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A B S T R A C T   

This paper describes the design of an early phase, prospective trial evaluating the safety and tolerability of the 
combination of the histone deacetylase inhibitor, entinostat, in combination with capecitabine. The study con
sists of two parts; an initial phase evaluating the safety of the combination in participants with metastatic breast 
cancer, followed by a second phase assessing the safety of the combination in participants with residual disease 
after neo-adjuvant chemotherapy for breast cancer. We describe the adaptation of a model-based design for 
identifying the maximum tolerated dose combination that efficiently moves from the initial phase in an advanced 
disease population to the second phase in the target population. Operating characteristics demonstrate the ability 
of the method to accurately predict true maximum tolerated dose combinations in a high percentage of trials 
with reasonable sample sizes, while treating participants at and around desirable combinations. The proposed 
design is a practical, early-phase, adaptive method for use with drug combination dose finding in the presence of 
shifting patient populations. More challenging research questions are being investigated in early-phase trials, 
which has created the need to implement more flexible designs that can meet the objectives of current studies, 
such as those exploring drug combinations while addressing patient heterogeneity. Our goal is to facilitate 
acceptance and application of more novel designs in contemporary early-phase studies.   

1. Introduction 

This article describes the design of an early phase, prospective trial 
evaluating the safety and tolerability of entinostat (a histone deacetylase 
inhibitor) in combination with capecitabine (a cytotoxic antimetabolite) 
in breast cancer participants (Breast 49, NCT03473639), designed at the 
University of Virginia (UVA) Cancer Center. Originally, the study design 
involved the application of a Bayesian continual reassessment method 
for drug combinations [1] in order to locate the maximum tolerated dose 
combination (MTDC) of the two drugs in participants with high risk 
breast cancer after neo-adjuvant chemotherapy. Review of the study 
protocol by the Food and Drug Administration (FDA) resulted in a 
request to “conduct a phase I dose escalation study in the metastatic 
setting. Once the safe dose for the combination is found, then the 
combination can be evaluated in the early breast cancer setting.” This 
request created the need to adapt the trial design in order to accom
modate a change in patient populations. The trial objective shifted to 

one of defining a safe dose combination in participants with metastatic 
breast cancer (Population A) and subsequently using the accumulated 
data from the metastatic group to inform the dose finding of the MTDC 
in participants with residual disease (Population B). The objective of 
dose escalation in Population A is to obtain an initial safety signal by 
evaluating the tolerability of low dose combinations. The goal is not to 
recommend an MTDC in Population A for further efficacy testing, but 
accrual of Population A participants is necessary in establishing a 
starting point for the accrual of Population B participants. It is expected 
that participants in Population B will better tolerate the combination 
than participants in Population A, so that if the combination is deemed 
safe for Population A, it would be inefficient to try non-toxic combina
tions on Population B. This provides justification for starting Population 
B at the estimated MTDC of Population A. The design described in this 
paper adapts the statistical modeling framework known as the partial 
order continual reassessment method (POCRM [1]) in order to incor
porate potentially heterogeneous patient populations in the estimation 
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of the MTDC of the two agents being investigated. While the estimation 
of dose-limiting toxicity (DLT) probabilities utilizes POCRM throughout 
both phases of the study, execution of the design required necessary 
adaptations resulting from studying different patient populations. Ad
justments to software code had to be made in order to evaluate specific 
aspects of this trial, such as simulating hypothesized DLT probability 
scenarios with different probabilities for each population, as well as the 
percentage of simulated trials in which the MTDC selected at the 
conclusion of the study was different than the initial MTDC estimated 
based on Population A. Consequently, specific aspects of this trial make 
a direct application of POCRM infeasible. This trial adds to a growing 
number of studies that have adapted POCRM to address specific research 
objectives presented by modern early-phase trials [2–4]. 

The advantage of the approach described herein over a traditional 
rule-based method lies in the ability of our model-based method to 
adjust to potential changes in the toxicity profile of the combinations 
when shifting study populations. Our design will sequentially update 
model-based toxicity probabilities based on all accumulated data and 
refine the recommended dose for subsequent cohorts. This approach 
makes efficient use of accumulated data in directing escalation and de- 
escalation decisions, potentially allowing fewer study participants to be 
treated at sub-therapeutic combinations. Additionally, the seamless 
nature of the design avoids the need for study protocol amendments that 
require adjustments to the initially identified MTDC from Population A. 
This approach is consistent with published recommendations on dose 
expansion cohorts that advocate for designs that can efficiently refine an 
initial MTD estimate from a different patient population [5,6]. Details of 
study designs often are not found on sites such as clinicaltrials.gov, 
therefore modern clinical trials lack the transparency needed to support 
the timely implementation of novel designs. The aim of this manuscript 
is to bring to light published examples of novel design applications as a 
means of augmenting the implementation of innovative designs in the 
future and to demonstrate the flexibility of adaptive designs in satisfying 
changing design conditions. Displays of current trials that use novel 
designs are needed to overcome barriers of infrequent implementation 
of innovative design strategies in early phase trials, so we believe that 
the current work can aid in the uptake of novel design use. In addition, 
given the often lengthy timeline between study concepts to protocol 
completion it is valuable to present design considerations that have a 
broad application. It is worth noting that even after study completion, 
journals do not require complete protocols as supplemental material for 
dose-finding trials, and final clinical trial publications do not have suf
ficient room to describe the details of novel designs. Therefore, we feel 
the message that novel methods are being used in clinical practice is a 
timely and important one. 

