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Abstract
Insect pests significantly impact global agricultural productivity and crop quality. Effective integrated pest management strategies 
require the identification of insects, including beneficial and harmful insects. Automated identification of insects under real-world 
conditions presents several challenges, including the need to handle intraspecies dissimilarity and interspecies similarity, life-cycle 
stages, camouflage, diverse imaging conditions, and variability in insect orientation. An end-to-end approach for training deep- 
learning models, InsectNet, is proposed to address these challenges. Our approach has the following key features: (i) uses a large 
dataset of insect images collected through citizen science along with label-free self-supervised learning to train a global model, (ii) 
fine-tuning this global model using smaller, expert-verified regional datasets to create a local insect identification model, (iii) which 
provides high prediction accuracy even for species with small sample sizes, (iv) is designed to enhance model trustworthiness, and (v) 
democratizes access through streamlined machine learning operations. This global-to-local model strategy offers a more scalable and 
economically viable solution for implementing advanced insect identification systems across diverse agricultural ecosystems. We 
report accurate identification (>96% accuracy) of numerous agriculturally and ecologically relevant insect species, including 
pollinators, parasitoids, predators, and harmful insects. InsectNet provides fine-grained insect species identification, works effectively 
in challenging backgrounds, and avoids making predictions when uncertain, increasing its utility and trustworthiness. The model and 
associated workflows are available through a web-based portal accessible through a computer or mobile device. We envision 
InsectNet to complement existing approaches, and be part of a growing suite of AI technologies for addressing agricultural challenges.
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Significance Statement

Insects constitute the most varied group of species among eukaryotes on Earth, necessitating an automated identification capable of 
recognizing the vast array of insect species. Their roles as pollinators, predators, and food sources are vital for ecosystems. Automated 
identification aids in ecosystem understanding, pest control, and education. However, diverse visual features and lifecycle variations 
pose challenges. InsectNet, employs pretraining and self-supervised learning, accurately identifying over 2,500 species. Integrating 
out-of-distribution detection and conformal prediction bolsters accuracy and user confidence. This is the first work where a deep 
learning model has been trained on such a large dataset to classify over 2,500 insect species for addressing a multitude of challenges 
while fostering user trust in its predictions.
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Introduction
In the United States, agriculture, food, and other related indus-
tries contributed $1.26 trillion to the gross domestic product 
(GDP) in 2021 (1). Insects, observed at all stages of plant growth, 

negatively affect the quality and quantity of crop yields in agricul-
ture, and the risk of invasion by new insects and transmission of 
insect-induced diseases is anticipated to increase with rising 
temperatures (2). Several insect species have high fecundity and 
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over-wintering ability—for example, Lycorma delicatula (spotted 
lanternfly [SLF])—and consequently exhibit rapid spread across 
large areas in a limited amount of time, devastating crops, or-
chards, and logging industries. Increased trade and travel make 
it easier for invasive insect species to access previously uncolon-
ized geographic locations. For example, SLF has reached several 
states in the northeastern and mid-Atlantic regions of the 
United States, threatening crop species ranging from ornamental 
crops to fruit and tree species (3). SLF is projected to reach and es-
tablish in California by 2033 if preventative measures are not tak-
en immediately to limit its spread (4).

Given this threat, accurate detection of insects is imperative for 
prompt, timely, and optimal decision-making (5). By identifying 
the specific insect species that cause damage early in its life cycle, 
farmers can apply targeted pest control methods instead of blan-
ket pesticide spray in the whole field. This reduces the risk of harm 
to beneficial insect species and other nontarget organisms. 
Furthermore, accurate spatio-temporal identification of insects 
can result in effective pest-control measures, which reduce crop 
losses, increase farm operation profitability and sustainability, 
and reduce chemical runoff into water bodies (6).

Growers have long relied on manual identification and quanti-
fication of insect infestation on crops; however, this method is 
challenging at all farming scales due to the limited availability 
of experts (especially in remote and rural locations) and expertise 
levels for accurate identification. This work develops an 
end-to-end machine-learning (ML) pipeline to address this issue, 
resulting in a web application for automatic insect identification 
on computers or handheld devices (smartphones). Users upload 
a photograph of an insect to a database. The app identifies the in-
sect and returns a prediction of its taxonomic classification and 
role in the ecosystem as a pest, predator, pollinator, parasitoid, 
decomposer, herbivore, indicator, and invasive species.

