the major protein of chromatin, acting as gene expression 
regulation.37 Various histone genes from kinetoplastids have been 
identified. The sequences of the genes coding for histoneH1, H2A, 
H2B, H3, and H4 have been characterized in Leishmania species.38 
In resistant isolates of L. donovani, H1, H2A, and H4 were overex-
pressed, stating they play a role in drug resistance.39 Overexpression 
of H4 was shown in L. major and L. infantum resistance antimony.35

2.6  |  Leishmania- activated C kinase gene (LACK1)

This protein is very stable in Leishmania species and expressed in 
amastigote and promastigote forms.40 These proteins took part 
in RNA processing, signal transduction (ST), and cell cycle regula-
tion.41 Recently, it has been studied that it locates in the cytosol, 
and the temperature variation between the insect and the mamma-
lian host persuades it to secretion. It joins and enhancement plas-
minogen activation in in vivo and participates in the invasiveness of 
Leishmania.42 The LACK is the T- cell epitope and induces the immune 
response and production of T- helper 1 cell; therefore, several stud-
ies have demonstrated that the LACK gene is the target for the can-
didate vaccine.43,44 LACK is essential for the infectivity and viability 
of Leishmania in the MQ.41 LACK is required to develop an incision 
in BALB/c mice.45 According to the different expressions of this an-
tigen in sensitive and resistant isolates, this gene is the primary bio-
marker contributing to drug resistance.6

2.7  |  Ubiquitin

This protein is the heat shock protein with critical roles in cellular 
functions such as endocytosis, degradation of defective proteins, 
apoptosis, and DNA repair.46 One of its critical roles in protein 
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decomposition by the ubiquitin- proteasome pathway, which is 
protecting cells from abnormal proteins.47 Ubiquitin through the 
ubiquitin- proteasome pathway, ubiquitin binds to lysine residues of 
the target proteins, resulting in the decomposition of the ubiquitin- 
tagged protein via the 26S proteasome.48 Overexpression of this 
gene in L. tropica resistant clinical isolate could decompose oxidized 
proteins and protect Leishmania from oxidative stress related to 
drugs.49

2.8  |  Amino acid permease (AAP3)

Various amino acid permease has been studied in kinetoplastids.50 
It is an arginine transporter that locates in the surface membrane 
of the parasite.51 Arginine is the starter of polyamine biosynthe-
sis52 that is transported within Leishmania by AAP3.51 Ornithine re-
sults from the breakdown of arginine by the arginase enzyme that 
takes part in the synthesis of T(SH)2 and polyamine.52 The T(SH)2 
is a mainly reduced thiol of Leishmania species and had a signifi-
cant role in detoxifying antimonial components.12 Additionally, the 
increased T(SH)2 in antimony resistance Leishmania isolates has 
been studied.53 It was observed that high expression of the AAP3 
gene in clinical antimony- resistant isolates of L. tropica contributes 
to increasing the T(SH)2 and, as a result, detoxification of antimo-
nial drugs.49

2.9  |  Phosphoglycerate kinase (PGK)

Leishmania has two PGK genes: PGKB and PGKC. PGKB code the 
cytosolic, and PGKC codes the glycosomal isoforms of the en-
zyme.54 In amastigote and promastigote stages, PGKB and PGKC 
transcripts and proteins are expressed at a ratio of 4:1.55PGK is the 
key enzyme of the glycolysis pathway and plays a role in ATP pro-
duction.56 Increasing glycolysis enzymes in the antimony- resistant 
Leishmania isolates proposed requiring more energy to protect 
from oxidative stress. Also, overexpression of PGK increases the 
pyruvate that extrudes peroxides and participates in decreasing 
oxidative stress.57

2.10  |  Mitogen- activated protein kinase (MAPK)

MAPKs are major regulators of ST that act in parasite virulence via 
intracellular proliferation, stress response,58 flagellar morphogen-
esis, and apoptosis.59 Recent studies have evidenced that Sb(III) 
stimulates apoptosis by inducing the MAPK signaling cascade and 
activation of oxygen production.60 It is overexpression in the sen-
sitive clinical isolates and downregulated in L. donovani antimony- 
resistant isolates and proposes that MAPK1 depends on the cell 
death pathway, which stimulates the cell death pathway and anti-
monial drugs.61 Also, compared with sensitive L. tropica isolates, all 
transcription of this gene was reduced in clinical resistant isolates.54

2.11  |  Protein tyrosine phosphatase (PTP)