2. Methods 

2.1. Design considerations 

Breast 49 (NCT03473639) is an early-phase evaluation of the safety 
and tolerability of the combination of two doses (3 mg, 5 mg) of the 
histone deacetylase inhibitor, entinostat, with two doses of capecitabine 
(800 mg/m2, 1000 mg/m2). The trial was initially proposed as a study of 
the two doses of entinostat in combination with a fixed dose of 1000 mg/ 
m2 of capecitabine. Discussions with investigators lead to a consensus 
that the best combination could consist of a lower dose of capecitabine 
in combination with entinostat, and therefore additional combinations 
are worth exploring. Fixing the path of escalation based on a pre
specified dose of capecitabine limits the number of combinations that 
can be considered, potentially missing promising combinations located 
outside the chosen path. Treatment combinations are grouped into 
“zones” based on the dose levels of each agent; i.e., zone 1 ¼ {(3 mg, 
800 mg/m2)}, zone 2 ¼ {(5 mg, 800 mg/m2), (3 mg, 1000 mg/m2)}, and 
zone 3 ¼ {(5 mg, 1000 mg/m2)} (Table 1). The trial is designed to 
determine the MTDC, to estimate the proportion of participants able to 

tolerate the combination, and to obtain preliminary data on disease-free 
survival. The study is currently open to accrual and has accrued five 
participants as of December 18, 2019. A Bayesian adaptive design is 
being used to guide accrual decisions based on the occurrence of dose- 
limiting toxicities (DLT’s), and the minimum follow-up period for 
determination of escalation is 3 weeks. In monitoring safety, adverse 
events are being assessed and acute toxicity graded using the National 
Cancer Institute (NCI) Common Terminology Criteria (CTCAE) Version 
4.03. A participant is classified as experiencing a DLT (yes/no) based on 
protocol-defined DLT criteria occurring during the first cycle of treat
ment. As data accumulates each participant is classified as experiencing 
a DLT (yes/no), and the MTDC is defined as the dose combination with a 
DLT rate closest to the target DLT rate of 25%. 

The initial dose escalation phase (Part A) of the study will accrue 
participants in Population A utilizing a model-based design for dose- 
escalation to determine the initial recommended MTDC. The expan
sion phase (Part B) will accrue participants in Population B. Expansion 
will start at the MTDC estimated in Part A. The adaptive modeling 
strategy will continue to be used in Part B to establish the MTDC in 
Population B and to estimate the rate of treatment discontinuation at the 
established MTDC. The initial MTDC (Part A) is proposed when a 7th 
participant in Population A is recommended to a dose combination that 
has already accrued 6 participants. Given the limited time window to 
respond to the FDA’s requested revision, we anticipated that they would 
prefer a minimum of 6 participants be accrued to the recommended 
combination in Population A prior to transitioning to Part B. At this 
point accrual to Part B will begin. The modeling strategy will continue as 
in Part A to assess safety and establish the MTDC in Population B using 
accumulated data from both populations. The final MTDC is defined as 
the combination that is recommended when a 31st participant is rec
ommended to a dose combination that has already accrued 30 partici
pants in Population B. A schema illustrating the proposed trial design is 
provided in Fig. 1. 

