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Abstract 

For many vaccine-preventable diseases like influenza, vaccination rates are lower than optimal to achieve 

community protection. Those at high risk for infection and serious complications are especially advised to 

be vaccinated to protect themselves. Using influenza as a model, we studied one method of increasing 

vaccine uptake: informing high-risk patients, identified by a machine learning model, about their risk 

status. Patients (N=39,717) were evenly randomized to (1) a control condition (exposure only to standard 

direct mail or patient portal vaccine promotion efforts) or to be told via direct mail, patient portal, and/or 

SMS that they were (2) at high risk for influenza and its complications if not vaccinated; (3) at high risk 

according to a review of their medical records; or (4) at high risk according to a computer algorithm 

analysis of their medical records. Patients in the three treatment conditions were 5.7% more likely to get 

vaccinated during the 112 days post-intervention (p < .001), and did so 1.4 days earlier (p < .001), on 

average, than those in the control group. There were no significant differences among risk messages, 

suggesting that patients are neither especially averse to nor uniquely appreciative of learning their 

records had been reviewed or that computer algorithms were involved. Similar approaches should be 

considered for COVID-19 vaccination campaigns.  

  

Main Text 

  

Introduction 

  

Controlling the COVID-19 pandemic will require a large majority of people to agree to receive a 

vaccine. In addition to contributing to population immunity, vaccination is especially important for those at 

high risk of severe COVID-19 and its complications. Unfortunately, there is a gap between the proportion 

of people currently interested in being vaccinated and the proportion necessary for effective community 

protection (1). 

The effect of informing patients of their high-risk status on vaccine uptake is not well understood; 

such information might be motivating (2) or demotivating (3, 4). Moreover, to be scalable, rapid, mass 

vaccination campaigns targeting high-risk individuals require health data sharing and risk disclosure 

outside the patient-physician encounter, which patients may view as an invasion of privacy (5). Vaccine 

encouragement messages that reference a review of patient medical records might therefore backfire. 

Finally, it is unknown whether patients will respond differently depending on how their risk status 

was determined: for example, human versus algorithmic or artificial intelligence-based medical record 

review. Some laboratory research has documented a pattern of “algorithm aversion,” in which people 

choose human over superior algorithmic forecasts, especially after they observe the algorithm make an 

error (6, 7). Yet other laboratory research has found instances of “algorithm appreciation,” in which people 

followed advice more when they thought it came from algorithms than when they thought it came from 

humans (8). However, there have been no field experiments directly comparing the effects of disclosing 

versus not disclosing to individuals the fact that computer algorithms were used to create a specific 

prediction or rationale for a recommended action. Such experiments would test whether the pro- and anti-

algorithm behavior observed in hypothetical lab situations generalizes to real-world, incentive-compatible 

situations, such as those which will become increasingly common as the use of artificial intelligence and 

machine learning expands in medical practice (9, 10). 

Because annual influenza vaccination campaigns are similar in scale and methods to anticipated 

COVID-19 vaccination efforts, and because information in a patient’s medical record can be used to 

predict their level of risk for influenza infection and its complications (11), we addressed these questions 

by conducting a field experiment during the 2020–21 influenza season with patients predicted by a 
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machine-learning model applied to their electronic health record (EHR) data to be in the top 10% of risk 

for influenza-related complications. 

  

Materials and Methods 

  

Participants 

Participants were patients with a primary care provider (PCP) of record at Geisinger (a 

Pennsylvania health system) who were determined by the Medial EarlySign algorithm to be at high risk 

for influenza followed by a flu-related complication if they were not vaccinated (see Supplementary 

Information, SI). The algorithm employed a decision tree-based method (XGBoost) to create a classifier 

based on 2,371 features related to patient demographics (age, gender, race, etc.), socioeconomic 

information (years of education, etc.), behavior (smoking, alcohol use, etc.), vital signs, lab test results, 

diagnoses, medication prescriptions and hospital admissions. The model was trained on data from 2008–

2019 (70%) and tested (20%) and validated (10%) on data from 2012–2019. Risk scores were generated 

for each patient, and patients with scores in the top 10%, corresponding to a model-predicted probability 

of getting influenza followed by a complication (if unvaccinated) of at least 11.7%, were enrolled in the 

study. The Geisinger IRB approved this study and waived the requirement for consent. 