The past few years have seen various attempts to automate in-
sect identification, with the earliest attempts using classical ML 
methods (7, 8) to the more recent efforts using deep learning- 
based approaches (9–14). Most efforts have focused on utilizing 
relatively small labeled datasets (≤150,000 images) spanning a 
modest number (<50) of clearly distinguishable insect species. 
Recent studies have leveraged deep learning to enhance insect de-
tection across various crops (15). For citrus, CNN-based methods 
have effectively identified insects like citrus leafminer and sooty 
mold, though they call for more sophisticated data collection 
and model enhancements (16, 17). In rice, approaches such as 
leaf reflectance spectra and machine vision systems have been 
used to detect insects early, despite challenges in sensor deploy-
ment (18, 19). Cotton insect detection has benefited from GIS 
frameworks and LSTMs, highlighting the importance of develop-
ing robust datasets and advanced modeling techniques (20, 21). 
In the context of insect detection, particularly for small and chal-
lenging insects like aphids, Li et al. (22) developed an enhanced 
YOLOv5 algorithm to accurately recognize and count green peach 
aphids in a climate-controlled chamber. Their approach demon-
strated significant improvements in recognition and counting ac-
curacy. Additionally, Hansen et al. (9) utilized images of ground 
beetle specimens scanned at museums to develop a classifier, 
demonstrating the versatility of AI models in different settings be-
yond traditional agricultural contexts.

Recent advancements in AI-based insect identification have ex-
panded the potential for automated field monitoring, addressing 
challenges like taxonomic ambiguity, data scarcity, and biodiver-
sity tracking across diverse environments. Geissmann et al. (23) 
introduced Sticky Pi, an autonomous insect trap that combines 

image capture with deep learning to monitor insect activity and 
diversity in real time, providing insights into ecological interac-
tions and circadian biology. Similarly, a hierarchical classification 
approach presented by Bjerge et al. (24) leverages multitask learn-
ing and anomaly detection to improve taxonomic classification 
across multiple ranks, enhancing reliability for in situ biodiversity 
monitoring. Roy et al.’s (25) Automated Monitoring of Insects 
(AMI) system uses domain adaptation to integrate large datasets 
like GBIF for nocturnal insect detection and classification, redu-
cing the need for extensive labeled data in new field applications. 
Hoye et al. (5) demonstrated how deep learning and sensor-based 
monitoring could track insect abundance and diversity at scale, 
providing ecological insights into seasonal and diurnal activity 
patterns of flower-visiting insects. Additionally, Bjerge et al. (26) 
developed the Insect Classification and Tracking (ICT) system, 
which combines camera trapping with real-time detection, classi-
fication, and tracking of insect activity, offering valuable non-
invasive monitoring of pollinator behavior and phenology.

A recent comprehensive review uncovered numerous obstacles 
and shortcomings in the realm of image-based insect identifica-
tion and classification (27). These issues include the narrow scope 
of current datasets (which only cover a few insect species, natural 
habitats, and regions); unbalanced datasets that complicate ma-
chine learning; unidentified insect species within geographic 
areas; and challenging scenarios such as overlapping insects, 
morphologically similar species, and intraspecies variations. 
Additionally, such methods must handle the recognition of 
insects throughout their life stages and be able to interpret 
low-quality images due to fast-moving insects or poor lighting 
conditions. Species-level classification may overlook valuable 
information such as higher-level taxonomy, sex, and life stage. 
All of these issues complicate image-based identification and offer 
opportunities for AI-enabled identification.

