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Abstract

Currently available data are consistent with increased severe acute respiratory

syndrome coronavirus 2 (SARS‐CoV‐2) replication at temperatures encountered in

the upper airways (25–33°C when breathing room temperature air, 25°C) compared

to those in the lower airways (37°C). One factor that may contribute to more rapid

viral growth in the upper airways is the exponential increase in SARS‐CoV‐2 sta-

bility that occurs with reductions in temperature, as measured in vitro. Because

SARS‐CoV‐2 frequently initiates infection in the upper airways before spreading

through the body, increased upper airway viral growth early in the disease course

may result in more rapid progression of disease and potentially contribute to more

severe outcomes. Similarly, higher SARS‐CoV‐2 viral titer in the upper airways likely

supports more efficient transmission. Conversely, the possible significance of air

temperature to upper airway viral growth suggests that prolonged delivery of he-

ated air might represent a preventative measure and prophylactic treatment for

coronavirus disease 2019.
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1 | INTRODUCTION

The stability of viruses is affected by changes in temperature, and

severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2),
which causes coronavirus disease 2019 (COVID‐19), is no excep-

tion.1–10 Heat denatures the proteins that comprise each SARS‐CoV‐
2 virion, inactivating it.3,8 Laboratory data indicate that, as tem-

peratures increase, the rate at which virions are inactivated in-

creases exponentially.3,9 These in vitro data suggest that lower

temperatures within the body might result in lower rates of thermal

inactivation and therefore higher rates of viral growth, potentially

affecting viral shedding, viral load densities, transmission rates, and

patient outcomes.

SARS‐CoV‐2 replicates abundantly in the upper airways,11–13

and the temperature of the upper airways is directly affected by air

temperature. Air below body temperature is warmed during inhala-

tion through heat exchange with upper airway surfaces, reaching

core body temperature (37°C) at the level of the lower airways.14

This process cools the upper airways: Respiration of room tem-

perature air (25°C) reduces the upper airways to an average ambient

temperature of 33°C, which evolves from 25°C at the nasal vestibule

to 34°C at the nasopharynx to approximately 37°C near the tra-

chea.15–17 Lower air temperatures as well as faster and deeper re-

spiration cause further cooling.16,18–20 The airstream ordinarily rises

to within 0.5°C of body temperature by the trachea,14 making lower

airway temperatures unique to the upper respiratory tract.

Although complicating factors preclude the trivial extension of

SARS‐CoV‐2 in vitro decay rates to the in vivo environment, cur-

rently available data support increased viral replication at the cooler

temperatures of the upper airways relative to the warmer tem-

peratures of the upper airways.21–23

Abundant SARS‐CoV‐2 replication in the upper airways is

a driver of its high transmissibility and is pivotal to the pathogenesis

of COVID‐19.11,12,21,22,24–27 If air temperature affects
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SARS‐CoV‐ replication rates in the upper airways, then air temperature

may also contribute to transmission rates and progression of disease.

This article outlines the possible relevance of air temperature to

COVID‐19, with an emphasis on how the temperatures encountered

in the airways may influence the decay rate and replication dynamics

of SARS‐CoV‐2. While presently available data do not permit quan-

tification of the impact of air temperature on COVID‐19 transmis-

sion and disease progression, this article suggests that the potential

for such an effect warrants further study.

2 | COOL AIR MAY SUPPORT SARS‐COV‐2
REPLICATION IN THE UPPER AIRWAYS

The temperature gradient of the airways affects the replication ki-

netics of many respiratory viruses, including rhinoviruses, influenza

viruses and coronaviruses.21,22,28–32 Airway temperatures also in-

fluence the replication kinetics of SARS‐CoV‐2,21,22 which replicates

abundantly in the human airways.11–13 A study that used an in vitro

model for the human respiratory epithelium found that SARS‐CoV‐2
replicated 10‐ to 100‐fold more efficiently over 96 h at temperatures

found in the upper airways than those in the lower airways, 33°C and

37°C respectively.21 Possible differences in upper and lower airway

viral replication kinetics in vivo depend upon many factors, including

temperature‐dependent innate immune response that is more robust

at warmer air temperatures and higher humidities,21,33–38 as well as

cellular expression of the SARS‐CoV‐2 cell‐entry factor angiotensin‐
converting enzyme 2 (ACE2) which has a gradient expression in the

airways.11 Another contributing factor may be the temperature‐
dependent decay rate of SARS‐CoV‐2, which is the focus of this

article.

