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Isoflavone intake through foods and dietary supplements has both health advocates and critics. The latter come from a concern
about the estrogenic effects of isoflavones in certain species. However, careful removal of isoflavones and other estrogens from
the diet of rodents leads to the metabolic syndrome. These results suggest that isoflavones have other mechanisms of action,
potentially those involving regulation of fatty acid metabolism via the nuclear receptors PPARα and PPARγ. The goal of this
paper was to examine the evidence for isoflavone/PPAR signaling and to identify diseases in which such signaling would have an
important impact. It is therefore of note that investigators using a chemical structure approach to discover PPAR ligands identified
isoflavones as the best structures in the library of compounds that they tested. Future studies will involve careful identification of
the underlying mechanisms whereby isoflavones have their action via PPAR signaling.

1. Introduction

The importance of plant estrogens (phytoestrogens) in the
human diet has become a topic of great interest [1], as well
as dispute [2]. The principal phytoestrogens in the American
and Western European diets are the isoflavones in soy foods
[3, 4]. It is noteworthy that soy protein is widely used for
animal diets both in commercial food production and for
animals in research studies. In the latter, it has been realized
by several investigators that isoflavones have significant phys-
iological effects. Many toxicologists have been concerned
that the estrogenic properties of isoflavones could lead to
infertility [5]. Such a connection was first observed in sheep
infertility in Western Australia which was attributed to the
red clover (Trifolium pratense) that they consume. Red clover
contains large amounts of isoflavones [6]. Similar infertility
effects were observed in captive cheetahs [7], although this
may be related to the failure of the cat family to glucuronidate
many xenobiotics [8]. On the other hand, removal of soy

from the diets of rats in chemoprevention experiments led
to an increase in incidence of chemically induced mammary
tumors [9]. Similarly, soy improved the blood pressure of
spontaneously hypertensive rats on a high-salt diet [10] and
ameliorated the cold sensitivity of mice with gene knockouts
of the first members of the β oxidation of long-chain fatty
acids [11]. Many such examples of the disparate effects of
isoflavones have been reported which stem, in part, from a
lack of understanding of biological mechanisms of action of
isoflavones in individual species.

In this paper, we discuss several lines of emerging
evidence implicating isoflavones as activators of PPARα and
PPARγ. Indeed, we hypothesize that isoflavone-dependent
activation of PPARα and PPARγ signaling is key to under-
standing how these compounds affect multiple pathophysio-
logical processes. Intriguingly, a study employing structure-
based virtual screening with induced fit locking analysis
for identifying novel PPARγ ligands revealed that out
of a natural product library comprising 200 compounds
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Figure 1: The isoflavones: generic 7-hydroxy-benzopyran-4-one
ligands for PPARγ. Isoflavones have a B-ring aryl substituent in
the 3-position and a Δ2−3double bond. Common isoflavones are
daidzein (R5 = R6 = R8 = H, R7 = R′4 = OH, R′2 = R′3 = R′5 = H′),
genistein (R6 = R8 = H; R5 = R7 = R′4 = OH; R′2 = R′3 = R′5 = H′),
formononetin (R5 = R6 = R8 = H; R7 = OH; R′2 = R′3 = R′5 = H; R′4 =
OCH3), and biochanin A (R6 = R8 = H; R5 = R7 = OH; R′2 = R′3 = R′5
= H; R′4 = OCH3). The chemical library search also showed that the
atom at position-3 in the B-ring can be either carbon or nitrogen.

isoflavones were the optimal PPARγ ligands [12]. We have
shown that modification of isoflavones by nitration and/or
chlorination, which may occur in vivo, forms novel products
with altered efficacy for PPARγ activation [13, 14]. Addition-
ally, a recent comprehensive structure-activity relationship
study demonstrated that the 7-hydroxy-benzopyran-4-one
structure, which comprises the core isoflavone (and other
flavonoids) structure (Figure 1), is key for PPAR activa-
tion [15]. Selective modification of this core can form
molecules with dual PPARα- and PPARγ- ligand-binding
activity [15]. From this perspective, isoflavones and their
biological metabolites may provide the template for the
next generation of PPAR agonists. Isoflavones are naturally
occurring compounds and are safely ingested in amounts up
to 100 mg/day. This is an exciting area of investigation and
underscores the possibility that these compounds could be
used therapeutically with a low occurrence of unwanted side
effects. This paper comprises summaries of several aspects of
isoflavones: their biochemistry and chemistry, their dietary
intake, bioavailability and metabolism, their association with
prevention of chronic disease, and their mechanisms of
action, with special emphasis on PPAR signaling.