InsectNet addresses these limitations by leveraging a compre-
hensive and detailed image dataset collected through iNaturalist 
(28). This citizen scientist platform allows users to upload labeled 
photographs of specific organisms. Citizen science efforts can pro-
duce large, diverse, high-quality, community-usable datasets 
(29, 30) that serve as the foundation for building automated insect 
classifiers by leveraging the collective strength of its users (the 
crowd) for data curation. The user community is responsible for 
identifying the observations, with consensus from multiple users 
validating each identification. Every successful identification en-
hances the communal knowledge pool, contributing to a broader 
understanding of global biodiversity. The iNaturalist dataset 
holds taxonomically relevant data for insect identification and 
classification problems, including hierarchical categories that in-
clude kingdom, phylum, class, order, family, genus, and species.

More details on the iNaturalist dataset are provided in the 
Supplementary Information (SI). From this dataset, we extract im-
ages (specifically, images rated as “research grade”) of 2,526 insect 
species reported as the most agriculturally and ecologically im-
portant (see SI: Section 1. A for a list of insect species, common 
names, scientific names, number of images per species, taxonom-
ic information, and their role in the ecosystem).

While our primary focus is on agricultural and ecological appli-
cations, we show that InsectNet can also aid in classifying insects 
in museum collections and other smaller datasets. We do this by 
fine-tuning InsectNet on expert-curated datasets, including mu-
seum collections (see results and SI).

We leveraged machine learning operations (MLOps) to ensure a 
seamless and efficient deployment pipeline (Fig. 1).  Our model de-
velopment uses recent advances in self-supervised training (31), 
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inter- and intra-domain transfer learning, out-of-distribution de-
tection (32–35), and conformal predictions (36) to train InsectNet. 
During self-supervised pretraining (SSL), the model learns to build 
a robust low-dimensional feature space of the images based on 
the (dis)similarities within the data itself, independent of poten-
tially inaccurate or noisy labels. This characteristic makes SSL 
particularly suitable for dealing with datasets with prevalent label 
noise, as with many large-scale biological datasets. Subsequent 
fine-tuning requires a much smaller dataset (see Table 1), and 
we use smaller datasets to train InsectNet on various sets of insect 
species, with our flagship model able to recognize 2,526 insect spe-
cies. Users can upload images to the InsectNet classifier web app, 
and we provide real-time predictions while storing these user- 
uploaded images for future use. These stored data become a 

valuable resource for updating the model pretraining, thus en-
hancing the classifier’s robustness. Furthermore, our MLOps 
strategy includes periodic updates to the model’s backbone, ac-
commodating additional insect species and taxonomic changes. 
We integrate continuous monitoring and maintenance practices 
to ensure the app’s reliability and performance, creating a dynam-
ic system that adapts to emerging challenges and evolving insect 
classifications. This ML engineering approach enables us to de-
liver a continuously improving insect classification experience 
for our users. The classifier exhibits >96% classification accuracy 
on a large set (2,526 insect species categories) of relevant insect 
species. In contrast, the previous best classifier trained on the 
Insecta class (using the 2017 iNaturalist test dataset (28)) exhib-
ited a top-1 accuracy of 77.1%.

Technical workflow of InsectNet
Citizen science collected dataset
We selected a subset of the class Insecta from the full iNaturalist 
dataset (>70M images). This subset consisted of 12M insect images 
of around 100,000 distinct insect species. We further filtered this 
data to identify a subset of 2,526 species categories of relevant in-
sects: beneficial and harmful insects. This dataset, composed of 
6M images, has been curated and quality-checked by domain ex-
perts to ensure reasonably accurate species labels. The labeled 
images span 17 insect orders, with Lepidoptera containing the 
highest number of species (1,430 species) and Zygentoma contain-
ing the lowest (three species). This dataset comprises insects of 
varying sizes, from the smallest size species such as Aphis nerii 
(oleander aphid or sweet pepper aphid) ranging from 2 to 3 mm 
to larger ones like the Hyalophora cecropia (cecropia moth), the 

Fig. 1. The end-to-end pipeline of the InsectNet classifier consists of three components: training, inference, and democratization. The training of the 
InsectNet classifier is a three-fold process that involves two levels of pretraining using 3.6 billion images (Instagram hashtags [SWAG]) and 12 million 
images (unlabeled), respectively (refer SI: Section 2.C), and end-to-end fine-tuning using 6 million labeled images (or other expert-curated data, see 
Results section). During inference, a user uploads a captured image, and the classifier model proceeds through two wrapper modules: the 
out-of-distribution module and the conformal prediction module (refer SI: Section 4). As part of our effort at democratization of these tools, we showcase 
how our fully trained classifier with the wrapper modules is deployed on a publicly available web app and how it could also be used for custom 
downstream tasks.

