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Abstract: Sézary syndrome is an aggressive leukemic variant of cutaneous T-cell lymphomas, charac-
terized by erythroderma, lymphadenopathy, and peripheral blood involvement by CD4+ malignant
T-cells. The pathogenesis of Sézary syndrome is not fully understood. However, the course of the
disease is strongly influenced by the tumor microenvironment, which is altered by a combination
of cytokines, chemokines, and growth factors. The crosstalk between malignant and reactive cells
affects the immunologic response against tumor cells causing immune dysregulation. This review
focuses on the interaction of malignant Sézary cells and the tumor microenvironment.
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1. Introduction

Sézary syndrome (SS) was first described by Albert Sézary and Yves Bouvrain in
1938 [1]. It is a rare and aggressive leukemic variant of cutaneous T-cell lymphoma (CTCL).
Males are more affected than females (2:1), and it occurs almost exclusively in adults. The
classic triad of SS includes erythroderma, lymphadenopathy, and circulating malignant
cells [2]. Besides erythroderma, a diffuse non-scarring alopecia, palmoplantar hyperkerato-
sis, nail dystrophies, and leonine facies may be observed [3]. Intense pruritus is the most
frequent symptom, and it significantly decreases the quality of life [2,4]. Systemic symptoms
(fever, night sweats, and weight loss) are present in 1.6% of the patients [5]. Circulating
Sézary cells are detected by peripheral blood smear (large lymphocytes with cerebri-
form nuclei) and immunophenotyping of lymphocytes by flow cytometry (CD4:CD8 ≥ 10,
CD4+CD7− ≥ 40%, CD4+CD26− ≥ 30%). A search for the T-cell receptor (TCR) gene
rearrangement shows a monoclonal population of T-cells on the blood, and the exact clone
is detected on skin infiltrate (Figure 1) [2,6,7].

The pathophysiology of SS is not entirely understood. The most plausible hypothesis
is the activation of T-cells by antigen-presenting cells, leading to the gradual accumulation
of mutations that culminates with neoplastic cell development. However, the triggering
antigen is unknown, and it could vary between patients [8,9].

Mycosis fungoides (MF) and SS were considered the same disease for many years.
However, neoplastic cells in these two entities have distinct origins. MF cells strongly
express C-C chemokine receptor (CCR)-4 and cutaneous lymphocyte-associated antigen
(CLA), which confer tropism to the skin, and are negative for CCR7 and L-selectin, receptors
that confer tropism to the lymph nodes. This immunophenotype is characteristic of skin-
resident memory T-cells. On the other hand, Sézary cells express CCR7 and L-selectin,
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CD27 (a characteristic marker of central memory T-cells), CCR4, and other skin-tropic
receptors (CCR6, CCR10, CLA). These findings suggest that MF and SS originate from
different subtypes of T lymphocytes [10].

1 
 

 
Figure 1. Sézary syndrome. Erythroderma (A). Sézary cell on a peripheral blood smear (B). Flow
cytometry of peripheral blood showing the CD4+CD8− (C), CD4+CD7− (D), and CD4+CD26− (E)
Sézary cells. Monoclonal T-cell population on the skin (F) and the same clone detected on peripheral
blood (G).

The prognosis of SS is poor. The five-year overall survival rates range between 40 and
50% [2,11]. First-line treatment includes extracorporeal photopheresis (ECP), interferon-α
combined with ECP or phototherapy, retinoids, chlorambucil associated with prednisone,
and low dose methotrexate. Second-line treatment includes chemotherapy with gemc-
itabine, pegylated liposomal doxorubicin, CHOP (cyclophosphamide, doxorubicin, vin-
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cristine, and prednisone), and CHOP-like regimens, alemtuzumab (anti-CD52 monoclonal
antibody), and allogeneic stem cell transplantation [12].

Response to chemotherapy is excellent; however, the disease rapidly recurs. Biologic re-
sponse modifiers (ECP, interferon-α, and retinoids) show prolonged responses, suggesting
an essential role of immunomodulation in controlling neoplastic proliferation. Increasing
evidence shows the influence of the tumor microenvironment characterized by reactive
cells, chemokines, and cytokines in the clinical behavior of SS, and these interactions grad-
ually drive an antitumor response towards a tolerogenic milieu [13,14]. Understanding
the tumor microenvironment is essential to the development of new therapies to improve
survival and, maybe, reach a curative treatment for this aggressive and morbid disease.
This review focuses on the discussion of the current scenario of the immunologic milieu
of SS.

2. Tumor Microenvironment

The interaction between tumor cells and the microenvironment influences the progres-
sion of CTCL. In early-stage MF, neoplastic cells are scarce and reactive T-helper (Th) 1 and
CD8+ T-lymphocytes contribute to the antitumor defense [15–17]. With the disease’s pro-
gression, the tumor microenvironment shifts from a Th1 to a Th2 response, and contributes
to tumor cells growth and immune escape [15,18].

As an aggressive CTCL, SS is a Th2-type disease, and it exhibits an exhaustion status
of antitumor defense [15,19,20], with increased levels of interleukin (IL)-4, IL-5, and IL-13,
and reduced levels of Th1 cytokines such as IL-2 and interferon (IFN)-γ, that reduce cell-
mediated immunity [18,21]. This microenvironment favors angiogenesis, tissue remodeling,
as well as survival and proliferation of malignant cells. The Th2 cytokines produced by
Sézary cells suppress the Th1 response and impair cellular immunity. Reactive T-cells are
present but are dysfunctional due to the Th1/Th2 imbalance [22,23].