2. Biosynthesis and Chemistry of Isoflavones

Isoflavones are members of the huge family of plant polyphe-
nols [16]. The polyphenols include bioflavonoids (e.g.,
quercetin, catechins, proanthocyanidins) and stilbenoids
(resveratrol). Bioflavonoids consist of many classes. Depend-
ing on the position of the aromatic B-ring substituent
on the heterocyclic C-ring, they can be broadly separated
into flavonoids and isoflavonoids. Both are derived from a
common precursor, phenylalanine. Following the formation
of the flavonoid ring system, the aromatic B-ring migrates
from the 2-position to the 3-position catalyzed by an enzyme
restricted to tropical leguminous plants. Edible plants
containing the highest concentrations of isoflavones are

soybeans (Glycine max Merrill) [17], kudzu root (Pueraria
lobata) [18], and the American groundnut (Apios americana)
[19].

The isoflavones in each of these plants are principally gly-
coside conjugates of daidzein (7,4′-dihydroxyisoflavone) and
genistein (5,7,4′-trihydroxyisoflavone). In soy, the conjugates
are the 7-O-β-D-glucopyranosides with additional esterifi-
cation on the 6′′-position of the glucose moiety [20, 21].
The conjugate groups are removed either by fermentation
(to make miso, soy paste, and tempeh) [3] or by intestinal
hydrolysis induced by enzymes in the wall of the intestine
(lactose phlorizin hydrolase) [22] or by bacteria. In the kudzu
root, C-glucoside conjugates of isoflavones (e.g., puerarin,
daidzein 8-C-β-glucopyranoside) predominate [18]. These
are absorbed and excreted without hydrolysis, probably by
Na+-dependent glucose transporter systems.

3. Dietary Intake of Isoflavones

In the Western diet, exposure to isoflavones comes mostly
from the use of soy protein to impart useful characteristics
to foods such as low-fat dairy and bakery products, soups,
doughnuts, hamburger buns, canned fish, and whole turkeys
[23]. In addition, vegetarians and those seeking low-fat diets
consume soy foods such as soy milk, tofu, and textured
vegetable protein. Athletes wanting a high-protein/low-fat
diet use isolated soy protein. The average consumer has
a daily intake of 1-2 mg isoflavones [24], giving rise to
plasma concentrations from 20 to 150 nM. Those consuming
1-2 soy meals a day (20–40 mg isoflavones) have plasma
concentrations ranging from 200 to 3000 nM [25]. This wide
range of plasma concentrations is typical of many orally
ingested therapeutics and represents differences in uptake
from and metabolism in the gut, as well as differences
in tissue metabolism and urinary and fecal excretion.
Isoflavones are also available as over-the-counter dietary
supplements nominally containing 50 mg per pill. This
enables considerably higher isoflavone intakes. Zeisel and
his colleagues have reported phase 1-dose escalation studies
where daily doses of >1,000 mg soy isoflavones were used
without reported significant hazards [26, 27].

The isoflavones in the blood, as for physiological
steroids and many other xenobiotics, are principally β-
glucuronides, with lesser amounts of sulfate esters and only
low (10–100 nM) concentrations of their aglycone forms
[28]. Isoflavones also undergo metabolism in the large
intestine (Figure 2), and the bacterial products such as
dihydrodaidzein (DHD), O-desmethylangolensin (ODMA),
and S-(-)equol enter the circulation [29]. Whereas DHD and
ODMA are present in most subjects, only 20–30% of people
studied producing S-(-)equol [30, 31]. The discussion above
is presented to underscore the importance of appreciating
the range of concentrations achieved in vivo together with
the knowledge that effects of isoflavone consumption may
in fact be mediated by their derivatives from intestinal
bacterial and/or host cell metabolism, in understanding their
mechanisms of action.