  

Materials and Procedure 

Participants were allocated evenly through parallel random assignment (using R’s “sample” 

algorithm) to one of four study conditions: to be (1) informed of their high-risk status as determined by a 

computer algorithm, (2) informed of their high-risk status as determined by a review of their medical 

records, (3) informed of their high-risk status with method unspecified, or (4) in a control group that was 

not informed by us of their high-risk status but received all other standard Geisinger messages 

encouraging influenza vaccination. See SI for the full text of all messages. Notably, at the outset of this flu 

season, Geisinger contacted all patients with a Geisinger PCP via postcard or the MyChart patient portal 

with a generic reminder to get vaccinated. 

Participants informed of their high-risk status were sent messages via all three of the following 

channels for which communication was possible: print letters (99% of participants), patient portal (68%), 

and SMS (55%). Informed participants were also further subdivided based on their risk level: those in the 

top 3% of evaluated patients (corresponding to a model-predicted risk of complications of at least 25.1%) 

were told they were in the top 3% of risk; the remaining participants were randomly assigned to be told 

either that they were in the "top 10% of risk" or at "high risk." 

This study was registered at ClinicalTrials.gov (NCT04323137). Results presented are from an 

interim analysis conducted to inform rapid COVID-19 vaccination efforts. Reproducible analysis code for 

this study is available at https://osf.io/8zpyh/. Data will be available in the same repository upon 

institutional approval. 

 

Analysis  

The primary outcome variable was whether participants were vaccinated between the start of the 

intervention, September 21, 2020, and January 11, 2021. Vaccination rates were compared between 

groups using generalized linear models with a binary distribution and log-link function (logistic 

regression). Assessment of different presentations of risk information ("top 3%", "top 10%", and "high") 

was conducted within a single logistic regression model, with "top 10%" dummy coded as the reference 

condition. This allowed comparisons of "top 10%" vs. "high" (to assess if patients with the same risk level 

are differentially affected by more specific or general risk framing) and of "top 10%" vs. "top 3%" (to 

assess if patients with similar phrasing are affected by differential risk levels). 
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We compared the average time to get vaccinated between vaccinated patients in the informed 

and control groups using Welch’s two-sample t-test (two-sided), with time specified as the number of days 

since the beginning of the intervention. All statistical analyses were performed in R version 3.2.3 (12). 

  

Results 

  

Study participants (N = 39,717) had a mean age of 56.4 ± 19.5 (SD) years and were 95.6% white 

and 65.3% female in a largely rural population in Pennsylvania, U.S. 

As shown in Figure 1, patients who were informed of their high-risk status were 5.7% more likely 

to obtain an influenza vaccination compared with the control group (Odds Ratio: 1.10 [95% CI: 1.05, 

1.15], p < .001). Furthermore, among patients who received the vaccination within 112 days of the 

intervention start, those informed of their risk status (N = 12,679) did so a mean 1.41 days (95% CI: 0.59, 

2.23) sooner than those not informed (N = 4,001; t(6554) = 3.38, p < .001, Cohen’s d = 0.06. 

Informing patients that their high-risk status was specifically determined by a "computer 

algorithm-based analysis of your medical records" performed similarly to simply a "review of your medical 

records" (OR = 0.99 [95% CI: 0.94, 1.05], p = .710). Patients who received such information about how 

their status was determined had numerically higher rates of vaccination than those who were simply told 

they were at high risk; however, these differences were not significant (OR = 1.01 [95% CI: 0.96, 1.07], p 

= .628 and OR = 1.02 [95% CI: 0.97, 1.08], p = .392 respectively). 

Patients under 65 (N = 24,902, 62.7% of the population) were less likely than older patients (N = 

14,815) to obtain vaccination (33.1% vs. 57.0%). However, age did not moderate the impact of our 

interventions. Younger patients exhibited numerically greater relative benefit from being informed of their 

high-risk status (8.3% vs. 3.2%), but the interaction between age and study condition was not significant 

(OR = 0.95 [95% CI: 0.87, 1.05], p = .343). There were likewise no significant interactions between age 

and the method of specifying high risk. 