Like many viruses, SARS‐CoV‐2 decays exponentially across a

variety of mediums—including surfaces, aerosols, and solutions, such

as virus transport medium, nasal mucus, and sputum.1–10 The rate of

exponential decay increases with temperature as heat denatures the

proteins that comprise the SARS‐CoV‐2 virion.1–3,5–10 The SARS‐
CoV‐2 spike protein—which is necessary for cell entry—is

temperature‐dependent, in relation to the temperature required

for optimal virus replication.22 SARS‐CoV‐2 spike proteins exhibit

temperature preference to match the upper (~33°C) airways over

lower (37°C) airways, with further reductions in infectivity found as

temperature increases to fever levels (41°C).22,23 Analytical models

based on laboratory data for SARS‐CoV‐2 in solution and on inert

surfaces at various humidity conditions indicate that virus half‐life
decreases exponentially with increases in temperature (Figure 1).3,9

Complicating factors make the in vivo environment difficult to

compare with the laboratory data currently available, and additional

research is necessary to determine whether the rates of viral decay

in vivo are similarly affected by temperature. Existing clinical data

generally support the concept that viral pathogenicity decreases

with elevations in temperature, although exact mechanisms for this

effect remain under investigation. For example, more rapid re-

coveries are observed from chickenpox and rhinovirus infections

with avoidance of antipyretic medication.39–41 Whether these clinical

findings, including the prolongation of viral shedding with the use of

antipyretics, represent an influence of body temperature on viral

F IGURE 1 Virus lifetime as a function of temperature. (A) Predictions are shown for the duration of time required to produce a 3‐log
(99.9%) reduction in infectious titer.3 The analytical model was built on data for SARS‐CoV‐2 in viral transport medium.1 (B) The lifetime axis is
scaled linearly to emphasize the exponential relationship of virus lifetime and temperature
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decay is uncertain; however, the data are at least consistent with this

factor.

3 | COOL AIR MAY CONTRIBUTE TO
COVID ‐19 DISEASE SEVERITY AND
TRANSMISSION RATES

While much remains to be understood about the pathogenesis of

COVID‐19, available data indicate that the rate of viral replication in

the upper airways—especially during early stages of disease—may

have a significant impact on disease severity. The upper airways play

a pivotal role in the pathogenesis of COVID‐19. Like SARS‐CoV‐1,42

SARS‐CoV‐2 may primarily initiate infection on nasal surfaces.11,13

Nasal epithelial cells have high ACE2 expression, and cell cultures of

nasal epithelial cells indicate high infectivity.11,21 Clinically, high

SARS‐CoV‐2 viral titers are observed in the upper respiratory tract

early in infection (0–5 days).12,13,24 Moreover, the primary mode of

COVID‐19 transmission is via aerosols,43–45 and aerosol deposition

modeling suggests that inhalation of virus‐laden aerosols deposits

virus in the highest concentrations on nasal surfaces.11,46–48

After establishing infection in the nasal cavity, SARS‐CoV‐2 in-

fection may spread from nasal surfaces through the respiratory tract,

with high upper airway titers potentially enabling continual infection.

Similar to other human coronaviruses, SARS‐CoV‐2 replicates pro-

ductively on the nasal and tracheobronchial epithelium and sheds

over time onto the luminal surface of the epithelium.21,49,50 The

abundance of ACE2 on luminal surfaces of conducting airway epi-

thelium may enable considerable and progressive viral growth and

spread throughout the airways.11,51–54 For many lower respiratory

tract infectious diseases, oral‐lung aspiration contributes to disease

progression and severity.11,55–59 Nasal secretions containing rela-

tively high viral titers can accumulate in the oropharynx and are

predicted to subsequently spread to lower airways via aspira-

tion.11,60–64 Chest CT and autopsy studies from COVID‐19 patients

indicate patchy pulmonary infection, consistent with aspiration of

virus into the lung from the upper respiratory tract.11,65 Clinical data

from COVID‐19 patients indicate early viral replication in the upper

airways followed by pulmonary infection, consistent with viral spread

from upper to lower airways.11,13 Taken together, these data suggest

that SARS‐CoV‐2 may establish infection in the nasal cavity and

progressively replicate and spread through the airway epithelia,

especially via aspiration. The data are also consistent with the con-

cept that the upper respiratory tract serves as a viral reservoir that

enables continual reinfection of proximate airway surfaces, sup-

porting repeated cycles of viral replication and spread through the

airways, which would suggest that viral growth in the upper re-

spiratory tract might remain pathogenically significant even after

infection has spread beyond the upper airways.