In the next sections, we select some of the diseases
that have been shown to be modulated by isoflavones and
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Figure 2: Metabolites of daidzein. Daidzein is converted by anaerobic bacteria in the large intestine to several metabolites, dihydrodaidzein,
O-desmethylangolensin, and equol. Each of these metabolites has a chiral center at C-3 due to the reduction of the Δ2−3double bond (marked
with a star∗). Equol is found as its S-(-)-equol enantiomer. The chirality of the other daidzein metabolites is not known.

examine the potential sites of involvement of PPAR signaling
and other mechanisms of action.

4. Association with Chronic Diseases:
Cellular and Animal Models

4.1. Isoflavones and Cardiovascular Disease. Consumption of
isoflavones is associated with protection against atheroscle-
rosis, a chronic disease of the vessel wall that underlies the
development of many acute cardiovascular disease events
including myocardial infarction and stroke [32–34]. These
observations are supported by experimental studies in
diverse animal models of atherosclerosis showing that dietary
isoflavones can inhibit the disease [35–37]. Interestingly,
if isoflavones are administered only in the latter stages of
disease, the protective effects are lost suggesting that these
polyphenols target the early events of atherosclerosis [38].
Less clear are the mechanisms by which isoflavones inhibit
atherosclerosis. The two general hypotheses are that these
compounds are antioxidants and/or modulate specific sig-
naling pathways related to inflammation in the vasculature
that affects the disease [39]. With antioxidant effects, the
concept has been that by scavenging reactive species, which
would otherwise promote oxidative damage, isoflavones
prevent atherosclerosis. The most cited example in this
case is the inhibition of low-density lipoprotein oxidation,
formation of which is central in atherogenesis [40]. More
recent evidence suggests the hypothesis that isoflavones
modulate vascular disease by affecting signaling pathways.
In this paradigm, low (submicromolar) concentrations of
isoflavones activate the specific signaling pathways that

regulate cellular responses to inflammation. Two candidate
pathways defined to date which meet this criterion are
activation of ERβ and that of PPARs [41, 42]. We focus the
discussion in this paper on PPARs and note that activation of
PPARα, or –γ, has been viewed mainly from the perspective
of the regulation of genes that control lipid and glucose
metabolism [43]. However, emerging data suggest critical
roles in modulating vascular inflammatory and immune
responses also [44–48]. For example, PPARγ ligands decrease
atherosclerotic lesion size in experimental models [49]. The
anti-inflammatory effects of PPARs appear to be restricted to
the α and γ isotypes, and from the perspective of control-
ling endothelial function, PPARγ ligands inhibit cytokine-
dependent expression of adhesion molecules (although these
responses are dependent upon cell type, nature of the
inflammatory stimulus, and specific ligand used) [44, 48].
With respect to isoflavones, cell and animal studies have
shown these compounds to be agonists for PPARα- and
PPARγ-dependent pathways (see below). For example, the
antidiabetic effects of isoflavones are associated with PPARγ
activation in macrophages [49], and with respect to vascular
inflammation specifically our published studies show that
isoflavones activate PPARγ in the endothelium and in turn
results in an inhibition of monocyte rolling and adhesion, a
key step in inflammation [13, 14] (Figure 3).

4.2. Cancer. Little consideration has been given by the cancer
research community to possible roles of isoflavone-directed
PPAR signaling [50]. Nonetheless, genistein has been shown
to lower the production of prostaglandin E2 by MDA-MB-
231 human breast cancer cells and to reduce invasiveness
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Figure 3: Isoflavones activate the PPARγ promoter: cultured
endothelial cells were transfected with plasmids containing the
promoter response elements for PPARγ (PPRE) or PPRE-negative
plasmids and then exposed to indicated isoflavones (1 μM) and
vehicle controls. Data are expressed as fold of the control (i.e.,
relative to no isoflavone-treated cells) and are means ± SEM (n =
3–6). ∗Different from control, P ≤ .005. They illustrate the ability
of isoflavones to stimulate transcription of PPARγ-regulated genes.
Genistein, daidzein, and biochanin A (4′-methoxygenistein) have
promoter activities comparable to rosiglitazone (figure reproduced
with permission by the Journal of Nutrition).

of these cells [51]. The effect of eicosapentaenoic and
docosahexaenoic acids in activating PPARγ was dependent
on genistein [52]. Effects of isoflavones on lipid signaling
may be an important aspect of carcinogenesis and tumor
invasiveness.