PTP is the regulator of post- translational participation in important 
functions in cells, such as cell death. PTPs were classified into three 
groups in kinetoplastids; (1) classical PTP, (2) cell division cycle 25 
phosphatase, and (3) low molecular weight phosphatase.62 PTPs have 
a major function in amastigote survival and virulence in the human 
host.63 It has been shown that the function of the PTPs stops by the 
Sb (v). This inhibition is associated with activation of the MAPK path-
way eventuated in apoptosis. Also, this enzyme as a virulence factor 
could enhance Leishmania survival in humans.63 It was demonstrated 
that in L. tropica resistant clinical isolate, upregulation of this enzyme 
participates with downregulation of MAPK, suggesting that overex-
pression of PTP induces apoptosis in resistance isolates.54

2.12  |  Pteridine reductase 1 (PTR1)

PTR1 is an NADPH- dependent reductase that contributes to the 
salvage of pteridines that are necessary to develop the growth of 
Leishmania.64 PTR1 catalyzes the reduction in biopterin and folate 
into their active forms, tetrahydrobiopterin, and tetrahydrofolate, 
respectively, which act as co- factors.65,66 Decreased pteridines in 
parasites lead to reduced intracellular survival.67 Another study with 
L. major lines demonstrated that this enzyme participates in resist-
ance parasites against MQ oxidative stress.64 Also, as Leishmania is 
auxotrophic for pteridines, a disordering of their salvage pathway is 
a therapeutic strategy. The mechanisms of resistance to antimonial 
drugs in L. braziliensis and methotrexate in L. major and L. infantum 
have been studied.68

2.13  |  Tryparedoxin peroxidase (TXNPx)

TXN belongs to the thioredoxin oxidoreductase superfamily and has 
a WCPPC motif neighbor the catalytic pocket.69 TXNI and TXNII 
are two isoforms of the TXN, where TXNI is localized in the cyto-
sol, and TXNII is localized in mitochondria. They both have a central 
core of 5 stranded b sheets restricted by 4 a- helices. In mammals, 
it performs an equal act to glutathione peroxidase. It is a member 
of the 2- cysteine peroxiredoxin family, and various isoforms of 
TXNPx have been studied, located in the mitochondria and cyto-
sol.70 A major role of the cytosolic TXNPx (cTXNPx) in Leishmania is 
decreasing the balance of cytosolic tryparedoxin (cTXN) made from 
trypanothione, unlike the other eukaryotes that apply GSH.71 TXN 
and TXNPx are conserved in Leishmania species.72 Their roles are 
defensive against oxidative stress, chemical reduction in organic 
hydroperoxides (ROOH), and hydrogen peroxide (H2O2) into alco-
hol and water, respectively. They also have a critical role in DNA 
replication, DNA biosynthesis, and ROS regulation. Mitochondrial 
isoform of TXN displacements electrons to the universal minicircle 
sequence binding protein (UMSBP), transcription factor, and a mon-
othiol glutaredoxin by peroxidase. TXN- TXNPx pair led to a redox 
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state for the UMSBP and contributed to the starting of replication of 
kDNA.73,74 TXN knockout studies in L. infantum75 showed the neces-
sity of this gene in these parasites' antioxidant metabolism and sur-
vival. In L. donovani it is identified that cTXN protein cooperates with 
cTXNPx to catalyze the reduction in ROOH or H2O2 into alcohol or 
water, respectively, implying its critical role under oxidative stress 
situations. Also, in Amp B resistant clinical isolates of L. donovani the 
cytosolic tryparedoxin level was upregulated demonstrating its role 
in drug resistance.76

2.14  |  Kinetoplastid membrane (KMP11)

KMP- 11 is localized in Subcellular in Leishmania has proposed that 
may be is localized to the flagella and flagellar pocket.77,78 It was as-
sociated with the basal flagellar body, which acts in cytokinesis.79,80 
It is amphipathic, represents membrane- active properties, and in-
creased lipid bilayer pressure.81,82 Decreasing in KMP- 11 expression 
changes the activity of the transporter, such as the AQP18 or with 
putative efflux systems83 with increased function for pumping Sb(III) 
out of the Leishmania species. In various independent studies, in iso-
lation of Sb (III) resistant L. infantum cell line, it is demonstrated that 
the reduction in this protein but the mRNA levels have not changed. 
These data propose that in this resistant isolate the stability of it may 
be agreed to result in an enhanced turnover rate of KMP 11. Change 
in the post- translational modifications of this protein in resistant iso-
lates may speed up the degradation of this protein. Also, other stud-
ies have shown N- terminal acetylation84 and arginine methylation82 
of KMP- 11 that have been signified in regulating protein stability.85 
Proteomic screen data have demonstrated downregulation of its ex-
pression in Sb (III) resistant isolates in the amastigote stage. These 
data have marked a differentially expressed of this protein in the 
resistant isolate. The expression of the KMP- 11 was reduced in the 
drug- resistant mutant.86

2.15  |  Gamma glutamylcysteine synthase (GSH1)