Figure 2 depicts the time course of flu vaccinations before and after our interventions and 

suggests that intervention impact decreased over time. In line with this, exploratory analysis shows that 

the effects of the intervention are concentrated in the first month (9/21/20–10/20/20): patients informed of 

their high-risk status were 9.8% more likely to vaccinate during that time, and 1.3% less likely in the 

remaining study period (10/21/20–1/11/21). 

The specific risk information that patients received differed by their risk level: those falling in the 

97–99th percentiles of risk scores were simply informed that they were in the “top 3% of risk” while the 

remaining patients (90–96th percentiles) were randomized to be informed that they were either in the “top 

10% of risk” or “at high risk" to assess the relative effectiveness of a more specific or general risk 

description for patients in the same risk stratum. Specificity of risk information (“top 10%” vs. “high”) did 

not affect vaccinations (OR = 0.99 [95% CI: 0.93, 1.04], p = .595). 

  

Discussion 

  

We found that informing patients they are at high risk for serious influenza complications 

increased their likelihood of getting vaccinated. Notably, we found evidence of neither algorithm aversion 

nor algorithm appreciation, suggesting that disclosure of the use of artificial intelligence, machine 

learning, and/or algorithms—at least for risk stratification and health communication—may be well 

received or at least not lead to backlash. 

Our intervention resembles many nudges tested in the field: although only modestly effective (13, 

14), it is relatively inexpensive, scalable, and preserves choice. Our intervention was also tolerable: Only 

3 out of 29,784 patients in the three treatment conditions registered a complaint about the messages they 

received, and 0.47% of those who received SMS messages replied to opt-out of that specific campaign. 

Moreover, there are several straightforward opportunities to increase the effectiveness of this 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.20.21252015doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.20.21252015
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

intervention, in both the influenza and COVID-19 contexts: They can be: made more timely (e.g., included 

in reminders for upcoming medical appointments; 15), reinforced with followup messages, and made 

more personal and convincing by incorporating information about factors contributing to individual 

recipients’ heightened risk. Health systems increasingly use AI but are unsure whether to disclose this to 

patients (16). The current findings are expected to generalize well to other to other US health systems 

with largely rural populations and a diverse range of socioeconomic statuses, but it would be helpful to 

replicate the study in more racially and ethnically diverse and urban subpopulations.  

This work was motivated in part by the hypothesis that interventions that are effective in 

increasing influenza vaccination may also be effective in the COVID-19 vaccination context, where 

morbidity and mortality seem to follow a strong risk gradient based on factors such as age, race/ethnicity, 

and underlying medical conditions. It is true that many individuals considering vaccination will be aware in 

general terms of their risk for severe COVID-19, but because knowledge of this disease has been 

evolving continuously and rapidly since the pandemic’s onset, and because media and other public 

messages about risk factors vary in accuracy and credibility, we believe that directly informing individual 

patients that they are high risk can be an important tool to nudge fence-sitters to seek or accept 

vaccination. Moreover, many individuals may be aware of widely publicized risk factors but still not realize 

they are at high risk. Receiving this personalized information—whether determined by a complex machine 

learning model or an existing simpler stratification method (17)—from a trusted, local health system or 

provider (18, 19), combined (as in our study) with information on how they can get vaccinated, could be 

an especially powerful nudge. 
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Figure 1. Vaccination rates among patients who were not informed of their high-risk status (“No-

Treatment Control”), who were informed of their status without specifying the method with which the 

status was determined (“Informed, No Reasons”), and who were informed that their status was 

determined by a review of their medical records (“Informed, Review”) or by a computer algorithm-based 

analysis of medical records (“Informed, Computer Algorithm”). Error bars represent standard error. 
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Figure 2. Number of patients vaccinated over time across conditions, excluding weekends and holidays 

where Geisinger is closed for primary care. Descriptive curves were generated using locally-weighted 

regression separately for periods before and after start of the intervention. All statistics reported exclude 

patients vaccinated before the intervention began. Dashed lines indicate the day each communication 

modality was sent. 
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