2.2. Estimation 

Safety assessments are based on the assumption that, as the dose 
level of one agent increases, holding the other agent fixed, the proba
bility of DLT is increasing. It is reasonable to assume that combinations 
in higher zones have higher probabilities of DLT than combinations in 
lower zones. It is unknown whether combinations have higher or lower 
DLT probabilities than other combinations within the same zone. It 
could be that combination 2 < combination 3 or that combination 3 <
combination 2 in terms of their respective true DLT probabilities (see 
Table 1). We express this uncertainty through specification of two one- 
parameter models, indexed by m, that reflect the different ordering 
possibilities for the DLT probabilities. We then rely on model selection 
techniques to choose the model most consistent with the data [1]. A 
common model choice [7] in the continual reassessment method (CRM) 
is to raise a set of pre-specified constants, also referred to as the ‘skel
eton’ of the model, to a power expðaÞ, where a is a parameter to be 
estimated by the data. Denoting the probability of DLT at combination i 
as RðdiÞ, we express this class of working models as RðdiÞ ¼

PrðDLT at combination iÞ � αexpðamÞ
mi :For ordering possibility 1, the 

working model (m ¼ 1) is ð0:25expða1Þ; 0:35expða1Þ; 0:46expða1Þ;

0:56expða1ÞÞ and for ordering possibility 2, the working model (m ¼ 2) is 
ð0:25expða2Þ; 0:46expða2Þ; 0:35expða2Þ; 0:56expða2ÞÞ. The skeleton values for 

Table 1 
Combination and zone designation.  

Entinostat 5 mg Combination 2 Combination 4 

3 mg Combination 1 Combination 3  

800 mg/m2 1000 mg/m2 

Capecitabine  
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each model were generated using the algorithm of Lee and Cheung [8], 
and were chosen in order to yield good operating characteristics in a 
broad range of scenarios. Within each ordering, the CRM is fit using the 
working model and the accumulated data. This study will accrue eligible 
participants in cohorts of one and use the fit CRM model to estimate DLT 
probabilities at each combination. The prior distribution gðamÞ on the 
parameters a1 and a2 is given by a Normal distribution with mean 0 and 
variance 1.34; i.e. am e N ð0; 1:34Þ, which is common to Bayesian CRM 
designs and a default distribution utilized in CRM software [9]. A uni
form prior distribution τðmÞ ¼ 1=m is placed on each possible ordering 
so that each working model is considered equally likely a priori. Based 
on observed data D ¼ fðyi; niÞ; i ¼ 1;…; 4g, where yi is the number of 
DLT’s and ni is the number of subjects treated on combination i, the 
likelihood under working model m is 

LmðDjamÞ∝
Y4

i¼1
ðαexpðamÞ

mi Þ
yi
ð1 � αexpðamÞ

mi Þ
ni � yi

:

Using Bayes theorem, the posterior probabilities of the models given 
the data are given by 

PðmjDÞ¼
τðmÞ

R
LmðDjamÞgðamÞ dam

P2
m¼1τðmÞ

R
LmðDjamÞgðamÞ dam ​

:

After accrual of each participant into the trial, using Bayesian model 
selection, the working model with the largest posterior model proba
bility PðmjDÞ is chosen and the DLT probability estimates bRðdiÞ are 
updated using the chosen working model and the Bayesian form of the 
CRM [10]. If there is a tie between the posterior model probabilities of 
the two models, then the selected model is chosen at random. Based on 
the expectedness of events, the target DLT probability is set at 25%. The 
next participant is allocated to the dose combination indicated by the 
modeling to have the estimated DLT rate closest to 25%. After each 
participant, a new recommended combination is obtained, and the next 
entered participant is allocated to the recommended combination. The 
trial will stop once sufficient information about the recommended 
MTDC has been obtained, according to the prespecified stopping rules 
outlined below. 

2.3. Stopping the trial 

A 90% probability interval is calculated around the estimated DLT 

probability for each combination, based on interval estimation for CRM 
models [11]. If, for the lowest combination, the lower bound of this 
confidence interval exceeds the target DLT rate of 25%, then combina
tion 1 will be deemed too toxic, the trial will stop for safety, and no 
combination will be recommended as the MTDC for either study popu
lation. Otherwise, accrual to the study will continue until 30 eligible 
participants in Population B have been treated at the recommended 
MTDC. 

2.4. Sample size and accrual 

Maximum target sample size is calculated for the goals of (1) 
establishing the MTDC in participants with residual breast cancer 
(Population B), (2) obtaining an estimate of treatment tolerance and (3) 
assessing disease-free survival. Simulation results indicate a maximum 
target accrual of 55 eligible participants has good properties in terms of 
accurately identifying the MTDC. Based upon the simulation results, the 
study goals are achieved with accrual of approximately 12 and 40 
(median values; Table 5) participants in populations A and B, respec
tively. Accrual is estimated at 1–2 participants per month, depending 
upon which study population is being accrued. 

Simulation results indicate that accrual of up to 43 participants in 
Population B may be required in order to have 30 eligible participants 
treated at the MTDC. The target of 30 participants is based upon having 
sufficient information to test for a null rate of treatment tolerance of 
60% versus the alternative rate of 80% with a one-sided type I error rate 
of 0.094 and power of 0.871 with a binomial test. The choice of the null 
and alternative rates are based upon results reported in the CREATE-X 
trial [12] which reported 75% (95% CI [69, 80%]) of participants 
treated with 8 cycles of capecitabine completing treatment. For this 
study, if the data support a tolerance rate of 60% or lower (lower than 
the lower limit of the confidence bound), the combination would be 
considered unacceptable. 