Sensitivity in Leishmania to Sb (V) varies according to intrinsic cel-
lular metabolism, intracellular thiol levels, or membrane compounds. 
Thiols are decreasing factors in the conversion of Sb (V) to Sb (III), 
which was occurring in the presence of thiols.87 The Sb (III) mecha-
nisms associated with its affinity toward biomolecule consisting of 
sulfhydryl, including proteins, enzymes, and thiols. Sb (III) conjugate 
with the intracellular GSH from 1:3 and trypanothione from 1:1 and 
formed Sb- thiol species.88 Other proteins such as thiols, TryR, and 
zinc- finger protein are molecular targets of Sb (III). These molecules 
bind to the Sb (III) by Cys. Sb (III) disturbs the thiol metabolism by 
preventing TryR and stimulating the efflux of intracellular T(SH)2 
and GSH and from parasite cells.89 This function produces oxidative 
stresses that participate in cell death. Sb is the complex of trypan-
othione or GSH with Sb (III) excreted from the cell or packaging into 
vesicles by ATP- binding cassette (ABC) transporters.14 Resistance 

isolates of L. killicki and L. infantum represented synergistic gene 
overexpression of GSH1 and TRPER, and in L. infantum overexpres-
sion of GSH1 and MRPA in resistance, isolate has been studied.35

2.16  |  Trypanothione reductase (TryR)

TRYR maintains an intracellular reducing environment by producing 
the reduced trypanothione in trypanosomatids and replacing GHS 
in these protozoans. TRYR gene in Leishmania is vital because at-
tempts to delete both alleles of this gene have been unsuccessful,90 
stating that this protein is necessary for Leishmania survival, and re-
duced activity of this protein is associated with reduced survival in 
MQ.90 This enzyme does not exist in mammals and can be an impor-
tant drug target in Leishmania.91

2.17  |  Calcineurin

Calcineurin is a protein phosphatase dependent on Ca2+ and calmo-
dulin and set up by calcium and contributes to various cellular func-
tions, including apoptosis pathway and cell survival.41 Calcineurin 
is a necessary enzyme in cells for many signal transduction path-
ways.92 Recent studies showed the adaptation's roles under differ-
ent temperature changes and salt levels.93 Calcineurin with heat 
shock proteins and other molecules generates suitable virulence and 
thermotolerance in L. major.94 Although calcineurin is involved in 
surviving of cells, some data proposed that under different statuses, 
it could play a damaging function, such as the start of the apoptosis 
pathway in many organisms by the specific concentration of cytosolic 
reactive oxygen species (ROS),95,96 downregulation of calcineurin 
have a reverse effect on apoptosis in Leishmania species and induced 
apoptosis in lymphocytes.97 The function of this enzyme is related 
to Ca2+ concentrations cytoplasm. A study showed that elevated in-
tracellular Ca2+ levels in cardiac cells induced cellular apoptosis by 
activating some transcriptional factors and calcineurin.98 Also, other 
studies demonstrated the implication of increased intracellular Ca2+ 
concentrations in parasite death.99 Antimony components stimulate 
the generation of oxidative agents, for example, hydrogen peroxide 
(H2O2) or nitric oxide (NO), that have leishmanicidal effects.100 It is 
documented that oxidative stress is responsible for increasing Ca2+ 
and calcineurin activation resulting in apoptosis in the Leishmania 
parasite. Recent studies proved it as a drug resistance biomarker 
gene in L. infantum that downregulation of this biomarker prevents 
apoptosis and increases the survival rate of Leishmania by Ref. [92].

2.18  |  Leucine- rich repeats (LRRs)

LinJ34.0570	gene	in	L. infantum encodes a protein with 621 amino 
acids and contains 26 amino acid repeats enriched in leucine and a 
conserved cysteine. This belongs to the superfamily of LRR proteins. 
This protein also exists in L. tarentolae and L. major (LmjF34.0550), 
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respectively,	with	84%	and	95%	homology.	No	putative	transmem-
brane	domains	and	signal	peptides	were	identified	for	LinJ34.0570.101 
LRRs are a general motif and exist in various proteins, and they pro-
duce a structural framework for interactions of the proteins.102 In L. 
major, more than 100 proteins, including promastigote surface an-
tigen protein 2 (PSA2), have LRR repeats. Leishmania species that 
overexpressed this LRR protein were resistant to Sb (III) as axenic 
amastigotes and Sb (V) as intracellular parasites.102

2.19  |  LiMT and LiRos3 transporter genes

A common characteristic in promastigotes of MIL- resistant 
Leishmania isolates is a reduced MIL concentration that is caused 
either by a lack in the transport of MIL by inactivation of the L. dono-
vani MIL transporter (LdMT)103 and/or by its beta- subunit LdRos3104 
or by an enhanced efflux mediated through the overexpression of 
ABC transporter proteins. LdMT is a P- type ATPase gene by func-
tional survival of the MIL- resistant line. LdMT is a member of the 
aminophospholipid translocase subfamily and locates in the plasma 
membrane of the Leishmania.103 These findings confirmed the prom-
inent role of the LiMT/LiRos3 in resistance MIL L. donovani and L. 
infantum isolates.105