It is not known precisely how malignant cells start this change in the tumor microen-
vironment. It is hypothesized that somatic mutations, somatic copy number variations,
and epigenetic deregulation in Sézary cells could drive the activation of pro-oncogenic and
the inhibition of tumor suppressor pathways [24,25]. However, exogenous factors, mainly
Staphylococcus aureus colonization, play an important role in the emergence of the Th2
response [26]. The endogenous and exogenous factors will ultimately affect the JAK/STAT
pathway, with a decrease in STAT4 (Th1) and an increase in STAT3, STAT5, and STAT6 (Th2)
activation in neoplastic cells [27]. Under normal conditions, STAT proteins are transiently
activated. However, in neoplastic cells, constitutive activation of STAT3, STAT5, and STAT6
occur. Aberrant activation of these transcription factors stimulates the secretion of Th2
cytokines. The Th1 transcription factor STAT4 is inhibited in SS, probably due to the action
of micro-RNA (miR)-155 induced by STAT5; [15,28]. and GATA-3, a Th2 transcription
factor, is activated through STAT6 signaling [29]. The released Th2 cytokines contribute to
a positive feedback loop between malignant and reactive cells, influencing the growth and
survival of the former [30].

2.1. CD8+ T-Cells

The CD8+ T-cells are cytotoxic lymphocytes that play an important role in antitumor
response by exocytosis of intracytoplasmic granules with perforin, granzymes, and T-
cell-restricted intracellular antigen-1 (TIA-1), and by a Fas-mediated pathway in which
membrane-bound Fas ligand (FasL) expressed on CD8+ T-cells interacts with Fas on
neoplastic cells [31]. The intensity of CD8+ T-cell infiltrate within the skin of CTCL patients
is associated with a better prognosis [31].

In SS, circulating CD8+ T-cells express CD38, PD-1, Tim-3, and CD39. The CD38 is
an activation marker frequently observed in chronic viral infections, and PD-1, Tim-3, and
CD39 are exhaustion markers (Figure 2). T-cell exhaustion is a state of dysfunction observed
in chronic infections and cancer due to the persistence of antigens and inflammation. After
persistent antigen stimulation, CD8+ T-cells undergo functional loss [13]. Their cytotoxicity
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is modified, and their cytokine production ability, proliferative capacity, and effective
memory cell generation are also affected. Impaired production of IFN-γ, tumor necrosis
factor (TNF), IL-2, and a high expression of coinhibitory receptors are observed, which
compromises their ability to fight against infections and tumor cells [19,32,33].

Int. J. Mol. Sci. 2022, 22, x FOR PEER REVIEW 5 of 24 
 

 

cells [31]. The intensity of CD8+ T-cell infiltrate within the skin of CTCL patients is asso-
ciated with a better prognosis [31]. 

In SS, circulating CD8+ T-cells express CD38, PD-1, Tim-3, and CD39. The CD38 is an 
activation marker frequently observed in chronic viral infections, and PD-1, Tim-3, and 
CD39 are exhaustion markers (Figure 2). T-cell exhaustion is a state of dysfunction ob-
served in chronic infections and cancer due to the persistence of antigens and inflamma-
tion. After persistent antigen stimulation, CD8+ T-cells undergo functional loss [13]. Their 
cytotoxicity is modified, and their cytokine production ability, proliferative capacity, and 
effective memory cell generation are also affected. Impaired production of IFN-γ, tumor 
necrosis factor (TNF), IL-2, and a high expression of coinhibitory receptors are observed, 
which compromises their ability to fight against infections and tumor cells [19,32,33]. 

 
Figure 2. CD8+ T-cell characteristics in SS. Activation of CD8+ T-cells is detected by the expression 
of CD38, and the chronic activation leads to an exhaustion phenotype with the expression of CD39, 
TIM-3, and PD-1. Furthermore, in exhausted CD8+ T-cells, a functional loss is observed, with re-
duced production of IFN, TNF, and IL-2, decreasing the cytotoxic activity against neoplastic cells. 

The IL-7 and IL-15 are growth factors essential to lymphocytic functions. The IL-7 
induces IFN-γ production and proliferation; the IL-15 contributes to the proliferation and 
survival of natural killer (NK) and CD8+ T-cells. Upon binding to their receptors on the 
cell surface, they signal via JAK1 and JAK3, which activate STAT5 [19,34,35]. In CD8+ T-
cells, STAT5 induces the antiapoptotic molecule Bcl-2 expression, which is important to 
maintain CD8+ effector function [36–38]. In SS, CD8+ T-cells exhibit impaired STAT5 and 
Bcl-2 expression compared to healthy donors, even after IL-7 stimulus. These cells also 
exhibit increased CD95/Fas expression, which may trigger apoptosis, contributing to the 
decreased cytotoxic activity against neoplastic cells [19]. 

2.2. Regulatory T-Cells 
The Tregs comprise five to ten percent of peripheral T-cells [39]. These cells inhibit 

other T-cell functions by secretion of inhibitory cytokines such as IL-10 and transforming 
growth factor (TGF)-β; by induction of apoptosis mediated through secretion of 
granzymes A/B and perforin; by expression of tumor-necrosis-factor-related-apoptosis-
inducing ligand—death receptor 5 (TRAIL-DR5); by induction of Fas/FasL pathway, ga-
lectin-9 pathway, and galectin-1 secretion; by metabolic disruption, due to the metabolism 
of ATP to AMP and the production of adenosine (an immunoregulatory purine) and 
transfer of cyclic AMP to effector cells by gap junctions that lead to apoptosis by IL-2 dep-
rivation; and by modulation of dendritic cell (DC) maturation or function through the 

Figure 2. CD8+ T-cell characteristics in SS. Activation of CD8+ T-cells is detected by the expression
of CD38, and the chronic activation leads to an exhaustion phenotype with the expression of CD39,
TIM-3, and PD-1. Furthermore, in exhausted CD8+ T-cells, a functional loss is observed, with reduced
production of IFN, TNF, and IL-2, decreasing the cytotoxic activity against neoplastic cells.