3. Results 

3.1. Design behavior early in the trial 

In assessing the statistical properties of the design, we first evaluated 
its behavior early in the trial in order to give investigators and reviewers 

Fig. 1. Schema of illustrating the proposed trial design.  
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an idea of how the method begins. In the protocol document, we 
included two different scenarios illustrating early study behavior. Ta
bles 2 and 3 report the participant index, the combination received by 
each participant, whether the participant had a DLT, the model-based 
estimated DLT probabilities, the lower bound of the 90% confidence 
interval in order to assess whether the trial should stop, and the rec
ommended combination for each participant. As displayed in Table 2, 
the probability estimates indicate that the trial will terminate for safety 
if the first two participants experience a DLT on combination 1. Table 3 
illustrates the results for a different situation in which the first partici
pant experiences a DLT and we want to see how many consecutive non- 
DLTs on combination 1, starting with the second participant, would be 
required to escalate to either combination 2 or 3. If the first participant 
has a DLT on combination 1, we would be required to observe five 

consecutive non-DLTs on combination 1 prior to being allowed to 
escalate to combination 2. 

3.2. Simulated trial example 

In this section, we illustrate the behavior of the design described in 
this article under a set of hypothesized DLT probabilities. The assumed 
DLT probabilities for combinations 1–4 in Population A are (0.14, 0.35, 
0.22, 0.50) and the assumed DLT probabilities in Population B are (0.04, 
0.25, 0.12, 0.40), indicating combination 2 to be the true MTDC in 
Population B since it has the DLT probability closest to the target rate of 
25%. The true underlying DLT probabilities are consistent with ordering 
2 in which combination 2 is more toxic than combination 3. The data 
from the entire simulated trial are provided in Table 4. The first eligible 

Table 2 
Sample for when the first two participants in Population A have DLTs.   

DLT probability estimates C.I. lower bound Recommendation for next participant 

Participant Combo DLT 1 2 3 4 

1 1 Yes 0.593 0.746 0.676 0.803 0.12 Combination 1 
2 1 Yes 0.690 0.812 0.758 0.856 0.26 STOP STUDY  

Table 3 
Sample for when the first participant Population A has a DLT, followed by consecutive non-DLTs.   

DLT probability estimates C.I. lower bound Recommendation for next participant 

Participant Combo DLT 1 2 3 4 

1 1 Yes 0.593 0.746 0.676 0.803 0.12 Combination 1 
2 1 No 0.449 0.549 0.638 0.714 0.07 Combination 1 
3 1 No 0.348 0.453 0.554 0.643 0.05 Combination 1 
4 1 No 0.279 0.489 0.384 0.586 0.04 Combination 1 
5 1 No 0.230 0.333 0.439 0.541 0.03 Combination 1 
6 1 No 0.194 0.294 0.400 0.504 0.03 Combination 2  

Table 4 
A simulated sequential trial illustrating the described design. The maximum tolerated dose combination (MTDC) recommendation is combination 2 after 53 
participants.   

Participant 
Population Combo DLT Posterior Participant Population Combo DLT Posterior 