Table 1. The table showcases the effectiveness of the SSL model 
and demonstrates how utilizing even a small number of samples 
(k = 10, 20, and 50) to fine-tune SSL pretrained InsectNet can yield 
good accuracies.

Dataset Classes Baseline 
accuracy (%)

InsectNet k-shot accuracy (%)

k = all k = 50 k = 20 k = 10

Museum 
Dataset (9)

291 
species

51.9 96.9 93.9 85.2 74.2

BioScan-1M 
Dataset (39)

40 
families

97.6 98.1 75.8 57.5 47.5

Butterfly 
Dataset (40)

35 
species

87.0 87.5 77.6 66.2 59.6

This is particularly valuable in downstream tasks where labeled data are 
scarce. We report the top-1 classification accuracies for the experiments.
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largest moth in North America, with a wingspan reaching 15–20  
cm. Within the orders, some charismatic species, such as the 
Danaus plexippus (monarch butterfly) from the order Lepidoptera, 
have as many as 136,000 images. In contrast, other insect species, 
like the Nisitrus vittatus (common bush cricket) from the order 
Orthoptera, have as few as 38 images. This is nearly three orders 
of magnitude variation in data availability and highlights a signifi-
cant data imbalance challenge (37, 38) that can make the training 
of deep learning models nontrivial.

Our classifier identifies insect species and highlights their roles 
(see SI: Section 7), offering valuable insights for decision-making. 
Insects play various roles in the environment; for instance, polli-
nators, parasitoids, and predator species are beneficial insects. 
We used a large-language model to generate structured text de-
scribing all 2,526 species; this structured text was then post- 
processed and verified by human experts, allowing us to assign 
roles to each species. In our dataset, we observe that 20.3% of in-
sect species take on the role of predators, contributing to natural 
pest control. Pests contribute to 33.5% of the dataset. Another crit-
ical role is played by pollinators, which are crucial for the repro-
duction of many plant species. These make up 35.6% of the 
insect species in our dataset. Additionally, 10.7% of the insect spe-
cies have various roles, adding diversity to the ecosystem. 
Understanding these roles enhances our knowledge of insect in-
teractions, supporting more informed ecological studies and inte-
grated pest management strategies.

We utilize 10 images per species from the iNaturalist 2021 data-
set for testing and validation. Additionally, to ensure the statistical 
significance of reported per-insect species accuracy, we collected 
and evaluated the performance of InsectNet on 50 public domain 
web images for each of the insect species depicted in Figs. 4(ii) 
and 5. We also evaluate InsectNet on four expert-validated data-
sets containing a subset of the 2,526 insect species. These datasets 
include museum data collection of beetles (9), the insect subset 
from the BioScan-1M dataset (39), an Iowa State University curated 
dataset of agricultural pests, and a dataset of butterflies (40).

Label-free SSL
Training accurate machine learning models requires the avail-
ability of annotated datasets—for instance, datasets where each 
insect image is tagged with a species name or label. Providing ac-
curate labels for a large dataset is currently the most significant 
bottleneck in training accurate ML models, especially when label 
creation (or checking) requires expert knowledge. We utilize SSL 
approaches (29, 31), which enable a model to initially learn useful 
features of a dataset without the need for any labels. Subsequent 
fine-tuning is then performed using a smaller labeled dataset and 
has been shown to produce high-performing models (41).