The IL-7 and IL-15 are growth factors essential to lymphocytic functions. The IL-7
induces IFN-γ production and proliferation; the IL-15 contributes to the proliferation and
survival of natural killer (NK) and CD8+ T-cells. Upon binding to their receptors on the
cell surface, they signal via JAK1 and JAK3, which activate STAT5 [19,34,35]. In CD8+
T-cells, STAT5 induces the antiapoptotic molecule Bcl-2 expression, which is important to
maintain CD8+ effector function [36–38]. In SS, CD8+ T-cells exhibit impaired STAT5 and
Bcl-2 expression compared to healthy donors, even after IL-7 stimulus. These cells also
exhibit increased CD95/Fas expression, which may trigger apoptosis, contributing to the
decreased cytotoxic activity against neoplastic cells [19].

2.2. Regulatory T-Cells

The Tregs comprise five to ten percent of peripheral T-cells [39]. These cells inhibit
other T-cell functions by secretion of inhibitory cytokines such as IL-10 and transforming
growth factor (TGF)-β; by induction of apoptosis mediated through secretion of granzymes
A/B and perforin; by expression of tumor-necrosis-factor-related-apoptosis-inducing
ligand—death receptor 5 (TRAIL-DR5); by induction of Fas/FasL pathway, galectin-9
pathway, and galectin-1 secretion; by metabolic disruption, due to the metabolism of ATP
to AMP and the production of adenosine (an immunoregulatory purine) and transfer of
cyclic AMP to effector cells by gap junctions that lead to apoptosis by IL-2 deprivation;
and by modulation of dendritic cell (DC) maturation or function through the interaction of
CTLA-4 on Tregs with its ligand CD80/86 on antigen-presenting cells [40,41].

Sézary cells commonly express FoxP3 and CD25, markers observed in Tregs, and
the global methylation pattern of Sézary cells are similar to the one observed in Tregs.
Thus, it has been postulated that SS may represent a malignancy of Tregs in some pa-
tients [42–45]. Importantly, FoxP3 and CD25 in malignant cells do not seem to exclusively
confer a suppressive phenotype. Some patients may present high levels of FoxP3 and CD25
in Sézary cells but not in other patients, in which, malignant T-cells failed to suppress
T-cell proliferation [46]. There is evidence of low molecular splice forms of FoxP3 that
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are functionally different from wild type FoxP3 and not involved in the execution of the
suppressive function [47]. Some factors, such as cytokines or bacterial toxins in the tumor
microenvironment have been proposed to drive the heterogeneous FoxP3 expression in
malignant cells [48]. The Treg properties expressed by Sézary cells are stimulated by staphy-
lococcal enterotoxins (SEs), which trigger the expression of FoxP3 in a STAT5-dependent
manner, and by direct contact with immature DCs via MHC class 2 presentation of antigens
of apoptotic cells. These Sézary cells with Treg properties secrete IL-10 and TGF-β, which
suppress the secretion of IL-2 and IFN-γ and maintain DC immaturity, contributing to
further neoplastic cell proliferation and up-regulation of the Treg phenotype [23,39,49].

Programmed death-1 (PD-1) is an immune checkpoint inhibitor. It is increased in
benign and malignant CD4+ T-cells in SS. When activated, the PD-1 axis inhibits reactive
T-cells, promotes the induction of Th2 and Treg cells, and prevents apoptosis of Tregs.
Thus, nonmalignant Tregs are increased in SS, contributing to the immune escape of tumor
cells [21,50,51].

2.3. Regulatory B-Cells

A subset of B-cells can suppress immune responses, similar to Tregs, called regulatory
B-cells (Bregs). These cells contribute to immune tolerance by secretion of IL-10 but also
other inhibitory molecules, including PD-L1, granzyme B, TGF-β, and IL-35, leading to the
induction of tumor immunosuppressive cells [52]. Few studies addressing the presence
of Bregs in CTCL are available. Interestingly, decreased Bregs are observed in CTCL
progression, and it is hypothesized that Bregs suppress the activity of tumor cells in the
blood [14,53]. Other B-cells are also decreased in CTCL, such as CD19+ CD24hiCD27+ B-
cells, CD19+ CD38hi B-cells, together with IL-10-producing B-cells in CTCL progression [53].
Despite the discussion that Breg may play a role in the CTCL progression, IL-10 produced
by Bregs enriched in CD19+ CD24hiCD27+ B-cells could impair the function of immune
cells, including Th1/CD8+/NK cells, or TGF-β secreted by Bregs could convert CD4+ T-
cells into Tregs that would promote tumor progression [54]. More studies are needed to
understand whether Bregs can affect other immune cells or help to convert malignant cells
to Tregs in Sézary syndrome.

2.4. NK Cells

The NK cells are cytotoxic lymphoid cells that constitute the innate immune sys-
tem [55]. The NK cells can be divided into two main populations: CD56dimCD16bright ,
which is predominant in the peripheral blood and has a cytolytic activity; and
CD56brightCD16dim , which is predominant on lymph nodes and secondary lymphoid
tissue and has an immunoregulatory role [56].

The NKG2D is the main activating receptor of the NK cells, and it binds to major
histocompatibility complex (MHC) class I homologs (MICA and MICB) and UL-16 binding
proteins (ULPB)-1 to 5, that function as signals of cellular stress [57,58]. Upon binding to
NKG2D ligand (NKG2DL) expressed in malignant cells, the NK cells attack by degranula-
tion of perforin and granzyme and production of IFN-γ and TNF-α [14]. In a process called
trogocytosis, the cell-to-cell contact allows the migration of the NKG2DL of the tumor cell
to the NK cell. Thus, these altered NK cells may be recognized by tumor-naïve NK cells and
are killed (Figure 3) [59]. Other mechanisms that favor immune escape by malignant cells,
besides the trogocytosis, are the down-regulation of NKG2D observed in NK cells from SS
patients [58], and the reduced number of total NK cells and the cytolytic CD56dimCD16bright