4.3. Lymphangioleiomyomatosis. This rare lung disease
affects 1 in 100,00 women [53]. It is caused by migration
of uterine smooth muscle cells to the lung where they
form cysts and cause loss of lung function. Many of the
women have mutations in tuberin (TSC1) and harmartin
(TSC2) that form the tuberous sclerosis protein complex
[54]. The TSC1/TSC2 complex is a critical player in the
control of mTOR, a master regulator of cellular metabolism.
The migration of ELT-3 cells to the lungs in a rodent model of
lymphangioleiomyomatosis is driven by 17β-estradiol [55].
There is a concern that the isoflavones may mimic this action
of estrogen [56]. However, a recent study on estrogen pro-
liferation of ELT-3s cell also showed that genistein blocked
this action of 17β-estradiol [57]. Importantly, genistein’s
inhibitory effect was in turn attenuated by the PPARγ
inhibitor GW9662 [57]. This underscores the likelihood that
the action of isoflavones in mammals including man is multi-
factorial and that PPAR signaling is a target of the isoflavones.

4.4. Metabolic Syndrome. There is an extensive literature
going back to 2001 linking soy and its isoflavones to
lipid metabolism and the metabolic syndrome. Harmon
and Harp showed that genistein inhibited the proliferation

and differentiation of 3T3-L1 cells, a preadipocyte cell
line [58]. Genistein also increased lipolysis in these cells
[58]. These investigators also demonstrated that genistein
blocked the DNA binding and transcriptional activity of
the CCAAT-/enhancer-binding protein beta by promoting
the production of C/EBP homologous protein [58]. This in
turn impacted PPARγ protein expression [58]. A differential
effect of genistein was observed in mesenchymal progenitor
cells and revealed opposing effects of estrogen receptor and
PPARγ pathways [59]. At low genistein concentrations, the
estrogen-like effect was observed, whereas at micromolar
concentrations, PPARγ activation predominated [59]. This
raises the issue of which of these two effects are observed
in vivo. Mezei et al. showed that diabetic Zucker rats fed a
high isoflavone diet have lower triglyceride and cholesterol
concentrations [49]. They also demonstrated that genistein
and daidzein significantly increased PPARα- and PPARγ-
directed gene expression in murine RAW 264.7 cells [49].

5. Isoflavone Mechanisms of Action

Whereas isoflavones and other phytoestrogens were origi-
nally studied because of their estrogenic activity in certain
species, it has become clear that they have additional
mechanisms of action that may override their estrogenic
effects. Genistein was identified in 1987 as a potent inhibitor
of the epidermal growth factor receptor tyrosine kinase
[60]. This was important to the cancer field at that time
since genistein, unlike comparable, chemically synthesized
tyrosine kinase inhibitors, did not have toxic effects at
the doses needed for tyrosine kinase inhibition. Genistein
has been widely used as a pharmacological tyrosine kinase
inhibitor often without validation that any changes in protein
phosphorylation observed on Western blots were due to
direct genistein inhibition of phosphorylation as opposed to
indirect effects due to a reduction in the parent protein.