SSL pretraining offers additional advantages. SSL pretraining 
ensures robustness to noisy labels (42–44). During SSL pretraining, 
the model learns to build a robust low-dimensional feature space 
of the images based on the structural similarities within the data 
itself, independent of potentially inaccurate or noisy labels. This 
characteristic makes SSL particularly suitable for dealing with da-
tasets with prevalent label noise, as with many large-scale bio-
logical datasets, including iNaturalist, where the “research 
grade” identification is not always expert-vetted. Practically, this 
implies the existence of a fraction of images with incorrect species 
labels. This is not unique to iNaturalist as most large-scale open- 
source datasets (45, 46) have a nontrivial amount of noisy or incor-
rect labels (47–49). Yet, AI models—especially those with SSL pre-
training—perform surprisingly well on noisy labels (29, 50, 51). We 

observe similar behavior for InsectNet (as described in the results 
section; also see SI).a

We perform an extensive series of training on several model ar-
chitectures (RegNet, ResNet, see SI: Section 2.B) and report the im-
pact of SSL pretraining across two performance axes: (i) The 
amount of unlabeled data used for pretraining, which has a substan-
tial effect on final classification performance. Table S1 describes 
the impact of systematically increasing the amount of unlabeled 
data by 200×. These results quantitatively illustrate the value of 
citizen science collected data, with SSL approaches leveraging 
these images even if such datasets are available without labels 
or when the labels are incomplete or noisy. (ii) The number of pre-
training campaigns. “Daisy-chaining” a model’s pretraining on a se-
quence of different datasets or pretext tasks, helps improve the 
final model performance. In Table S2, we empirically show that 
classification models learn better latent representations when 
their model weights are sequentially trained across multiple data-
sets. Our best model consisted of one campaign of pretraining on a 
very large noninsect dataset, followed by a second campaign of SSL 
pretraining on the insect dataset, followed by final fine-tuning on 
labeled data (see Fig. S1). This is a corollary to the first point (the im-
portance of the amount of unlabeled data) by extending the ap-
proach to utilizing out-of-domain large datasets for pretraining 
(or rather prepretraining). We evaluated model performance 
along these performance axes to identify our best-trained insect 
classifier. This classifier exhibited a 96.4% classification accuracy, 
with a 94% mean per-species accuracy. The classification accur-
acy histogram for all 2,526 species categories displays a tiny tail, 
suggesting that only a small fraction (3.40%) of the species cat-
egories have a prediction accuracy of less than 80% (see Fig. S2
for the histogram plot). We also note no correlation between in-
sect size and prediction accuracy.

Improving the prediction accuracy of species with a low 
number of images in the database (i.e. low sample size)
We use an approach that transfers knowledge from high-accuracy 
categories with numerous examples to enhance the learning of 
low-accuracy categories with fewer examples. AlphaNet is a 
wrapper model that operates post hoc on top of the InsectNet clas-
sifier without requiring any retraining (52). We demonstrate that 
AlphaNet significantly improves the prediction accuracy of low- 
accuracy species while retaining the overall prediction accuracy 
of the classifier. AlphaNet shifts the tail of the per-species accur-
acy histogram toward higher accuracy levels. In particular, the 
average accuracy of the low-accuracy species improved from 
79.7% to 87.6%, with only a 1.3% drop in the overall classification 
accuracy (from 96.4%→ 95.1%). This ensures that almost all spe-
cies in our insect species classifier exhibit a per-species prediction 
accuracy greater than 80%. This strategy addresses challenges 
with imbalance in the dataset.

Improving trustworthiness of the model
To ensure the robust performance of InsectNet in the wild, we 
wrap around two additional features to our classifier. First, we en-
sure that InsectNet avoids making predictions when confronted 
with low-resolution, blurred, or confusing images. This provides 
guardrails against potentially catastrophic consequences, for in-
stance, the mis-classification of an unseen insect species (say, be-
longing to an invasive species) as a benign insect species or the 
misclassification of images belonging to a noninsect category 
(say, tiny red color berry) as insects (say, lady beetles). We do 
this by wrapping an out-of-distribution (OOD) detection algorithm 
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around the classifier. The algorithm uses an energy-based metric 
(see SI: Section 4.A) to flag images that deviate significantly from 
the data distribution used to train the classifier (see Figs. S3 and 
S4 that depict how the energy value can be used to distinguish in- 
distribution and OOD images). Our empirical analysis indicates 
that the 6M dataset exhibits a diverse set of imaging conditions, 
making OOD detection a useful strategy—yet another indicator 
of the power of citizen science data (see Fig. S5 that illustrates 
the results of InsectNet on OOD samples). Second, we use a con-
formal prediction approach to produce prediction sets, rather 
than a single species category, with rigorously guaranteed confi-
dence (set to ≥97.5%). The prediction sets become larger when 
the classifier is increasingly uncertain of its prediction. Both these 
features provide a graceful way for human intervention and sub-
sequent decision-making, thus addressing the need for high trust 
in identification. These features also allow quantitative feedback 
to direct citizen science data collection efforts for insect species 
where InsectNet under performs.