2.20  |  ARM58 and ARM56, HSP23

ARM56,	ARM58,	and	HSP23	are	in	chromosome	34	at	the	telomeric	
end. A recent study has shown that overexpression of these genes 
produced	 antimony	 resistance	 to	 amastigotes.	 The	 ARM58	 gene	
produces	a	58-	kDa	protein	that	has	four	domains	in	the	Leishmania, 
which confers Sb (V) resistance to amastigotes and Sb (III) resistance 
to promastigotes.106 For the function of this protein, the first and 
the second domains are essential. The third domain is significant for 
generation Sb (III) resistance and transmembrane.107 Studies have 
shown that the HSP23 (the small 23- kDa heat shock protein) can 
also cause resistance to Sb (III) in vitro.108 All three genes can gen-
erate antimony resistance to intracellular L. donovani amastigotes 
when	overexpressed.	ARM58	and	ARM56	(ARM58rel)	are	secreted	
via exosomes.106

2.21  |  Serine/threonine phosphatase protein 
(phosphatase 2C- like proteins)

Studies on trypanosomatids phosphatases are signifying essen-
tial post- translational modifications,109 differentiation,110 and drug 
resistance.111 Serine and Threonine (Ser/Thr) residues in eukary-
otes are phosphorylated in many proteins. Ser/Thr phosphatases 
have three families: (1) phosphoprotein phosphatases (PPPs), (2) 
aspartate- based phosphatases, and (3) metallo- dependent protein 
phosphatases (PPM).112 Protein phosphatase 5 genes (PP5) mem-
bering of the PPP family that is distinct from other members of this 

family because of its N- terminal the catalytic domain domains which 
contain tetratricopeptide repeat (TPR) that are important in autoin-
hibition and protein– protein interactions.113 The catalytic domain of 
PP5 is similar to the catalytic domains of PP2A, 2B/calcineurin, and 
protein phosphatase 1 (PP1).114 The role of protein PP2A has been 
proven in the mechanism of the effect of MTX in mammalian cells.115 
Thus MTX has likely comparable mechanisms of effect and resist-
ance in mammalian cells, and Leishmania,116 the three phosphatase- 
related	 genes,	 emerged	 as	 biomarker	 resistance.	 LinJ.34.2310	
and	 LinJ.34.2320	 in	 WT	 L. infantum are phosphatase2C- like and 
LinJ.12.0610.	 LinJ.12.0610	 is	 a	 serine/threonine	phosphatase	pro-
tein that has a conserved protein PP2A domain and two EF- hand 
motifs in a fused C- terminal domain117 that may relate to the recog-
nized role of Sb (III) as a protein phosphatase inhibitor.118 Treatment 
with anticancer drugs produces ROS, which can inactivate PP2A in 
mammalian cells.119 Antimonial drugs such as Sb (III) are elevated 
ROS in Leishmania,120	 overexpression	 of	 LinJ.12.0610	 allows	 the	
parasite to tolerate ROS generated on exposure to Sb (III).23

2.22  |  Iron superoxide dismutase- A

It has been proved that Leishmania has an antioxidant protection 
system for detoxifying ROS121and reactive nitrogen species.122 The 
metalloenzyme superoxide dismutase (SOD) is a central part of the 
antioxidant protection system in various protozoa of various protozoa 
antioxidant protection systems. It eliminates other superoxide radi-
cals by generating them into hydrogen peroxide and oxygen.123 Cu/
Mn/ZnSOD is present in eukaryotes, but FeSODs have been identi-
fied in protozoans.123 FeSOD is absent in humans and can be a good 
target for the treatment of leishmaniasis.73 FeSOD- A and FeSOD- B 
are the FeSOD species, demonstrated in L. infantum/chagasi, L. do-
novani, and L. tropica.124 Recent studies showed the high activity of 
superoxide dismutase in Sb (III) resistant L. infantum and L. braziliensis 
in in vitro conditions and L. donovani in clinical isolates.125

2.23  |  Folate transporter 1 (FT1)

The pathway of folate biosynthesis is used to make many medicines. 
Folates are made of a pterin that combines glutamic acid and para- 
aminobenzoic acid. Resistance to MTX generated by various genes 
also decreased the concentration of the drug in the Leishmania.126 
Studies have shown that the reduction in MTX in Leishmania also 
reduces folate uptake proposing that the expression of a joint folate/
MTX transporter is highly downregulated in MTX- resistant isolates 
of Leishmania. Folate transport regulates the growth stage of the 
Leishmania in both the logarithmic and stationary phases. Recent 
studies presented that folate transporter 1 (FT1) is a member of the 
BT1 family responsible for the affinity of folate and MTX transporter 
in Leishmania. Variation of the expression of this gene- modified an-
tifolate sensitivity. This protein was localized in the plasma mem-
brane.127 Recent data showed that an FT1 disrupted in L. infantum 
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MTX- resistant mutant corresponds to the leading folate trans-
porter in the parasite. It was proved as the major folate transporter 
through gene targeting studies. Variation of the FT1 gene expression 
changed the sensitivity of L. infantum to the MTX.128