prob of ordering prob of ordering 

1 2 1 2 

1 A 1 no 0.50 0.50 28 B 2 no 0.40 0.60 
2 A 2 no 0.53 0.47 29 B 2 yes 0.30 0.70 
3 A 3 no 0.50 0.50 30 B 2 yes 0.23 0.77 
4 A 4 no 0.50 0.50 31 B 2 yes 0.18 0.82 
5 A 4 no 0.50 0.50 32 B 3 no 0.16 0.84 
6 A 4 yes 0.50 0.50 33 B 2 no 0.17 0.83 
7 A 2 no 0.52 0.48 34 B 2 no 0.19 0.81 
8 A 4 no 0.52 0.48 35 B 2 no 0.20 0.80 
9 A 4 no 0.52 0.48 36 B 2 no 0.21 0.79 
10 A 4 yes 0.53 0.47 37 B 2 yes 0.17 0.83 
11 B 4 yes 0.53 0.47 38 B 2 no 0.18 0.82 
12 B 3 no 0.50 0.50 39 B 2 no 0.20 0.80 
13 B 2 no 0.53 0.47 40 B 2 no 0.21 0.79 
14 B 3 no 0.50 0.50 41 B 2 no 0.22 0.78 
15 B 3 no 0.48 0.52 42 B 2 yes 0.18 0.82 
16 B 4 no 0.48 0.52 43 B 2 yes 0.15 0.85 
17 B 4 no 0.48 0.52 44 B 2 no 0.16 0.84 
18 B 4 yes 0.47 0.53 45 B 2 no 0.17 0.83 
19 B 2 no 0.50 0.50 46 B 2 no 0.18 0.82 
20 B 4 yes 0.50 0.50 47 B 2 no 0.19 0.81 
21 B 2 no 0.53 0.47 48 B 2 no 0.20 0.80 
22 B 3 no 0.50 0.50 49 B 2 no 0.21 0.79 
23 B 3 no 0.47 0.53 50 B 2 yes 0.18 0.82 
24 B 4 no 0.48 0.52 51 B 2 no 0.19 0.81 
25 B 4 yes 0.47 0.53 52 B 2 no 0.20 0.80 
26 B 2 yes 0.35 0.65 53 B 2 no 0.21 0.79 
27 B 2 no 0.37 0.63        
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participant in Population A is allocated to combination 1 and escalation 
proceeds without DLT until participant 6 in Population A experiences a 
DLT on combination 4. The design then recommends de-escalating to 
combination 2 on which an additional non-DLT is observed. The design 
recommends returning to combination 4 on which DLT outcomes are 
observed in 1 out of the next 3 participants. In total, 6 participants in 
Population A have now been treated at combination 4 and this combi
nation is recommended for the next participant. At this point, accrual to 
Population A is terminated with combination 4 being defined as the 
starting combination for Population B. In Population A, the observed 
DLT data at combinations 1–4, respectively, are (0/1, 0/2, 0/1, 2/6). 
Without much data accumulated at combinations 2 and 3 at this point, 
the posterior model probabilities associated with orderings 1 and 2, 

respectively, are (0.53, 0.47). Based on this data, ordering 1 is selected 
as the DLT probability ordering most consistent with the data, and the 
posterior mean of a1 is 0.73. The model-based estimated DLT proba
bilities are ð0:25expð0:73Þ; 0:46expð0:73Þ; 0:35expð0:73Þ; 0:56expð0:73ÞÞ ¼

(0.056, 0.113, 0.199, 0.300), indicating that combination 4 has DLT 
probability closest to the target rate of 25%. In accruing participants in 
Population B, several DLTs are observed at combination 4 (participants 
11, 18, 20, and 25), prompting the design to settle in Zone 2 and to 
accumulate data on combinations 2 and 3. In the presence of DLTs 
observed on combination 2 (participants 26, 29, 30, and 31), the pos
terior model probabilities begin to separate from one another (0.18, 
0.82), indicating ordering 2 to be more likely to represent the true DLT 
probability ordering. Ultimately, the design settles on combination 2 for 

Table 5 
Simulation studies of design operating characteristics. The results displayed are based upon a maximum target accrual of 55 participants.  

Scenario Entinostat True DLT probability (Pop 
A, Pop B) 