Rapid SARS‐CoV‐2 replication in the nasal cavity and upper

airways may therefore contribute to greater and more rapid infec-

tion of the lower airways. Data on viral load are consistent with this

hypothesis: SARS‐CoV‐2 upper respiratory tract viral load is strongly

correlated with adverse outcomes and has been hypothesized to be a

predictor of disease severity.27 The nasopharyngeal viral load of

severe COVID‐19 cases has been found to be about 60 times higher

than that of mild cases.27

As such, factors that promote more rapid viral growth in the

upper airways may contribute to greater disease severity. Because

cool air potentially promotes more rapid SARS‐CoV‐2 growth by

reducing viral decay rate in the upper airways and suppressing innate

immune response, cool air may contribute to greater disease sever-

ity. The contribution of reduced viral decay rate may be consider-

able, as the virion half‐life of SARS‐CoV‐2 in vitro increases

exponentially with decreases in temperature. For SARS‐CoV‐2 in

virus transport medium, a 3‐log (99.9%) reduction in viral titer is

predicted to occur in 7.1 h at the temperature of the lower airways

(37°C), 12.5 h at the average temperature of upper airways (33°C),

and 52.2 h at the temperature of the nasal vestibule (25°C), where

F IGURE 2 Virus lifetime at common indoor air temperatures.
The mean temperatures of the upper respiratory tract when
breathing 25°C (room temperature) air are transposed over the
predicted in vitro virus lifetime as a function of temperature.3,15 The
upper respiratory tract spans a temperature range from air
temperature to body temperature.
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airway temperatures assume room temperature air (25°C) (95%

confidence interval of 2.8–17.7, 5.1–31.0, and 19.8–138.9 h, re-

spectively) (Figure 2).3 Lower temperatures correspond to ex-

ponentially longer SARS‐CoV‐2 half‐life. Significantly enhanced viral

growth at the lower temperatures encountered in the upper airways

also likely supports the efficient transmissibility of SARS‐CoV‐2, as
higher viral titer in the upper airways produces higher viral titer in

expelled respiratory droplets.12,21,22,24–26

The seasonality of respiratory viruses is a widespread and well‐
established phenomenon, affecting both transmission rates and

mortality.66–68 A variety of factors have been identified as drivers of

seasonality, among which outdoor air temperature features promi-

nently. The transmission and severity of many acute respiratory

viruses—including rhinoviruses, influenza viruses, and coronaviruses

—are negatively correlated with outdoor air temperature.33,35,67–69

Seasonality has been widely hypothesized to occur for SARS‐CoV‐2,
and many studies have sought to determine the relationship between

the rate of COVID‐19 transmission and meteorological factors—

including outdoor air temperature. The majority of currently avail-

able studies suggest that outdoor temperature is negatively corre-

lated with COVID‐19 transmission rates, although findings are not

unanimous.70–76 Despite an abundance of studies on this topic, the

implications are still unclear as the data are rife with confounding

variables. Some confounding variables are behavioral: For instance,

during cold weather, people spend more time indoors, which sup-

ports more efficient transmission. Other confounding variables are

associated with geography, such as population density,72,77 social

distancing practices,78 quality of available health care, frequency of

international travelers,72,79 and prevalence of viral variants asso-

ciated with transmissibility and virulence.80–84 Furthermore, other

meteorological factors may affect transmission rates: Humidity re-

sults in more rapid SARS‐CoV‐2 decay in vitro,6,7,9,10 improves air-

way immune response to infection by respiratory viruses,33 and is

negatively correlated with the transmission of many respiratory

viruses66,67; while ultraviolet radiation from sunlight rapidly in-

activates SARS‐CoV‐2 viral particles, both on surfaces and in the

air.85–88 An additional factor to consider when attempting to use

meteorological data to evaluate the effect of respired air tempera-

ture on transmissibility is that outdoor air temperature is not always

equivalent to the temperature of air respired: In developed nations,

people spend the majority of their time in temperature‐controlled
environments,89,90 which is where the majority of respiratory virus

transmission occurs.33 Studies on areas where people do not utilize

temperature‐controlled environments may be more useful in this

capacity, although such studies of course face many of the same

issues that other historical meteorological studies do. In sum, despite

widespread interest in the topic and an abundance of studies, it is

still difficult to assess the degree to which the temperature of re-

spired air contributes to transmission rates for SARS‐CoV‐2, al-

though the data generally indicate decreases in transmission with

increases in temperature.

Notably, although COVID‐19 patients often develop fever, fever

does not heat upper airway surfaces as effectively as it does other

areas of the body.91,92 Even in a feverish patient, inhaled air begins at

ambient temperature at the nostrils and converges to the patient's

body temperature as it moves through the airway, cooling upper

respiratory tract surfaces along the way.15 This cooling implies di-

minished thermal inactivation of SARS‐CoV‐2 in the upper re-

spiratory tract relative to other locations in the body. As such, the

temperature of the upper airways would be relatively conducive to

viral growth compared to other areas of the body, even during fever.