2.24  |  HSP83

The Leishmania	HSP83	is	similar	to	the	mammalian	HSP90.	HSP90	
was recognized to be an inverted controller of the mitochondria- 
dependent apoptosis pathway.129 HSP90 is associated with Bcl- 2 
and inhibited mitochondrial apoptotic cascades.130 The collabora-
tion of HSP90 in programmed cell death (PCD) confirms the role of 
HSP83	 in	 drug-	induced	 PCD	 in	 Leishmania.	 HSP83	 interacts	 with	
other proteins in Leishmania to reversely regulate the mitochondrial 
apoptotic pathway.131 In antimony resistance, clinical isolates of L. 
donovani	were	shown	the	overexpression	of	HSP83,	and	its	role	was	
proved in antimony resistance by gene targeting in sensitive L. do-
novani parasite.132 In recent study demonstrated that the overex-
pression of this gene was elevated in four out of the ten resistant 
isolates.

Also, there was a slight correlation between the antimony sus-
ceptibility	and	HSP83	gene	expression,	demonstrating	that	this	gene	
is not the only cause for resistance in clinical isolates. The resistant 
clinical isolate presented resistance to other medicines, includ-
ing MIL and Amp B. proteomic studies have demonstrated various 
proteins differentially expressed, proposing that PCD is changed 
in the resistant isolates. Actually, drug- induced PCD has changed 
the	markers	of	apoptosis	in	the	Sb	(V)	resistant	isolate.	The	HSP83	
and the SKCRP14.1 demonstrated two proteins to be involved in 
the	drug-	induced	PCD.	HSP83	enhanced	resistance	and	decreased	
drug- mediated PCD by intervention with the mitochondrial mem-
brane potential, also SKCRP14.1 initiated PCD but protected against 
MIL- induced PCD. This finding demonstrated the role of PCD in drug 
sensitivity or resistance in the Leishmania species.131

2.25  |  Small kinetoplastid calpain- related protein 
(SKCRP14.1)

This protein belongs to the family of calcium- dependent cysteine 
proteases.133 This new protein was downregulated within the clini-
cal isolate of L. donovani from India, and overexpression of this gene 
in the parasite resensitized the parasite to antimonial drugs through 
induced PCD. SKCRP14.1 overexpression in the existence of Sb (III) 
only quantitatively.131 High expression of SKCRP14.1 increased the 
antimonial susceptibility in L. donovani but, interestingly, caused 
an increased resistance to MIL. Considering these resistance phe-
notypes, high expression of SKCRP14.1 caused increased protec-
tion versus MIL- induced PCD. Therefore, a change in SKCRP14.1 
expression had contradictory effects on sensitivity to antimonials 
and MIL.131	SKCRP14.1	and	HSP83	were	demonstrated	to	be	closely	
related to the drug- induced PCD phenotype. SKCRP14.1 elevated 
antimonial- induced PCD but protected clearly into MIL- induced 
PCD,	whiles	HSP83	increased	the	drug	resistance	and	reduced	drug-	
induced PCD activation via participating with the mitochondrial 
membrane potential.131

2.26  |  LmACR2

Sb (V) must be diminished to Sb (III) to make this medication dy-
namic. MQ catches Sb (V), and a portion of it is reduced to Sb 
(III), which is then transported into the amastigotes by AQP1. The 
other bit of this medication decreased to Sb (III) by LmACR2 and 
TDR1.134 The two pathways of drug activity would be related 
to the expression of their relevant components in both MQ and 
Leishmania. This had been varied in different species of Leishmania. 
LmACR2, in L. major, is the first known as metalloid reductase with 
a physiological function in activating the drug.134 Transfection of 
the LmACR2 gene in L. infantum enhanced the susceptibility to 
Pentostam in intracellular amastigotes (Figure 2). These findings 

F I G U R E  2 Model	of	Pentostam	action	
in MQ and amastigotes of Leishmania
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suggest that this gene is responsible for reducing the pentava-
lent antimonial compounds in pentostam® to the active Sb (III) in 
Leishmania.134

2.27  |  Thiol- dependent reductase I (TDR1)