Like other polyphenols, many studies have shown that
isoflavones can scavenge various reactive oxygen species
(RO), reactive nitrogen species (RN) or reactive chlorine
species (RCS) that are formed endogenously during the
innate immune response, but which also cause tissue
injury that leads to the development of acute and chronic
inflammatory disease [61–69]. In doing so, the “antioxidant”
effect of isoflavones has been proposed to mediate their
cytoprotective effects. This concept is supported by human
studies showing a decrease in plasma markers of lipid per-
oxidation after consuming isoflavones [70]. Concerns over
the antioxidant hypothesis include the discrepancy between
isoflavone concentrations achieved in the circulation (0.1–
1 μM) after dietary ingestion and those required to observe
a significant inhibition of oxidative damage ex vivo and
in vitro with the latter typically being ≥10-fold higher.
Another consideration is that although the primary reactive
species may be scavenged, the products of the reaction
and their reactivities must also be considered. With respect
to isoflavones, we have shown that upon reacting with
lipid peroxyl radicals (which inhibits lipid peroxidation),
the corresponding isoflavone oxidation product (a phenoxyl
radical) is not inert but can also promote oxidative damage
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itself [67]. Interestingly, the presence of ascorbate can reform
the parent isoflavone from this intermediate allowing the
isoflavone to act as an antioxidant in a “catalytic” manner
which would also allow it to exert significant antioxidant
effects in vivo at low concentrations [65, 67]. Finally,
it is important to note that a key variable in assessing
mechanisms of action is the fact that isoflavone preparations
are not typically homogenous but contain complex mixtures
of structurally distinct molecules. Moreover, it is now
apparent that isoflavone metabolism can give rise to an
array of products which themselves have different biological
activities. For example, equol is produced by the action of gut
microflora on ingested daidzein (see above). Interestingly,
the composition of this microflora is not homogenous
across the human population, and recent studies suggest that
“equol producers” receive the health benefits of isoflavones
consumption more than “equol nonproducers” [71]. In a
similar fashion, reaction between isoflavones and reactive
species in vivo can form novel isoflavone derivatives. For
example, reaction with the RNS peroxynitrite or with
the RCS hypochlorous acid form mono- or dinitrated or
chlorinated isoflavones, respectively [61, 62]. We have shown
that nitration and/or chlorination changes the antioxidant
activity of the products compared to the parent isoflavones
and in some cases increases antioxidant potency [62]. In
this case, the first reactions would scavenge the reactive
species but in addition also form more potent antioxidant
isoflavones. We postulate that such mechanisms described
above may reconcile the differences between dose-response
relationships for antioxidant effects of isoflavones in vivo
versus in vitro [72].

Attempts to produce animal diets free of phytoestrogens
to provide more consistency in experiments designed to
investigate the effects of added phytoestrogens had an unex-
pected, but critically important, effect. The animals showed
had a marked increase in weight with the phytoestrogen-free
diets, mostly in the form of abdominal fat [73]. This result
suggested that phytoestrogens have a role in preventing the
metabolic syndrome which in turn points to possible activity
in PPAR signaling.

6. Isoflavones and Cell Signaling:
Activation of PPARs

Several studies have now developed the concept that
activation of either PPARα and/or PPARγ is key to the
biological effects of isoflavones [42]. This has been demon-
strated in diverse experimental settings and cell types
(including endothelium, monocytes, HepG2, bone mar-
row stromal cells) and importantly occurs at biologically
relevant isoflavone concentrations. Using constructs con-
taining either PPARα-/PPARγ- ligand binding-domains or
sequences corresponding to promoter response elements,
several independent studies [13, 42, 49, 74] have provided
molecular evidence that isoflavones can stimulate PPARα/γ-
dependent gene expression. Importantly, this results in
diverse functional effects that include modulating adipo-
genesis to regulating cellular responses to inflammation.
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Figure 4: Isoflavones inhibit TNFα-induced monocyte adhesion
to the vascular wall via activation of PPARγ. Both genistein
(1 μM) and rosiglitazone (2 μM) significantly reduced TNFα-
induced monocyte adhesion to the vascular wall compared to TNFα
alone. This inhibition was reversed by the PPARγ antagonist, GW
9662 (5 μM), revealing that genistein’s inhibitory effect was PPARγ
dependent (reproduced with permission by the American Journal of
Physiology).

Moreover, these cellular responses are inhibited by pharma-
cologically (using PPAR inhibitors) or molecularly (using
siRNA-mediated downregulation of PPAR expression) based
strategies to affect PPAR signaling [13, 14, 42, 49, 74]. The
latter is critical, since the literature is replete with examples of
putative PPAR ligands that subsequent studies have shown,
in fact, to mediate cellular affects via PPAR-independent
mechanisms. Figure 3 illustrates these points with data from
our previous studies [13, 14] showing that in endothelial
cells, isoflavones stimulate PPARγ-dependent transcription
of genes containing the PPARγ response elements in their
promoter, and this results in the inhibition of subsequent
inflammatory cytokine (TNFα)-dependent monocyte rolling
and adhesion (Figure 4).