Democratized access and streamlined machine learning 
operations (MLOps)
The classifier is publicly available and hosted on a server: https:// 
insectapp.las.iastate.edu. We also provide access to the trained 
model weights and to the MLOps workflows to enable the agricul-
ture community to adopt and leverage these approaches. In par-
ticular, to streamline the data wrangling process, we created a 
workflow tool, iNaturalist Scalable Download (iNatSD), that al-
lows users to intuitively download customizable datasets of high- 
quality images of organisms in an ML-analysis-ready format.

Global-to-local fine-tuning for region-specific practical tools
We employ a global-to-local approach to ensure accurate and 
context-specific insect recognition. This method begins with our 

robust global model trained on unlabeled large-scale datasets, 
which is then fine-tuned with a small labeled expert-validated, 
region-specific dataset. Doing so ensures that the model is 
optimized for precise identification in specific agricultural regions, 
specific crops or a targeted set of insects. We show that this 
approach only requires a small number of expert verified images 
to produce highly accurate predictions (see Table 1). This approach 
enhances the model’s adaptability and accuracy, making it highly 
effective for practical pest management across diverse environ-
ments (Fig. 2).

Results
We split the results into two parts. We quantitatively evaluate our 
approach to training and fine-tuning InsectNet models across 
multiple datasets in the first part. We then evaluate the 
InsectNet model on several challenging agricultural scenarios in 
the second part.

Global-to-local fine-tuning on several 
expert-vetted datasets
We demonstrate the utility of the SSL pretrained InsectNet model 
by fine-tuning it on three expert-vetted datasets. These datasets 
were carefully curated and annotated by specialists, ensuring 
the accuracy of the labels. These datasets include museum data 
collection of beetle (9), the insect subset from BioScan-1M dataset 
(39), and a dataset of butterflies (40). Our results in Table 1 demon-
strate that our InsectNet model consistently outperformed the 
previous best-performing model (often by a very large amount). 
This suggests that our approach of SSL pretraining on a vast data-
set, followed by fine-tuning on smaller, expert-verified datasets, 
produces demonstrably high-performing models.

Fig. 2. InsectNet in action. After an image is uploaded, InsectNet first performs out-of-distribution (OOD) detection. (Left) If OOD detection is true, 
InsectNet provides a warning and prediction. (Middle) If not OOD, InsectNet produces a prediction with no warning. (Right) Additionally, InsectNet 
provides conformal sets with a predefined (here, 81.0%) confidence. In this instance, the images above belong to insect species Trichoplusia ni (Cabbage 
looper). The figure on the right is sufficiently confusing for InsectNet to predict a conformal set of two closely related species.
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Region-specific insect identification through 
global-to-local fine-tuning for  
practical applications
We next use the global-to-local approach to create a regional in-
sect identification model for the midwestern United States. We 
consider the most prevalent insect species affecting midwestern 
agricultural practices (as defined in integrated pest manage-
ment manuals affecting corn and soybean crops). These 54 spe-
cies, as listed in the Iowa State University (ISU) extension 
resource, were used as the basis for our local fine-tuning. The 
first page of this manual lists key insects (see Fig. S6), shows 
some of the key insects impacting corn and soybean crops in 
the region. For 54 of these insect species, we utilized an expert 
verified dataset consisting of 540 K images. The global-to-local 
model trained on this expert verified data exhibited an impres-
sive 96% MPCA as depicted in Table 2. In comparison, a model 
trained from scratch using the expert verified dataset could 
only achieve 90% MPCA. This demonstrates the efficiency of le-
veraging global models, which are pretrained on large, diverse, 
unlabeled datasets, to address specialized regional tasks. This 
approach offers a scalable solution for pest management, allow-
ing models to be quickly adapted to local environments with 
minimal labeled data. This makes it especially valuable in scen-
arios where labeled datasets are scarce or expensive to generate. 
Furthermore, this fine-tuning framework can be extended to 
other regions and crops, making it a versatile tool for agricultur-
al stakeholders worldwide.