This protein is an enzyme detected in Leishmania species involved 
in deglutathionylation and activation of Sb (V) used in the treat-
ment of leishmaniosis.135 In Leishmania spp, TDR1 is involved in 
redox regulation and promoting sensitivity to the antimonial prod-
rugs glucantime and pentostam, known as the first- line treatment of 
Leishmaniosis.136 The therapeutic function of these drugs is to de-
crease the pentavalent species to trivalent species that are toxic. This 
procedure happens gradually under in vitro conditions within sight 
of glutathione (GSH) or the T(SH)2, particularly at low pH as found 
in the parasitophorous vacuole in which Leishmania dwells intracel-
lularly in MQs.137 TDR1, within sight of GSH, catalyzes the decrease 
of Sb (V) in vitro condition and thus could actuate the antimonial 
prodrugs.138 This enzyme is more abundant in amastigote form and 
the amastigotes are intensely more sensitive to Sb (V) than promas-
tigotes.139 This enzyme is a member of the glutathione- S- transferase 
(GST) superfamily138 which involves biological events such as signal-
ing processes, stress response, and xenobiotic detoxification.140

2.28  |  Heat shock protein70 (hsp70)

Conserved proteins of this class are molecular chaperones playing 
the leading role in maintaining cellular homeostasis approximately 
in all known organisms. T. cruzi, T. brucei, and L. major known as the 
Tritryps are human parasites. These parasites change their mor-
phology in the life cycle of humans and insects. Hsp70s make these 
changes in different hosts and conditions also remaining viable and 
infective.141 The hsp70 is part of a cellular network, which is fre-
quently involved in protein folding processes and molecular chaper-
oning.141 In Leishmania antimony- resistant isolates, Hsp70 has been 
detected to be upregulated at mRNA,142 and protein143 levels; this 
does not directly produce resistance, but it enhances the metal tol-
erance in the Leishmania. So it allows the cell to create resistance 
mechanisms.142 Mutation in the hsp70 gene of L. braziliensis could 
modulate the failure of antimonial treatment in patients.144

3  |  GEOGR APHIC AL DISTRIBUTION

Table 1 provides information on studies on resistance biomarkers 
gene in Leishmania species, based on a study including laboratory 
studies and clinical- resistant isolates.

In Figures 3 and 4, the geographic distribution of biomarkers is 
shown separately according to the study types, which are fully ex-
plained in the discussion section. These maps are drawn by ArcGIS 
v 10.1 software.

TA B L E  1 Drug	resistance	gene	markers	in	leishmaniasis

Gene
Leishmania 
species

Type of 
isolate

Country 
(reference)

AQP1 L. major CRI Iran145

L. tropica CRI Iran54

L. panamensis LRM USA9

L. infantum CRI Tunisia, Algeria35

L. donovani CRI India146

L. guyanensis LRM Brazil147

L. braziliensis LRM Brazil148

ABCI4 L. major LRM Spain15

ABCC3 L. infantum LRM Canada149

L. donovani CRI India17

ABCG L. donovani LRM India150

L. infantum LRM Spain19

L. major LRM Spain21

Pgps L. tropica LRM Spain29

L. donovani CRI India146

Pgp A L. infantum LRM Canada151

L. major LRM Iran33

L. guyanensis LRM Brazil152

Protein 14- 3- 3 L. major CRI Algeria35

L. infantum CRI Algeria35

P299 L. major CRI Algeria35

L. infantum CRI Algeria35

Histon 4 L. major CRI Algeria, Tunisia35

L. infantum CRI Algeria, Tunisia35

L. donovani CRI India39

Histon H2A L. donovani CRI India153

Histon H1 L. donovani CRI India39

LACK1 L. tropica CRI Iran6

Ubiquitin L. tropica CRI Iran49

AAP3 L. tropica CRI Iran49

L. donovani LRM Spain166

PGK L. tropica CRI Iran54

MAPK L. tropica CRI Iran54

L. donovani CRI India61

PTP L. tropica CRI Iran54

PTR1 L. major LRM Canada154

L. braziliensis LRM Brazil68

L. infantum LRM Canada116

TXNPx L. infantum CRI Algeria, Tunisia35

L. donovani CRI India76

L. braziliensis LRM Brazil155

L. major LRM United Kingdom156

KMP11 L. infantum CRI France35

Hsp70 L. braziliensis CRI Brazil144

L. donovani CRI India157

L. infantum LRM Brazil158
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4  |  DISCUSSION

There are numerous studies about the molecular biomarkers of drug 
resistance in leishmaniasis. In this article, we have tried to collect 
these biomarkers. Several of these investigations used resistant 
isolates taken from patients, while others used isolates resistant to 
drug treatment in the laboratory. In addition, in this article, we have 
determined that these biomarkers have been reported in patients in 
various countries.