NK cells, while the immunoregulatory CD56brightCD16dim NK cells are preserved [60]. The
downregulation of NKG2D may be due to TGF-β and metalloproteinases [61]. The subset
of CD57+NKG2C+ NK cells has been described as exhibiting memory-like features, with
potent effector functions, and could be elicited by human cytomegalovirus (HCMV) infec-
tion [62]. Interestingly, besides the altered cytolytic CD56dim NK cells in SS patients, an
increased percentage of CD56+CD57+NKG2C+ NK cells was found, together with high
seropositivity to CMV [58]. The expansion of this mature CD57+NKG2C+ NK subset
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detected in SS patients could be due to its memory for CMV infection. The fact that trained
immunity may display potent functions could be beneficial for cancer patients [63].
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Figure 3. Trogocytosis process. The interaction of Sézary cells and NK cells by NKG2D/NKG2DL
activates the degranulation of perforin and granzyme that kills malignant cells. The cell-to-cell contact
allows the migration of NKG2DL from the Sézary cell to the NK cell in the trogocytosis process. The
NK cell with NKG2DL is recognized by tumor-naïve NK cells that liberate perforin and granzyme,
killing the NK cell.

2.5. Dendritic Cells

Dendritic cells (DCs) are professional antigen-presenting cells. They prompt immune
responses by activating naïve T-cells at a mature state and promote tolerance by deleting
self-reactive thymocytes, mediating the anergy of mature T-cells, and generating Tregs at an
immature state [14]. The Th2 cytokines secreted in the SS tumor microenvironment suppress
the maturation of DCs. The influence of dysregulated or immature antigen-presenting cells
can explain aspects of tumor progression [18].

The IL-10 downregulates DC functions, contributing to the formation of immature
DCs, that promote tolerance rather than immune defense because these cells present
apoptotic cell antigens without the appropriate co-stimulation. Furthermore, direct contact
with immature DCs stimulates the Treg phenotype in Sézary cells (Figure 4) [23,64–66].
An increased number of immature DCs in SS lesions is important for immunological
tolerance against malignant T-cells [67]. Conversely, IFN-γ stimulates the maturation of
DCs, which inhibit Sézary cells proliferation [65,68]. Mature DCs may attempt to mount an
immune response against the cancer cells via the production of the Th1 cytokines IL-12,
IL-2, and IFN-α, as mature DCs are elevated in the skin draining lymph nodes of some
patients [69–71]. Another dendritic cell subset, termed plasmacytoid dendritic cells (pDCs)
are highly effective in sensing intracellular viral or self DNA and RNA mainly via Toll-
like receptors (TLRs) and rapidly producing large amounts of type I and III interferons
(IFNs) [72]. SS patients demonstrate the gradual loss of plasmacytoid dendritic cells in the
peripheral blood [71]. However, using synthetic oligodeoxynucleotides with CpG motifs
(CpG ODN), an agonist of TLR9, is able to induce IFN-α production, by the CD123 pDC of
patients with Sézary syndrome [70].
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Figure 4. Sézary cell and dendritic cell interaction. The Sézary cells express a Treg phenotype upon
Staphylococcal enterotoxins stimulation. The cytokines produced by malignant cells, especially IL-10,
prevent DCs from maturating; and the immature DCs promote immune tolerance and persistence of
Treg phenotype in Sézary cells in positive feedback.

The observation that apoptotic neoplastic cells can induce antigen-presenting cell
maturation explains why total skin electron beam and extracorporeal photopheresis, which
induce massive apoptosis of malignant cells, are effective treatment regimens [23].

2.6. Myeloid-Derived Suppressor Cells

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that mediate
immunosuppression by JAK3/STAT3-dependent secretion of reactive oxygen species (ROS)
and arginase-1 (ARG-1) into the tumor microenvironment [51,73]. These cells are gener-
ated under pathological conditions, through myelopoiesis in the bone marrow or spleen
before migration to the periphery. Granulocyte-macrophage colony-stimulating factor
(GM-CSF), granulocyte colony-stimulating factor (G-CSF), macrophage colony-stimulating
factor (M-CSF), stem cell factor (SCF), vascular endothelial growth factor (VEGF), IL-6,
S100A9, S100A8, and prostaglandin E2 (PGE2) mediate MDSCs formation. These molecules
induce signaling pathways such as STAT3, STAT5, interferon regulatory factor (IRF)-8,
and CCAAT/enhancer-binding protein (C/EBP)-β. The C-C ligand (CCL)-2 and CCL-5
chemokines mediate recruitment of MDSCs to tumor microenvironment by binding to
a receptor present on MDSCs. Other chemokines that induce mobilization of MDSCs in
the tumor microenvironment include CCL7, CCL15, CCL26, C-X-C ligand (CXCL)-8, and
CXCL12 [74].

The ROS upregulation in MDSCs is mediated by nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase activity. ROS production has been associated with T-cell
unresponsiveness and tolerance [75].

The L-arginine is a substrate for the inducible nitric oxide synthase (iNOS) and ARG-1,
both expressed in MDSCs and involved in lymphocyte suppression. Deprivation of L-
arginine leads to T-cell dysfunction [76]. The iNOS generates nitric oxide, which is im-
plicated in the attenuation of MHC class II expression in macrophages and in inducing
T-cell apoptosis [77]. Thus, MDSCs are correlated with disease progression and resistance
to therapy in hematologic malignancies. Indoleamine 2,3-dioxygenase (IDO)-dependent
tryptophan catabolism is a mechanism of immunosuppression mediated by MDSCs [74,78].
MDSCs downregulate the expression of L-selectin, a key homing receptor on T-cells [79],
promote the generation of Tregs through the secretion of TGF-β, IL-10, and IDO, increase
M2 macrophages and suppress NK function by inhibiting IFN-γ production, NKG2D
expression, and cytotoxic activity [74].
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In SS, the number of MDSCs is not increased [51]. ROS production by MDSC is in-
creased in CTCL suggesting that MDSC activity, rather than absolute numbers in peripheral
blood, may correlate with disease progression [51]. MDSCs are a heterogeneous popula-
tion of immature myeloid cells that include monocytic (mMDSC) and granulocytic (gMDSC)
subsets, whereas, there are few studies on Sézary syndrome, to better understand their role
in the immunosuppression.