Good performance for low  
image-per-class species
We next performed k-shot learning experiments, varying the 
number of images, k, per species available to fine-tune 
InsectNet. We choose to vary k from 50, 20, down to 10, represent-
ing minimal effort by an interested end-user to fine-tune 
InsectNet on new species. This is a good indicator of how data 
availability per class impacts prediction accuracy. Importantly, 
it reveals the minimum number of images InsectNet needs to 
(empirically) guarantee good performance. As seen in Table 1, 
fine-tuning InsectNet on moderately sized datasets achieves 
high accuracies even with significantly limited data, demonstrat-
ing its robustness in handling low image-per-class species.

Next, we evaluate our flagship InsectNet model on various 
challenging scenarios that arise during insect image classification 
in the wild. This model can classify 2,526 insect species. The clas-
sifier has two specialized wrapper modules to guarantee reliabil-
ity: the out-of-distribution module and the conformal prediction.

Challenge #1: Large number of insect species, and variability 
in sizes of insects
The fine-tuned InsectNet model performs exceptionally well, 
achieving a mean per-class accuracy of over 96%. More than 
2,287 species had an accuracy of greater than 90%, with only 
239 species exhibiting an accuracy under 75%. Insects show sig-
nificant variability in size across species. We evaluated the 

performance of InsectNet to classify insects across various sizes. 
We binned insect species according to size, with the size ranging 
from around 2–4 mm Glycaspis brimblecombei (red gum lerp psyllid) 
to 150 mm Caligo telamonius (Pale Owl-butterfly) size range (see SI
for details).b InsectNet exhibited consistently high accuracy (with 
a mean accuracy of >95% in each bin) across the entire size spec-
trum on this dataset, as seen in Fig. 3. In terms of performance 
variability as a function of number of images per class, this 
InsectNet model exhibits similar trends to our models trained 
on smaller datasets. In the SI (see Fig. S4), we report results show-
ing that species prediction accuracy is fairly independent of the 
number of images available per species.

Challenge #2: Intraspecies dissimilarity
Invasive insect species are of significant concern for agriculture, 
as these nonnative invasive species can cause significant harm 
to horticulture and agriculture crop species, forest tree species, 
and urban green landscapes. The USDA National Invasive 
Species Information Center (53) lists invasive insect species that 
seriously threaten various food grain crops, vegetable, fruit, tree, 
and shrub species. Our model is able to accurately identify a large 
set (Fig. 4(ii)), including (Lycorma delicatula (spotted lanternfly), 
99%); (Helicoverpa armigera (Old World bollworm), 92%); (Popillia ja-
ponica (Japanese beetle), 100%); (Megacopta cribraria (kudzu bug), 
98%); (Halyomorpha halys (brown marmorated stink bug), 100%); 
(Homalodisca vitripennis (glassy-winged sharpshooter), 100%); 
(Agrilus planipennis (emerald ash borer), 98%); (Adelges tsugae (hem-
lock wooly adelgid), 96%); (Lymantria dispar (spongy moth), 100%); 
(Lymantria monacha (nun moth), 100%); and (Cydalima perspectalis 
(box tree moth), 100%). Accurate identification of these invasive 
species at ports of entry and geographic borders can prevent the 
escape and spread of these invasive species into new geographic 
regions. To ensure robust detection and prevent the spread of in-
vasive species, we emphasize that these image-based identifica-
tion approaches (particularly in biosecurity applications) should 
be supported by expert validation and additional lines of evidence 
before routine deployment.