% 
Stop 

% 
DLT 

Sample size Met Pts 25th 
% 
50th % 
75th % 

Sample size Resid Pts 25th 
% 
50th % 
75th % 

Total sample size 25th 
% 
50th % 
75th % 

% recommended 
avg # pts treated 
Capecitabine 
800 mg/m2 1000 mg/m2 

1 
All safe 

5 mg (0.09,0.09) (0.15,0.15) 0.1 13.1 9 
10 
14 

30 
30 
32 

39 
42 
46 

0.8 98.5 
4.1 34.0 

3 mg (0.02,0.02) (0.09,0.09) 
0.0 0.6 
1.7 3.7 

2 
All but one safe 

5 mg (0.15,0.15) (0.35,0.35) 0.9 22.4 9 
12 
15 

35 
40 
43 

49 
55 
55 

25.5 22.8 
14.4 12.2 

3 mg (0.10,0.10) (0.25,0.25) 
2.5 48.3 
5.6 19.2 

3 
All but one safe 

5 mg (0.25,0.25) (0.35,0.35) 1.2 22.8 10 
12 
15 

36 
40 
43 

49 
55 
55 

47.6 23.5 
19.3 11.8 

3 mg (0.10,0.10) (0.15,0.15) 
1.1 26.6 
4.7 15.5 

4 
Only one safe 

5 mg (0.50,0.50) (0.60,0.60) 8.5 28.6 7 
10 
13 

31 
38 
42 

41 
49 
55 

5.0 0.0 
5.2 0.6 

3 mg (0.20,0.20) (0.37,0.37) 
66.8 19.7 
26.3 13.4 

5 
All toxic 

5 mg (0.60,0.60) (0.70,0.70) 96.7 51.7 2 
6 
8 

0 
2 
8 

2 
8.5 
16 

0.0 0.0 
0.4 0.1 

3 mg (0.50,0.50) (0.60,0.60) 
3.3 0.0 
10.1 1.0 

6 
All but one safe in Pop 
B 

5 mg (0.50,0.15) (0.60,0.35) 10.1 23.0 7 
9 
13 

40 
44 
47 

55 
55 
55 

31.1 6.6 
12.7 2.8 

3 mg (0.20,0.10) (0.37,0.25) 
12.1 47.2 
18.8 17.7 

7 
All safe in Pop B 

5 mg (0.25,0.09) (0.35,0.15) 1.8 15.7 9 
13 
14 

38 
41 
43 

55 
55 
55 

13.1 79.3 
13.2 20.0 

3 mg (0.10,0.02) (0.15,0.09) 
0.0 7.3 
6.9 12.7 

Pop A ¼ Population A; Pop B ¼ Population B; avg ¼ average; pts ¼ participants. 
% Stop ¼ percentage of trials stopped early for safety with no MTDC recommendation. 
Met ¼ metastatic disease; Resid ¼ residual disease. 
25th, 50th, 75th % ¼ 25th, 50th, 75th percentiles. 
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the final 21 participants accrued to the study, triggering the stopping 
rule once 30 participants in Population B are accrued to combination 2, 
and recommending combination 2 as the MTDC. At study conclusion, 
the total observed DLT data from both populations at combinations 1–4, 
respectively, are (0/1, 8/32, 0/7, 6/13) with model-based estimated 
DLT probabilities (0.087, 0.254, 0.157, 0.359). 

3.3. Operating characteristics 

In addition to the illustrations above, we conducted computer 
simulation studies in order to evaluate the operating characteristics of 
the design described in the previous section over a broad range of 
assumed combination-toxicity scenarios with the following “themes,” 
(1) all assumed DLT probabilities are acceptable in terms of safety (i.e. 
� 25%), (2) all combinations but one are acceptable in terms of safety, 
(3) only one combination is acceptable in terms of safety, and (4) all 
combinations are too toxic. For each scenario, 5000 simulated trials 
were run. Table 5 reports the true DLT probability at each combination, 
the percentage of trials in which each combination was recommended as 
the MTDC, and the average number of participants treated at each 
combination. Displayed in the last five columns are the percentage of 
times in the simulations that the trial closed due to safety concerns, the 
percentage of simulated participants that had a DLT, and the selected 
percentiles for the number of participants for each participant popula
tion and total trial size at study closure. The results displayed in Table 5 
were based upon a maximum target accrual of 55 participants, and 
accrual to the study was stopped when 30 eligible participants in Pop
ulation B were treated at the recommended MTDC. With this type of 
design and stopping rules, the results indicated that on average the trial 
would achieve this goal with accrual in the range of approximately 
42–55 participants. 

From examining the results in Table 5 the proposed design has good 
properties in terms of recommending optimal dose combinations, as well 
as allocating participants to these combinations. In Scenario 1, the 
design selects the true MTDC in 98.5% of simulated trials, while 
assigning 34.0 participants on average to this combination with a me
dian trial size of 42 participants. In Scenario 2, recommendation of the 
true MTDC occurs in approximately 48.3% of simulated trials based on a 
median trial size of 55 participants, while allocating 19.2 participants on 
average to the true MTDC. It is important to note that when the target 
combination is not selected as the MTDC, treatments with assumed DLT 
probabilities within an acceptable toxicity range of 15%–35% are 
selected in 96.6% of simulated trials. Similar findings are obtained for 
Scenario 3. In Scenario 4, the design identifies the target combination as 
the MTDC in approximately 66.8% of simulated trials based on a median 
total trial size of 49, while allocating 26.3 participants on average to this 
combination. When combination 1 is not selected, the method tends to 
either choose combination 2 with the next highest assumed DLT rate 
(19.7% of the time), or stops the trial for safety (8.5% of the time). In 
Scenario 5, where all combinations are overly toxic, the method 
correctly terminates the study in 96.7% of simulated trials based on a 
maximum trial size of 16 participants, and treats 10.1 accrued partici
pants on average to Zone 1. Scenarios 6 and 7 present cases in which the 
DLT probabilities differ between the two populations, under the 
assumption that Population A has higher DLT probabilities than Popu
lation B. In Scenario 6, recommendation of the true MTDC occurs in 
approximately 47.2% of simulated trials based on a median trial size of 
55 participants, while allocating 17.7 participants on average to the true 
MTDC. Finally, in Scenario 7, the design selects the true MTDC in 79.3% 
of simulated trials, while assigning 20.0 participants on average to this 
combination with a median trial size of 55 participants. The perfor
mance of the design in Scenario 6 and 7 diminishes slightly when 
compared with Scenarios 2 and 1, respectively, as expected. Scenarios 6 
and 7 have the same Population B DLT probabilities as Scenarios 2 and 1, 
but have different Population A probabilities that place the true MTDC 
in Population A at a different combination than its location in 

Population B. Despite differing probabilities and location of MTDCs 
between populations, the design is still able to correctly identify the 
MTDC at the conclusion of the study in a high percentage of simulated 
trials. Overall, the simulation results indicate that the design outlined in 
this article is a practical early-phase adaptive method for use with drug 
combination therapies in the presence of heterogeneous patient 
populations. 