2.7. M2 Macrophages

Macrophages present in the tumor microenvironment are called tumor-associated
macrophages (TAM), and they are characterized by the expression of CD163, a highly
specific monocyte/macrophage marker for polarized M2 macrophages [64]. There are two
subpopulations of macrophages. The M1 macrophages are present in Th1 responses. They
are induced by IFN-γ, present antigens, and produce inflammatory cytokines such as IL-1β,
TNF-α, IL-6, and IL-23, and are related to inflammation and tumor inhibition. On the other
hand, M2 macrophages are part of the Th2 response, are induced by IL-4, produce IL-10
and TGF-β, and are related to an immunosuppressive microenvironment, which favors
tumor cell growth, angiogenesis, matrix remodeling, and inhibition of adaptive immunity.
The release of IL-32 by NK cells, T-cells, keratinocytes, and fibroblasts may increase the M2
population in CTCL [80]. CD163/CD68 ratio was the highest at the MF tumor stage and
Sézary syndrome, indicating M2 polarization with disease progression [81].

The IL-4 and IL-13 Th2 cytokines induce the production of CCL18 by M2 macrophages.
The CCL18 binds to CCR8, a receptor expressed by Th2, Treg cells, and eosinophils
(Figure 5) [14,82,83]. TAMs producing CCL18 are observed in CTCL patients, and serum
levels of CCL18 are associated with a poorer prognosis [64,84]. Furthermore, increased
CCL22 serum levels and sCD163 serum levels in CTCL reflect the increased activity of
TAMs and tumor progression to a more advanced stage [81]. A strong correlation between
macrophage depletion and decreased expression of a vascular marker, CD31, and lymphatic
marker, podoplanin, suggest a role for macrophages in angiogenesis. Xenografted human
CTCL cells (Hut78) showed that M2-like macrophages have a role in the progression of
tumor formation in the skin [85].

The phagocytic activity of macrophages is also impaired in SS. The Th2 microenvi-
ronment with increased IL-4, IL-7, and IL-13, contributes to the expression of CD47 by
Sézary cells. The CD47 binds to its receptor, the signal regulatory protein α (SIRPα), on
macrophages, and inhibits macrophage-mediated phagocytosis of neoplastic cells (do-not-
eat-me signal) (Figure 6) [23,86]. The blocking of CD47 in hematological malignancies
showed good responses in preliminary clinical trials, and it highlights the role of phagocy-
tosis in controlling malignant cellular growth [87].

2.8. Neutrophils

Neutrophils are polymorphonucleate granulocytes. They are part of the innate im-
mune system and act by the phagocytosis of pathogens. The recognition of the pathogens
occurs by the interaction of toll-like receptors (TLRs) and pathogen-associated molecular
patterns (PAMPs) [88].

Neutrophils have major effector mechanisms as phagocytosis, degranulation, and
Neutrophil extracellular traps (NETs) formation. NETs are composed of decondensed
nuclear or mitochondrial DNA enriched by proteases and various inflammatory mediators.
Cancer cells recruit neutrophils releasing NETs to the tumor microenvironment [89]. There
is no evidence regarding NET production in CTCL, whereas neutrophils in peripheral
blood show an activated profile. Neutrophils showed increased CD11b and CD66b and
decreased CD62L, consistent with neutrophil activation [90]. Peripheral blood neutrophils
in CTCL patients showed an enhanced respiratory burst and have an activated surface
marker phenotype, even in the early stages of CTCL.
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The presence of CXCL8 that mediates neutrophil recruitment has been detected in
CTCL skin lesions as well as by clonal CTCL cells [91,92]. The elevations in plasma IL-8
show a mechanism for systemic neutrophil priming and activation in CTCL.

The IL-17 is an important cytokine involved in the pathogenesis of many skin diseases,
e.g., psoriasis and hidradenitis suppurativa [93,94]. The IL-17 upregulates the secretion of
C-X-C receptor (CXCR)-2 ligands. Neutrophils express CXCR2 and are attracted by the Th17
microenvironment [95,96]. In CTCL, a relatively low expression of IL-17 is observed, which
may explain the lack of neutrophil infiltration in skin lesions [97]. Besides the low number
of neutrophils in SS, they are functionally impaired, with reduced phagocytic activity and
intracellular killing. These defects favor the development of infections in these patients,
and the impaired response against pathogens is an important cause of complications and
death [23,88]. The expression of IL-17A and IL-17F in a JAK3/STAT3/STAT5-dependent
mechanism has been observed in a subset of patients, and it has been associated with disease
progression. However, these cells do not express other characteristic Th17 phenotypes,
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suggesting that the capacity to produce IL-17 derives from a dysregulated signaling rather
than a true Th17 response [15,98].

2.9. Mast Cells

Mast cells are bone marrow-derived hematopoietic cells. They are preferentially
located in the skin, airways, and gastrointestinal tract, tissues that are in direct contact with
the environment [99,100]. Mast cells are activated by immunoglobulin E (IgE) upon its
binding to the high-affinity IgE receptor present on the cell surface. After activation, mast
cells secrete histamine, proteases, cytokines, and chemokines [101]. Mast cells produce
different matrix metalloproteinases (e.g., MMP-9) and proteases (tryptase and chymase)
and could be an important source of proangiogenic factors [102]. Mast cells have rapid
sensing of microorganisms such as bacteria, parasites, fungi, and viruses, which can be
recognized by TLRs, resulting in the signaling pathway for the release of multiple cytokines
as well as the release of preformed granules [102].

The tumor microenvironment in solid and hematopoietic malignancies is influenced
by mast cells. Its increase in neoplastic tissues is correlated with tumor stage, prognosis,
and invasiveness in different malignancies [17].