4 | HEATED, HUMIDIFIED AIR MAY
REPRESENT A POSTEXPOSURE
PROPHYLACTIC TREATMENT FOR
COVID‐19

The pathogenetic significance of the upper airways to the severity of

COVID‐19 suggests that reduction of SARS‐CoV‐2 viral titer in the

upper airways early in the disease may result in less severe disease

and reduced transmission. Suppression of upper respiratory tract viral

replication would likely have a greater impact in preventing escalation

of severity if suppression occurs when SARS‐CoV‐2 is mostly con-

tained in the upper respiratory tract, immediately postexposure or

early in SARS‐CoV‐2 infection. This suggests that administration of

warm air may potentially represent a therapeutic measure as a

postexposure prophylaxis and an early‐stage treatment to prevent

disease progression. For SARS‐CoV‐2 in solution in vitro, a 3‐log
(99.9%) reduction in viral titer is predicted to occur in 12.5 h at the

average temperature of upper airways (33°C), in 7.1 h at normal core

body temperature (37°C), and in just 1.7 h at 45°C, an air temperature

tolerable by healthy individuals for prolonged periods (95% con-

fidence interval of 5.1–31.0, 2.8–17.7, and 0.6–4.6 h, respectively)

(Figure 3).3,93 Longer exposure to heat results in greater total re-

ductions in viral decay. In addition to the possible effect on viral decay

rates, warm air temperature and high relative humidity also facilitate a

strong airway immune response, which could further contribute to the

benefit of warm humidified air.21,33–38

It is important to note that air above core body temperature is

cooled during inhalation, limiting the effectiveness of very warm air

in reducing viral stability in lower areas of the respiratory tract. It

should also be noted that warm air does not warm the entire upper

respiratory tract evenly but rather elevates the temperature range in

the upper airways.14 Temperature changes caused by respiration

begin immediately, with the temperature of upper airway mucosal

surfaces equilibrating within 7min at resting respiratory rate.19

The necessary air temperature and duration of treatment de-

pend on the exposure dose. A larger exposure dose would require

greater reduction to be reduced to less than infectious levels and for

that reason it would require a longer treatment duration with warm

air and/or a higher air temperature (Figure 3B).

Importantly, prophylactic treatment with warm air need not

reduce viral titer below infectious levels to be of potential benefit. The

severity of many viral diseases is believed to be proportional to the

initial viral inoculum.94 Clinical studies conducted with influenza and
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coronaviruses indicate a dose‐dependent increase in disease sever-

ity.95,96 Masks might reduce the inoculum exhaled by an infected host,

and outbreaks of COVID‐19 within populations where mask‐wearing
is enforced have resulted in lower rates of severe disease and fatal-

ity.94,97 This concept is consistent with clinical data on COVID‐19
patients that indicate a strong correlation between upper respiratory

tract viral load and disease severity.27 Studies in the Syrian hamster

model found that lower doses of administered SARS‐CoV‐2 virus led

to less severe disease than higher doses.98 Taken together, these data

suggest that reduction of SARS‐CoV‐2 viral titer early after in-

troduction to the upper airways may result in less severe disease.

Similarly, reduced viral titer in the respiratory droplets expressed by

that individual may result in less severe disease in naive hosts who

contract COVID‐19 from that infected individual.

Currently available data are consistent with the hypothesis that

warm air delivered early in the disease may reduce viral titer and

prevent escalation of severity. An interventional study provided seven

asymptomatic or pauci‐symptomatic COVID‐19 patients with 20min

of steam inhalation for 4+ consecutive days.99 Symptomatic patients

reported clinical improvement at the end of the protocol, and all

patients tested negative after the first day of steam inhalation. This

observation is preliminary—the study being limited in part by small

sample size and the lack of a control group—and needs confirmation in

a controlled trial, but the promising results suggest that further in-

vestigation of warm air as an early‐stage treatment is warranted.

Warm air delivery can be tolerated for long periods of time. Air

that is humidified and heated to 37°C or 41°C and delivered via nasal

high flow therapy (35 L/minute) for multiple hour‐long sessions daily

is well tolerated by healthy individuals.100 Temperatures as high as

45°C are also well tolerated for prolonged periods.93 Risks of aero-

solizing SARS‐CoV‐2 must be considered when determining method

of warm air delivery for COVID‐19 patients.