4. Conclusions 

The growth of novel methods in early-phase dose-finding has been 
rapid in the last decade, yet the implementation of innovative designs 
remains uncommon. In this article, we have outlined a novel adaptive 
design for early-phase trials involving a shift in patient populations 
implemented in an ongoing trial of a novel drug combination for par
ticipants with metastatic breast cancer and residual breast cancer after 
neo-adjuvant chemotherapy. The model-based method presented serves 
as an alternative to rigid rule-based methods that lack the ability to 
handle the complexity presented both by drug combination trials, as 
well as by patient heterogeneity. The use of more innovative approaches 
are being encouraged by the FDA and by others [13–16]. Simulation 
studies were performed to justify and evaluate the performance of the 
design characteristics. The simulation results in Table 5 demonstrate the 
method’s ability to effectively recommend desirable combinations, 
defined by acceptable toxicity, in a high percentage of trials with 
manageable sample sizes. We also explored the possibility of only using 
the data from Population A in order to arrive at the starting dose com
bination for Population B and ignoring the Population A data for esti
mation in the expansion phase. Simulation studies over a broad range of 
assumed combination-toxicity scenarios (results not shown) demon
strated that ignoring the Population A data for estimation in the 
expansion phase yielded slightly better performance in terms of 
correctly identifying the true MTDC, but at the expense of yielding an 
overall lower probability of accruing 30 participants on a combination 
in Population B. With the aim of accumulating enough information to 
evaluate treatment tolerance and disease-free survival at the selected 
MTDC, we wanted the design to appropriate balance the objectives of 
correctly identifying the MTDC and accruing 30 participants to this dose 
combination. Our assessment of these two approaches concluded that 
continuing to use the Population A data for estimation in the expansion 
phase was a more efficient use of the accumulating data. 

Software in the form of R [17] code for both simulation of design 
operating characteristics and direct protocol implementation of the 
method is available at http://faculty.virginia.edu/model-based_dose- 
finding/. The method we outline in this work can be viewed as an 
extension of the CRM, utilizing multiple skeletons for DLT probabilities 
to account for the uncertainty surrounding the toxicity profile of drug 
combinations. This increases the flexibility of CRM designs, enabling it 
to handle more complex dose-finding problems. The numerical results 
presented in the simulation studies such as the distribution of sample 
size and frequency of early trial termination is the type of simulation 
information that improve understanding, acceptance, and approval of 
novel designs such as the one described in this manuscript [18,19]. This 
support for adaptive designs will augment efficient early-phase trial 
design in drug combination studies [20]. Well-performing dose-finding 
designs can have a tremendous impact on the drug development process 
[21]. 

Financial support 

This work is supported by the National Cancer Institute 
[K25CA181638 to N.A.W. and R01CA142859 to G.R.P.]; the Biostatis
tics Shared Resource, University of Virginia Cancer Center, University of 
Virginia [P30 CA044579]. 

N.A. Wages et al.                                                                                                                                                                                                                               

http://faculty.virginia.edu/model-based_dose-finding/
http://faculty.virginia.edu/model-based_dose-finding/


Contemporary Clinical Trials Communications 17 (2020) 100519

7

Declaration of competing interest 

The authors declare no potential conflicts of interest. 

References 

[1] N.A. Wages, M.R. Conaway, J. O’Quigley, Continual reassessment method for 
partial ordering, Biometrics 67 (2011) 1555–1563. 

[2] N.A. Wages, C.L. Slingluff Jr., G.R. Petroni, A Phase I/II adaptive design to 
determine the optimal treatment regimen from a set of combination 
immunotherapies in high-risk melanoma, Contemp. Clin. Trials 41 (2015) 
172–179. 

[3] N.A. Wages, C.A. Portell, M.E. Williams, M.R. Conaway, G.R. Petroni, 
Implementation of a model-based design in a phase Ib study of combined targeted 
agents, Clin. Cancer Res. 23 (2017) 7158–7164. 

[4] N.A. Wages, C.L. Slingluff Jr., G.R. Petroni, Statistical controversies in clinical 
research: early-phase adaptive design for combination immunotherapies, Ann. 
Oncol. 28 (2017) 696–701. 