In CTCL, an increased number of mast cells particularly at the periphery of tumors is
also correlated with tumor microvessel density and disease progression [103]. In a mouse
model with deficient mast cell mice, tumor growth significantly decreased [101]. Mast cells
in CTCL tissue exhibit a degranulated phenotype, and supernatant from the activated mast
cells is able to promote proliferation of the malignant CTCL cells in vitro, which shows the
protumorigenic role of mast cells [101].

Mast cells and histamine may play a role in CTCL, particularly in the advanced stages
of the disease [104]. Mast cells activation leads to proteinases and histamine secretion
which in turn stimulates sensory nerve endings and activates keratinocytes [105]. Con-
sidering that mast cells can be regulated by neurotransmitters and neuropeptides, it is
important to understand the pathophysiology of cutaneous lymphoma-associated pruritus
in Sézary syndrome.

2.10. Eosinophils

Eosinophils are innate immune granulocytes derived from the bone marrow and
are associated with helminthic infections, allergic diseases, and many inflammatory dis-
eases (e.g., eosinophilic esophagitis, eosinophilic pneumonitis, and eosinophilic celluli-
tis) [106–109]. Eosinophils are recruited into sites of inflammation and release major basic
protein, eosinophil cationic protein, eosinophil peroxide, eosinophil-derived neurotoxins,
IL-4, IL-5, IL-13, and GM-CSF [14].

The CCL26 and CCL11 are produced by dermal fibroblasts, keratinocytes, and en-
dothelial cells, and are increased in the skin of SS patients. The CCR3 is the receptor for
CCL26 and CCL11, and it is expressed on eosinophils. Thus, the upregulation of CCL26
and CCL11 induce the migration of eosinophils to the skin [64,110]. The IL-5 and IL-13 Th2
cytokines present in the tumor microenvironment of SS patients also favor eosinophilia, and
IL-4 increases IgE [23]. Activated eosinophils secrete more IL-4, IL-5, IL-13, and angiogenic
factors. Thus, eosinophils contribute to tumor growth by increasing immune tolerance with
a Th2 response and facilitating neovascularization [15,111]. Eosinophils produce vascular
endothelial growth factors (VEGFs) and other pro-angiogenic cytokines known to play a
role in tumor progression in cancer.

Eosinophils are in association with other myeloid cell types that stimulate tumor-
promoting inflammation as Treg and M2 macrophages [112]. Moreover, STAT3 activation
in T-cells with neoplastic morphology was significantly associated with the presence of
eosinophils in CTCL. Malignant T-cells also expressed eosinophilic activation and traffick-
ing factors, such as High-mobility group BOX-1 protein (HMGB1) and IL-5, suggesting
that these cells orchestrate the accumulation and activation of eosinophils in CTCL [113].
Tissue eosinophil activation in CTCL might contribute to the inflammatory flare-ups as-
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sociated with aggressive T-cell lymphomas [114]. Blood eosinophilia at baseline should
be considered a prognostic factor of poor outcome in patients with CTCL [115]. Increased
IL-5 production by peripheral mononuclear cells from patients with Sézary syndrome
together with eosinophilia was identified, suggesting that IFN-alpha and perhaps IL-12
may produce a therapeutic response in patients with CTCL and eosinophilia through the
direct suppression of IL-5 production by malignant Sézary cells [116].

2.11. Keratinocytes

Keratinocytes are the most abundant cells in the epidermis. They express toll-like
receptors (TLRs) that are crucial to a Th1-type immune response with the production of
interferon. Keratinocytes also express MHC class II and act as non-professional antigen-
presenting cells [14].

Keratinocytes are an important source of chemokines that contribute to the skin-
homing of neoplastic and inflammatory cells in CTCL. The CCL17 is expressed by ker-
atinocytes, Langerhans cells, and endothelial cells in the skin of SS patients. It binds to
CCR4, present in Sézary cells. The CCL27 is constitutively produced by keratinocytes,
and the erythrodermic skin of SS patients presents an increased CCL27 production com-
pared to healthy normal skin. The receptor CCR10 is expressed on Sézary cells. Thus, the
CCL17-CCR4 and CCL27-CCR10 interactions are essential to skin-homing of Sézary cells
(Figure 7) [110,117].
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Figure 7. Keratinocytes produce CCL17 and CCL27 that bind to CCR4 and CCR10, respectively.
These receptors are expressed by Sézary cells, contributing to the epidermotropism of malignant cells.

The CCL26 and CCL11 are also produced by keratinocytes, and they contribute to
the migration of eosinophils by interaction with the CCR3, which favors the Th2 response
(Figure 8) [64].

Periostin is an extracellular matrix protein secreted by dermal fibroblasts upon stim-
ulation by IL-4 and IL-13. Periostin mediates thymic stromal protein (TSLP) production
by keratinocytes, and TSLP subsequently activates immature DCs, which modulate Th2
immune responses via CCL17 production. Immature DCs produce IL-4, IL-5, and IL-13.
Serum and plasma TSLP levels are elevated in SS [118]. TSLP also induces STAT5 activa-
tion that promotes CTCL cells proliferation and IL-4 and IL-13 production [30,64,119,120].
STAT5 also downregulates STAT4 and the transcription factor STAB1 (special AT-rich
sequence binding protein-1) through the induction of miR-155. The STAB1 inhibits the
expression of IL-5 and IL-9 in neoplastic cells, and STAT5 activation allows the expression
of these cytokines favoring the Th2 response (Figure 9) [30,121]. Periostin also induces the
expression of IL-25 in keratinocytes. IL-25 promotes a Th2 immune response by enhancing
the expression of IL-13, and IL-13 promotes the proliferation of malignant cells [122,123].
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In SS, IL-22 is increased, and it promotes CCL20 expression in keratinocytes and
induces epidermal hyperplasia. The CCL20 ligand, CCR6, is expressed on immature DCs,
Th17, Th22, and regulatory T-cells. The migration of immature DCs and Tregs due to the
increased expression of CCL20 by keratinocytes contributes to the immunological tolerance
microenvironment, especially seen in advanced cases [30,97].