Interestingly, a survey of the literature does not reveal
a clear association between the activation of either PPARα
or PPARγ and the mediation of a biological response with
evidence for both in mediating anti-inflammatory effects
of isoflavones reported. For example red clover isoflavones
inhibiting cytokine release from LPS activated macrophages
via PPARα [75]. Similarly, PPARα activation has been
discussed in the context of how isoflavones may prevent
influenza [76]. On the other hand, anti-inflammatory effects
have been shown to be PPARγ dependent also including
inhibition of amyloid-beta-dependent cytokine formation in
astrocytes [77]. Our studies have shown that PPARγ, but
not PPARα, is required for isoflavone-dependent inhibition
of leukocyte rolling and adhesion to activated endothelial
cells [13, 14] (Figure 4). Other reports in defined cell systems
have also reported selective activation of one PPAR isoform
and not the other. For example, methanolic (IF) extracts
from soybean seeds stimulated transcriptional activity of
PPARα, but not PPARγ, genes in monocyte U937 cells [78].
As the above discussion suggests, a detailed understanding
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occur, and how they influence activation of ER/PPAR pathways is central to elucidating molecular mechanisms by which these compounds
affect disease. Additional and important factors that will dictate the biological response to isoflavones include expression profiles and relative
activities and interactions between of ERβ-, PPARα-, and PPARγ-dependent pathways.

of how isoflavones activate PPARα or PPARγ is lacking. It
is clear, however, that isoflavones can activate both PPARα
and PPARγ, and it is not surprising then that a number
of studies have documented roles for these polyphenols
in preventing diabetes and the metabolic syndrome with
mechanisms ranging from improving lipid homeostasis to
insulin sensitivity [49, 79–86].

The discussion above serves to underscore the hetero-
geneity of responses elicited by isoflavone-mediated acti-
vation of PPARs. It remains unclear to date why in some
cases both PPARα and PPARγ are activated, while in others
why only one PPAR isoform is activated versus the other.
Potential factors/variables that may modulate isoflavone-
dependent activation of PPARs and signaling in general
include the cell type, the presence/absence of PPAR co-
activators, competition between ERα and PPAR signaling,
and the dose and composition of isoflavones preparations
(see Figure 5). For example, Dang elegantly showed that low
concentrations (<1 μM) of genistein stimulated osteogenesis
whilst inhibiting adipogenesis in mesenchymal progenitor
cells via ER mechanisms, whereas at slightly higher con-
centrations, the opposite response was observed which was
mediated by PPARγ activation [80]. Similarly, isoflavone-
dependent activation of PPARγ was shown to be important
in the inhibition of estradiol-induced proliferation of uterine

leiomyoma [57]. These latter examples highlight the poten-
tial for isoflavones to modulate estrogen signaling via indirect
mechanisms and suggest a complex cross-talk between PPAR
and ER signaling, that is regulated by isoflavones (Figure 5).
With respect to isoflavones’ type, studies have shown that
several structurally distinct isoflavones can activate PPARs
with similar efficacies [13]. It is not clear how the presence of
different isoflavones would affect PPAR activation. If additive
or synergistic, however, one can speculate that the effective
dose of a given isoflavone to activate PPARα/γ would be even
lower in the context of a complex mixture as occurs during
dietary exposure. In this scenario of exposure to multiple
different isoflavones, we speculate that PPARα/PPARγ acti-
vation represents the primary signaling pathways affected
by these compounds. Finally, we note that other factors
may also modulate PPAR activation efficacy as illustrated
by dietary exposure studies showing that soy protein alone
increased PPARα, but this response was increased further in
the presence of isoflavones [87].

7. Remaining Questions and
Future Perspectives

The potential role of PPARs to mediate biological actions of
isoflavones is gaining appreciation. Less clear are the molecu-
lar mechanisms that are involved. Do isoflavones bind PPARs
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directly and/or do they affect PPAR signaling indirectly?
Structure-activity relationship studies clearly suggest the
former, but the latter possibility should also be considered.
For example, oxidized fatty acids have been suggested to be
potent PPARγ agonists and isoflavones may influence these
by affecting redox reactions. What controls the dual effects
of isoflavones as PPARα and PPARγ agonists? What are the
downstream targets of isoflavone-mediated PPAR activation,
are they unique or do they overlap with PPAR activation by
synthetic agonists? This is an intriguing question, since to our
knowledge isoflavones are the only class of molecules that can
activate both ERβ and PPARs, raising the question of whether
there is cross-talk between ERβ and PPARs activation, and
how this is regulated. Coupled with a better understanding of
the potential for antagonistic, additive, or synergistic effects
between structurally distinct isoflavones in activating PPARs,
we feel that addressing these questions is likely to reveal
novel insights into how these polyphenols influence diverse
biological processes.
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