[5] A. Iasonos, J. O’Quigley, Design considerations for dose expansion cohorts in phase 
I trials, J. Clin. Oncol. 31 (2013) 4014–4021. 

[6] P.S. Boonstra, J. Shen, J.M.G. Taylor, et al., A statistical evaluation of dose 
expansion cohorts in phase I clinical trials, J. Natl. Cancer Inst. 107 (2015) dju429. 

[7] X. Paoletti, A. Kramar, A comparison of model choices for the continual 
reassessment method in phase I clinical trials, Stat. Med. 28 (2009) 3012–3028. 

[8] S.M. Lee, Y.K. Cheung, Model calibration in the continual reassessment method, 
Clin. Trials 6 (2009) 227–238. 

[9] Y.K. Cheung, Dose Finding by the Continual Reassessment Method, CRC Press, New 
York, New York, 2011. 

[10] J. O’Quigley, M. Pepe, L. Fisher, Continual reassessment method: a practical design 
for phase I clinical trials in cancer, Biometrics 46 (1990) 33–48. 

[11] L. Natarajan, J. O’Quigley, Interval estimates of the probability of toxicity at the 
maximum tolerated dose for small samples, Stat. Med. 22 (2003) 1829–1836. 

[12] N. Masuda, S.-J. Lee, S. Ohtani, et al., Adjuvant capecitabine for breast cancer after 
preoperative chemotherapy, N. Engl. J. Med. 376 (2017) 2147–2159. 

[13] M.K. Riviere, C. Le Tourneau, X. Paoletti, et al., Designs of drug-combination phase 
I trials in oncology: a systematic review of the literature, Ann. Oncol. 26 (2015) 
1036–1037. 

[14] X. Paoletti, M. Ezzalfani, C. Le Tourneau, Statistical controversies in clinical 
research: requiem for the 3 þ 3 design for phase I trials, Ann. Oncol. 26 (2015) 
1808–1812. 

[15] A. Iasonos, J. O’Quigley, Adaptive dose-finding studies: a review of model-guided 
phase I clinical trials, J. Clin. Oncol. 32 (2014) 2505–2511. 

[16] L. Nie, E.H. Rubin, N. Mehrotra, et al., Rendering the 3þ3 design to rest: more 
efficient approaches to oncology dose-finding trials in the era of targeted therapy, 
Clin. Cancer Res. 22 (2016) 2623–2629. 

[17] R Development Core Team, R: A Language and Environment for Statistical 
Computing, R Foundation for Statistical Computing, Vienna, Austria, 2008. 

[18] A. Iasonos, M. G€onen, G.J. Bosl, Scientific review of phase I protocols with novel 
dose-escalation designs: how much information is needed? J. Clin. Oncol. 33 
(2015) 2221–2225. 

[19] G.R. Petroni, N.A. Wages, G. Paux, et al., Implementation of adaptive methods in 
early-phase clinical trials, Stat. Med. 36 (2017) 215–224. 

[20] N.A. Wages, M.R. Conaway, C.L. Slingluff Jr., et al., Recent developments in the 
implementation of novel designs for early-phase combination studies, Ann. Oncol. 
26 (2015) 1036–1037. 

[21] M.R. Conaway, G.R. Petroni, The impact of early phase trial design in the drug 
development process, Clin. Cancer Res. 25 (2019) 819–827. 

N.A. Wages et al.                                                                                                                                                                                                                               

http://refhub.elsevier.com/S2451-8654(20)30003-X/sref1
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref1
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref2
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref2
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref2
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref2
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref3
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref3
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref3
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref4
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref4
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref4
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref5
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref5
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref6
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref6
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref7
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref7
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref8
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref8
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref9
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref9
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref10
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref10
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref11
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref11
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref12
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref12
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref13
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref13
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref13
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref14
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref14
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref14
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref15
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref15
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref16
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref16
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref16
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref17
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref17
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref18
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref18
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref18
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref19
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref19
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref20
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref20
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref20
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref21
http://refhub.elsevier.com/S2451-8654(20)30003-X/sref21

	Efficient dose-finding for drug combination studies involving a shift in study populations
	1 Introduction
	2 Methods
	2.1 Design considerations
	2.2 Estimation
	2.3 Stopping the trial
	2.4 Sample size and accrual

	3 Results
	3.1 Design behavior early in the trial
	3.2 Simulated trial example
	3.3 Operating characteristics

	4 Conclusions
	Financial support
	Declaration of competing interest
	References