The downregulation of the AQP1 gene has been reported from 
resistant isolates such as L. major in Iran,145 L. tropica in Iran,54 L. 
infantum in Algeria, and Tunisia,35 L. donovani in India146 from pa-
tients. However, this gene has been considered a resistance marker 
only in laboratory conditions in L. panamensis (USA),9 L. guyanensis 
(Brazil),147 L. braziliensis (Brazil).148

The ABCI4 gene was studied in L. major and introduced as a drug 
resistance biomarker.15

ABCC3 gene has been investigated in resistant isolates of human 
specimens and is known as a resistance biomarker in L. donovani in 
India.17 The resistance of this gene has been reported in a laboratory 
model in L. infantum in Canada.149

The potential for resistance to the ABCG gene has been studied 
only in vitro. In L. donovani in India150 and L. major21 and L. infantum 
in Spain19 have been examined.

According to studies conducted in laboratory conditions in 
Spain, the Pgps gene can regulate drug accumulation and reverse 
the resistance phenotype of L. tropica.29 In India, a study on resistant 
specimens of L. donovani showed this gene as a molecular marker of 
resistance.146

All research on the PgpA gene has been conducted in labora-
tory conditions. These researches were carried out on L. infan-
tum, L. major, and L. guyanensis in Canada,151 Iran,33 and Brazil,152 
respectively.

Changes in the expression of the protein of 14– 3- 3, P299 genes 
have been recorded on samples taken from patients in Algeria. These 
resistance genes have been observed in L. major and L. infantum in 
this country.35

Research on Histon 4, Histon H2A, and Histon H1 genes showed 
that they were used as resistance markers in human resistance spec-
imens. Histon 4 in Algeria and Tunisia has been studied on L. major 
and L. infantum35 and in India on L. donovani.39 Histon H2A,153 Histon 
H139 genes have been investigated only in L. donovani in India.

The information obtained from four genes (LACK1, Ubiquitin, 
AAP3and PGK) have been obtained from studies conducted on pa-
tients who were resistant to treatment in Iran. These resistant iso-
lates were L. tropica.6,49 One study was done on the AAP3 gene in in 
vitro conditions in Spain.

Change in expression of the MAPK gene that leads to resis-
tance to treatment has been observed in patients in Iran and India. 
Resistant strains of L. tropica and L. donovani have been reported in 
Iran and India, respectively.54,61

The PTP gene as a biomarker of resistance is isolated from pa-
tients only in Iran. These isolates are related to L. tropica.54

All studies on the PTR1 gene have been performed on drug re-
sistance in Leishmania species in vitro conditions. These studies have 
been conducted on L. major154 and L. infantum116 and L. braziliensis68 
in Canada and Brazil, respectively.

Studies were conducted on the TXNPx gene in resistant strains 
isolated from patients in Algiers and Tunisia35 on L. infantum in India 
and L. donovani.76 Laboratory studies have been conducted on L. 
major and L. braziliansis in Brazil155 and the United Kingdom, respec-
tively.156 Research on the KMP11 gene has been conducted as a bio-
marker of resistance only in a patient from France.35

Studies have been performed on the Hsp70 gene in human 
specimens on L. braziliansis144 and L. donovani in Brazil and India,157 
respectively. A study on L. infantum in Brazil showed that drug resis-
tance had been established due to this gene in vitro model.158

Gene
Leishmania 
species

Type of 
isolate

Country 
(reference)

GSH1 L. guyanensis CRI Brazil159

L. infantum CRI Tunisia35

L. donovani CRI United Kingdom160

TryR L. major LRM Canada91

L. donovani CRI India161

Calcineurin L. infantum CRI Iran92

LRRs L. infantum LRM Canada102

L. donovani CRI India162

LiMT and LiRos3 L. infantum CRI France105

L. donovani LRM Spain103

ARM58,	ARM56,	
and HSP23

L. infantum LRM Germany106

L. donovani LRM Germany106

L. braziliensis CRI Peru163

Serine/
threonine 
phosphatase 
protein

L. infantum LRM Canada23

Iron superoxide 
dismutase A

L. infantum LRM Brazil125

L. braziliensis LRM Brazil125

L. donovani CRI India164

Folate 
transporter 1

L. infantum LRM Canada128

L. major LRM Canada165

HSP83 L. donovani CRI India132

L. infantum LRM Brazil158

L. braziliensis LRM Brazil158

SKCRP14.1 L. donovani CRI India131

LmACR2 L. infantum LRM Canada134

L. donovani LRM Canada134

TDR1 L. major LRM United Kingdom138

Abbreviations: CRI, clinical- resistant isolate; LRM, laboratory- resistant 
mutant.

TA B L E  1 (Continued)
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There are three types of research on the GSH1 gene in resis-
tant human isolates. The studies were performed on L. guyanensis, 
L. infantum and L. donovani in Brazil,159 Tunisia,35 and the United 
Kingdom,160 respectively.