5 | DISCUSSION

SARS‐CoV‐2 viral stability increases exponentially with decreases in

temperature, as measured for virus in solution.3,9 The temperature‐
dependent decay rate suggests that cool air temperatures might

enable increased rates of SARS‐CoV‐2 growth in the upper

F IGURE 3 Virus lifetime at elevated air temperatures. (A) The temperature range of upper airway surfaces given an elevated temperature
air (45°C) and assuming a body temperature of 37°C is transposed over the predicted in vitro virus lifetime as a function of temperature.3

(B) The reduction in viral titer at 45°C is compared to that at body temperature (37°C).
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airways.15–17 This is a proposed effect based on the review and

survey of existing laboratory data, and conclusive demonstration of

an effect in vivo remains to be performed. The concept is supported

by currently available data: In epithelial cell cultures, SARS‐CoV‐2
replicates more efficiently at temperatures encountered in the lower

airways than those in the upper airways (33°C and 37°C, respec-

tively).21–23 Further proof of this concept will require more complex

clinical studies.

More rapid SARS‐CoV‐2 replication in the upper airways has

potential implications for disease severity. Clinical and laboratory

data suggest that SARS‐CoV‐2 frequently initiates infection in the

nasal cavity and progressively spreads through the airways, espe-

cially via aspiration.11,13,21 Rapid SARS‐CoV‐2 replication in the up-

per airways may support greater and more rapid infection of the

lower airways, possibly contributing to more severe outcomes.

Clinical data support this concept: SARS‐CoV‐2 upper respiratory

tract viral load is strongly correlated with adverse outcomes and has

been hypothesized to be a predictor of disease severity.27 As such,

respiration of cool air might be a contributing factor to COVID‐19
severity. Enhanced SARS‐CoV‐2 viral growth potentially enabled by

the lower temperatures of the upper airways might also contribute

to more efficient transmission, as higher viral titer in the upper air-

ways produces higher viral titer in expelled respiratory dro-

plets.12,24–26 Studies based on meteorological data generally indicate

negative correlation between COVID‐19 transmission and outdoor

air temperature, although the strength of this correlation is obscured

by a multitude of confounding variables.70–76 Further research is

necessary to quantify the potential impact of respired air tempera-

ture on disease severity and transmission rates. It may be productive

to examine the impact of air temperature on upper respiratory tract

viral load in an animal model after exposure to air at various tem-

peratures and for various durations.

Conversely, warmer air may reduce upper airway viral titer of

SARS‐CoV‐2, which may contribute to less severe disease if upper

airway viral titer is suppressed when infection is local to the nasal

cavity and upper airways, immediately postexposure or very early in

SARS‐CoV‐2 infection.94,97,98 This suggests that administration of

warm air may potentially represent a therapeutic measure as a

postexposure prophylaxis and an early‐stage treatment to prevent

disease progression. This concept is supported by preliminary clinical

data: A study that provided seven asymptomatic or pauci‐
symptomatic COVID‐19 patients with 20min of steam inhalation for

4+ consecutive days found that symptomatic patients reported

clinical improvement at the end of the protocol and all patients

tested negative after the first day of steam inhalation.99 While these

observations are preliminary, they suggest that further investigation

of warm air as an early‐stage treatment is warranted.

Warm air delivery would need to occur for extended durations

to suppress viral replication to a degree that would be beneficial, as

decreases in virus infectivity are dependent on duration of exposure

to elevated temperatures (Figure 3B).3,9 Warm, humidified air is well‐
tolerated over long durations.93,100 It is important to note that air

above body temperature will be cooled during inhalation, limiting the

effectiveness of very warm air in reducing viral stability in lower

areas of the respiratory tract. Care must be taken when adminis-

tering air to COVID‐19 patients to avoid aerosolizing viral particles.

Postexposure prophylaxis applications may be of particular re-

levance for healthcare professionals who have insufficient personal

protective equipment, as well as for populations who are at risk of

more severe disease.

There could also be opportunities for innovation in mask design

to not only capture respiratory droplets and aerosolized viral parti-

cles, but also to warm inhaled air. Heating masks already exist and

could be modified or directly applied to the aim of increasing thermal

inactivation of virus in the upper respiratory tract.101–104 Even

simple face masks have been shown to conserve heat loss from

breathing and diminish upper airway cooling,101 suggesting that

simply increasing the duration of mask usage may be beneficial. Mask

design and usage could be a promising area for innovation and fur-

ther study.

The impact of temperatures in the body on viral growth may

help explain COVID‐19 transmission rates and disease severity.

Advances made in understanding the various impacts of temperature

on COVID‐19 could inform both disease prevention and treatment,

with potentially significant impacts on patient outcomes and global

disease burden.
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