The most important symptom in SS patients is pruritus. It is observed in virtually
all patients with SS, and its intensity is directly correlated with a reduction in the quality
of life [3,124]. Nerve growth factor (NGF) is produced by keratinocytes, stimulates nerve
fibers growth, and is associated with the severity of pruritus. NGF serum is elevated in SS,
and the enhanced expression may be associated with increased dermal nerve fibers density
and severe pruritus [125].

Angiogenin is a stimulator of angiogenesis, and it also acts as an inhibitor of poly-
morphonuclear cell degranulation. It is produced by keratinocytes and endothelial cells,
besides being elevated in SS skin, and may be related to an increased susceptibility to
infections and poorer prognosis [126,127].

2.12. Fibroblasts

Fibroblasts are spindle-shaped cells that are responsible for the production of the
structural and signaling molecules present in the extracellular matrix, e.g., collagens,
proteoglycans, elastin, fibronectin, microfibrillar proteins, and laminins [128]. Cancer-
associated fibroblasts (CAFs) are crucial components of the tumor microenvironment,
inducing cell growth and immune escape through various mechanisms [129]. Dermal
fibroblasts in advanced-stage CTCL contribute to a Th2-dominant microenvironment by
increasing Th2 and attenuating Th1 immune responses [17].
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In SS, fibroblasts contribute to the Th2 microenvironment by producing CCL26, which
attract CCR3+ eosinophils (Figure 8); and by secreting periostin upon IL-4 and IL-13 stimu-
lation, which will mediate TSLP production by keratinocytes and will activate immature
DCs (Figure 9) [64].

The herpesvirus entry mediator (HVEM) is a member of the tumor necrosis factor
receptor superfamily. It is expressed on dermal fibroblasts of early-stage CTCL patients. The
HVEM increases the production of CXCL9, CXCL10, and CXCL11, which recruit CXCR3+
Th1 cells to the skin. In advanced-stage CTCL, including SS patients, HVEM is decreased,
and it attenuates the Th1 response [130]. The CXCR3 may also be expressed by malignant
T-cells, and a decreased production of CXCL9, CXCL10, and CXCL11 may contribute to
the loss of epidermotropism observed in SS [15]. On the other hand, fibroblasts produce
CXCL12, or stromal cell-derived factor-1 (SDF-1). It is a chemoattractant for CXCR4+
tumoral cells and it is increased in the skin of SS patients. The CXCL12/SDF-1 is inhibited by
CD26 peptidase activity. Since Sézary cells lack CD26, the CXCR4-CXCL12/SDF-1 axis may
have an important role in the skin recruitment and accumulation of neoplastic cells [131].

2.13. Malignant Cells

The production of autocrine growth factors that activate pro-oncogenic pathways is
observed in Sézary cells. Malignant cells are influenced by IL-4 and IL-13, which activate
the STAT6 pathway. This pathway will enhance the transcription of IL-4, IL-5, and IL-
13 messenger RNA, and will lead to the secretion of these cytokines by the malignant
cells [15,123].

The IL-15 activates STAT3 and STAT5, and it acts as a tumor growth factor [132]. In
neoplastic cells, ZEB1, a tumor suppressor gene that represses the transcription of IL-15,
is hypermethylated. This impairs ZEB1 function, IL-15 is overexpressed and acts in an
autocrine manner stimulating tumor cell growth. The IL-15 secreted by malignant cells
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also influences the microenvironment, especially the epidermal keratinocytes, that become
activated and proliferate [15,133].

The IL-32 also acts in an autocrine manner. It is secreted by malignant cells and
stimulates tumor growth by the NF-κB pathway activation [15,134].

Cyclooxygenases (COX) are enzymes that mediate inflammation through the conver-
sion of arachidonic acid to prostaglandin. The COX-2 is detected in malignant cells. It
increases the production of prostaglandin E2 (PGE2), which in turn reduces cell-mediated
immunity by inhibiting Th1 cytokine production and suppressing NK and CD8 T-cell
cytotoxicity. The PGE2 may also bind to its receptor on the Sézary cell surface and promote
malignant cell growth [15,135].

Besides the modulation of the inflammatory microenvironment, malignant cells may
suppress and kill reactive cells by cell-to-cell contact. The JAK-STAT pathway may induce
the expression of CD80 and PD-L1 on malignant cells. The CD80 binds to the CTLA-4
and PD-L1 binds to the PD-1 on inflammatory lymphocytes, inhibiting their function and
favoring immune evasion [15,21,136].

Malignant cells express FasL that induces apoptosis upon binding to Fas on inflamma-
tory CD8+ T-cells. On the other hand, malignant cells show fewer Fas expressions and are
resistant to Fas-L-mediated apoptosis [15,137].

3. Angiogenesis and Lymphangiogenesis

The formation of vascular and lymphatic vessels contributes to the dissemination of
malignant T-cells [30]. Neo-angiogenesis and lymphangiogenesis are analyzed by micro-
vessel density (expression of matrix metalloproteinases 2 and 9, and CD34) or by VEGF
expression (VEGF-A for angiogenesis and VEGF-C for lymphangiogenesis) [14]. In CTCL
skin lesions, there is an increased number of microvessels. Moreover, VEGF is significantly
expressed on these cells, and it is produced by neoplastic cells, endothelial cells, histiocytes,
fibroblasts, and reactive T-cells [138–140].