Two investigations have been published on TryR gene. A study 
was carried out on L. donovani on a drug- resistant specimen from 
a patient in India.161 Another study was conducted on L. major in 
Canada in in vitro condition.91

F I G U R E  3 Geographical	distribution	of	resistant	biomarkers	gene	based	on	studies	carried	out	on	clinical-	resistant	isolate

F I G U R E  4 Geographical	distribution	of	resistant	biomarkers	gene	based	on	studies	carried	out	on	laboratory-	resistant	mutant
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Only a study on Calcineurin gene has been published on L. infan-
tum of the human- resistant specimen in Iran.92

The study of the LRRs gene was carried out on L. donovani in 
resistant specimens from India162 and on L. infantum in Canada in a 
laboratory model.102

For LiMT and LiRos3 genes, two studies have been performed on 
L. infantum and L. donovani. The study has been done on these genes 
in L. infantum in human- resistant samples in France.105 Another 
study reported on L. donovani in in vitro in Spain.103

Studies	 on	 ARM58,	 ARM56,	 and	 HSP23	 genes	 have	 been	
conducted on L. infantum and L. donovani in in vitro conditions in 
Germany.106 A survey of L. braziliansis has been published on resis-
tant human specimens from Peru.163

In the serine/threonine phosphatase gene, only one study was 
done in Canada in vitro.23

Information about the iron superoxide dismutase A gene is avail-
able on L. infantum and L. braziliensis base laboratory studies,125 
which have been registered in Brazil, and a study on L. donovani from 
the clinical sample in India.164

Available information on the folate transporter 1 gene is based 
on the experimental study on L. infantum128 and L. major165 from 
Canada.

HSP83	 gene	 has	 been	 investigated	 as	 a	 biomarker	 of	 resis-
tance in human specimens on L. donovani in India.132 In Brazil, re-
search has been done on L. infantum and L. braziliensis in laboratory 
conditions.158

Information about the SKCRP14.1 gene has been obtained from 
a study conducted on human- resistant samples of L. donovani131 in 
India.

A study on the LmACR2 gene has been carried out on L. infantum 
and L. donovani in laboratory conditions in Canada.134

The ability to create drug resistance by TDR1 gene in the labora-
tory has been studied on L. major in the United Kingdom.138

5  |  CONCLUSION

According to current research, biomarkers of drug resistance are 
consistent with each country and the studied species are as follows: 
in Iran: AQP1 (L. major, L. tropica), LACK1 (L. tropica), ubiquitin (L. 
tropica), AAP3 (L. tropica), PGK (L. tropica), MAPK (L. tropica), PTP 
(L. tropica), Calcineurin (L. infantum), in Tunisia: AQP1 (L. infantum), 
Histon 4 (L. major, L. infantum), TRPER (L. infantum), GSH1 (L. infan-
tum); in Algeria: AQP1 (L. infantum), Protein 14– 3- 3 (L. major, L. in-
fantum), P299 (L. major, L. infantum), Histon 4 (L. major, L. infantum), 
TRPER (L. infantum), in India: AQP1 (L. donovani), ABCC3 (L. dono-
vani), Pgps (L. donovani), Histon 4 (L. donovani), Histon H2A, Histon 
H1 (L. donovani), MAPK (L. donovani), TRPER (L. donovani), Hsp70 
(L. donovani), Hsp70 (L. donovani), TryR (L. donovani), LRRs (L. dono-
vani), Iron superoxide dismutase A (L. donovani),	 HSP83	 (L. dono-
vani), SKCRP14.1 (L. donovani), in France: KMP11 (L. infantum), LiMT 
and LiRos3 (L. infantum), in Brazil: Hsp70 (L. braziliensis), GSH1 (L. 

guyanensis), in the UK: GSH1(L. donovani),	in	Peru:	ARM58,	ARM56,	
and HSP23 (L. braziliensis).

The significance of these findings is determined in two areas: (1) 
biomarkers should be considered in the diagnosis of resistant spe-
cies in each country or region. (2) What biomarkers should be stud-
ied in drug studies in each country to find and use an appropriate 
drug to treat resistant species?

RECOMMENDATIONS

1. Due to the emergence of resistant genes mainly in anthro-
ponotic Leishmania species such as L. donovani and L. tropica, 
as the causative agents of ACL and AVL, respectively, selection 
of an appropriate treatment modality is essential.

2. The control of leishmaniasis is complicated as there is no effica-
cious vaccine available. Controlling vectors and reservoir hosts is 
practical because of numerous species implicated in the life cycle.

3. At present, combination therapy would be a proper choice for 
selecting a treatment modality, more importantly among the first- 
line agents along with the second- choice drugs or cryotherapy. 
The use of two anti- leishmanial simultaneously, especially when 
the drugs have different mechanisms of action, has the develop-
ment of resistance to either of the components.

4. Physicians should be aware of the presence of such resistance for 
the selection of proper treatment modalities in endemic countries.
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