Malignant T-cells produce VEGF-A by JAK and c-Jun N-terminal kinase (JNK)-
dependent mechanisms. The VEGF-A is a potent angiogenesis stimulator, and it also
induces the expression of TSLP in keratinocytes [30,141]. Malignant T-cells also produce
other pro-angiogenic factors such as IL-17F, angiopoietin-2, placental growth factor, and
YKL-40 [30]. The increase in podoplanin+ lymphatic vessels is caused by the release
of VECG-C. Its density is associated with disease progression [30,142]. Lymphotoxin-α
(LTα) is involved in lymphatic and secondary lymphoid structures formation. It is
expressed in CTCL by a JAK3/STAT5 pathway. LTα acts in an autocrine manner by
stimulating the expression of IL-6 in malignant cells. The LTα, IL-6, and VEGF promote
angiogenesis, which will ultimately contribute to tumor growth and spread [14].

Matrix metalloproteinases (MMPs) are a group of enzymes involved in diverse physi-
ologic (tissue remodeling, embryogenesis) and pathologic (autoimmune diseases, cancer)
functions [143]. They have proteolytic activity, cellular growth signaling, apoptosis regula-
tion, angiogenesis, and they participate in inflammatory pathways [144]. The MMPs func-
tion is regulated by its inhibitors, tissue inhibitors of metalloproteinases (TIMPs) [143,145].
The MMPs are produced by fibroblasts, macrophages, keratinocytes, T-cells, endothelial
cells, and mast cells [146]. In CTCL skin, MMP-2 and MMP-9 are increased. Malignant
T-cells secrete factors that stimulate the production of MMPs by stroma cells [30]. These two
metalloproteinases are upregulated in different types of cancer, and they mediate microvas-
cular proliferation by degrading basement membranes of endothelial cells, facilitating
the spread of proliferating vascular cells to the surrounding stroma [138,146,147]. On the
other hand, in a rabbit study model, the active form of MMP-5 was reduced in malignant
T-cells [148]. Thus, the role of different MMPs in CTCL is still not fully understood.
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4. Skin Barrier
4.1. Staphylococcus aureus

Sézary syndrome skin lesions and nasal cavity display a higher incidence of Staphy-
lococcus aureus (S. aureus) colonization [149]. This finding is similar to atopic dermatitis
(AD). In SS, there is impaired production of antimicrobial peptides, including cathelicidins
and β-defensins [150]. The staphylococcal enterotoxins (SEs) function as superantigens
and activate STAT3 and induce IL-10 and IL-17 expression on neoplastic cells. The IL-10 is
an immunosuppressive cytokine; however, if IL-17 contributes to antimicrobial defense
and/or lymphomagenesis is a matter of debate [26]. The SE also triggers the expression
of FoxP3 by Sézary cells in a STAT5-dependent manner, but it is not defined whether the
expression of this Treg marker has any potential immune-regulatory effect produced by
malignant cells [49]. The miR-155 is also STAT5-dependent, and it inhibits the Th1 STAT4
transcription factor, and SEs may contribute to the expression of this microRNA in SS
(Figures 4 and 10) [27]. The malignant T-cells initially induce susceptibility towards S.
aureus and, subsequently, initiate crosstalk between benign and malignant T-cells, resulting
in the activation of pro-oncogenic pathways [15].

4.2. Galectins

Galectins are a family of soluble carbohydrate-binding proteins with intra and extracel-
lular activity defined by the carbohydrate specificity and the galectin structure [151]. These
lectins have been described as players in a wide variety of cellular processes crucial in
immune functions and cancer progression, such as the induction of angiogenesis, resistance
to apoptosis, continuous cell proliferation, cytokine secretion, and chemotaxis [152]. Not
surprisingly, there are several reports of galectin involvement in many cancers, including
hematological malignancies [152].

Tumor-derived galectin-1 (Gal-1) inhibits proliferation and Th1 cytokine production
by nonmalignant T-cells, besides inducing Th2 cytokines and the suppression of antitumor
immune responses [153]. Gal-1 also induces epidermal hyperproliferation and impairs
epidermal barrier function due to the loosely packed desmosomes, which explains the
increased incidence of skin infections [13,154]. Gal-1 is known also by inducing apoptosis on
T-cells [155], but the lack of CD7 expression and different CD7 glycosylation in tumor cells
on skin lesions and Sézary T-cell lines seems to confer Gal-1 induced apoptosis resistance
to the tumor cells [156,157].

Although galectin-9 (Gal-9) is highly expressed on lesional skin, in the serum and se-
creted in higher amounts by patients’ tumor cells [155], high doses of exogenous Galectin-9
induce apoptosis on CTCL cell lines in vitro and reduce T-cell tumor formation on a murine
model [158].
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Figure 10. The interaction of Staphylococcus aureus enterotoxins in Sézary cells. The SE superantigen
increases STAT3 and STAT5 function. The STAT3 pathway leads to increased production of IL-10 and
IL-17. The IL-10 prevents DCs from maturating and favors the expression of the Treg phenotype in
Sézary cells. The STAT5 increases production of miR-155 that inhibits the Th1 STAT4 pathway.

5. Conclusions

Most studies about the physiopathology of MF/SS focus on the evaluation of malig-
nant cells. Different genetic and epigenetic alterations in SS are described and, despite
the heterogeneous findings, they converge to the JAK/STAT pathway alterations, with an
increased STAT3, STAT5, and STAT6 and decreased STAT4 activation. The shift from a Th1
to a Th2 immunologic response is driven by complex interactions between malignant and
tumor microenvironment cells. These interactions are mediated by cytokines, chemokines,
growth factors, transcription factors, and other molecules produced by a myriad of dif-
ferent cells. Thus, strong evidence points towards the important role of the inflammatory
pro-tumorigenic environment that contributes to the immune escape of Sézary cells. Un-
derstanding the mechanisms that contribute to tumor growth and inhibition of anti-tumor
response will contribute to the search for more effective treatments that not only kill malig-
nant cells but also reestablish the normal immunologic milieu. Maybe, the combination of
tumor-directed and immune-enhancing therapies may present a perspective of long-term
control and even a cure for this complex and life-threatening disease.
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