Challenge #3: Intraspecies dissimilarity
Intraspecies dissimilarity during insect classification refers to the 
degree of dissimilarity among the members of an insect species, 
such as color and pattern variations. We showcase an example 
in this category belonging to the Coccinellidae family, Harmonia 
axyridis (Asian lady beetle), which is a nonnative species 
(Fig. 5a). The variations in color and pattern exhibited by members 
make classification by nonexperts nearly impossible; however, 
our classifier can successfully recognize six variations of the 
Asian lady beetle (accuracy 98%).

The Asian lady beetle was intentionally introduced into US re-
gions with a lack of natural predators to regulate the population of 
soft-bodied insects, like aphids, mealy bugs, and scale insects (54). 
While both native and nonnative lady beetle species are import-
ant as predators, the nonnative species (Asian lady beetle) has be-
come a nuisance as it out-competes native species such as Adalia 
bipunctata (two spotted lady beetle), resulting in biodiversity loss 
(55). Other detrimental consequences of the Asian lady beetle in 
North America includes causing harm to fruit crops and acting 
as a home intruder (56).

Challenge #4: Interspecies similarity
Different insect species can look similar in color and pattern. For 
instance, more than 500 species of lady beetle are reported in the 

Table 2. Comparison of accuracy between global-to-local 
fine-tuning and training a local model from random weights.

Model Total accuracy MPCA
(%) (%)

Global-to-local fine-tuning 98.7 96.1
Fine-tuning from scratch 94.3 90.2
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United States, making identification challenging; Our classifier 
performs well on this challenge (see Fig. 5b,c), with accuracy ran-
ging from 96% to 100%. InsectNet can differentiate between 
predator species of nonnative Asian lady beetle and native beetle 
species Adalia bipunctata (two spotted lady beetle) and can distin-
guish predator (H. axyridis) vs. insect species of lady beetle 
(Epilachna mexicana (Mexican bean beetle)). Accurately differenti-
ating between visually similar species is essential for timely miti-
gation, especially when harmful insect species look like beneficial 
predatory species. InsectNet can also accurately distinguish be-
tween two look-alike beetles (see Fig. 5d). Popillia japonica 

(Japanese beetle) and Phyllopertha horticola (garden chafer) have 
very similar overall appearances, and experts differentiate them 
using subtle differences in physical features. Additional examples 
illustrated in Fig. 5d include distinguishing between Euschistus ser-
vus (brown stink bug; insect, native to United States), Halyomorpha 
halys (brown marmorated stink bug; insect, invasive in United 
States), Euschistus tristigmus (dusky stink bug; insect, native to 
United States), and Erthesina fullo (yellow-spotted stink bug; insect, 
invasive in United States). Polyphagous invasive insect species like 
the brown marmorated stink bug is a global insect that harms 
over 170 plant species, including vegetable, fruit, food grain, and 

Fig. 3. Violin plot of classifier accuracy ordered by Sizes of Insects. The x-axis shows size ranges (in mm), and the y-axis represents total classifier 
accuracy. Each violin displays the distribution of accuracies for species within the corresponding size range, with individual data points overlaid to show 
specific performances.

i ii

a

c

d

b

Fig. 4. InsectNet can accurately (i) (left) classify under various challenging conditions: a) camouflaged insects (brown insect on brown background), b) 
camouflaged insects (green insect on green background), c) sexual dimorphism, d) different poses and orientations. (ii) (right) identify several invasive 
insect species.
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flower crop species (57). However, the look-alike predator species 
of stink bug, Podisus maculiventris (spined soldier bug), preys 
on insects like caterpillars, aphids, and beetles, thereby control-
ling harmful insect populations in gardens and agriculture. 
Differentiating between a harmful insect and a beneficial insect 
is critical for appropriate mitigation without unnecessarily harm-
ing local biodiversity.

Challenge #5: Insect camouflage and diverse background
Numerous insect species have patterns or colors that camouflage 
with the background, like a green insect on a green leaf or a brown 
insect on a piece of wood. Insects have evolved various adaptation 
mechanisms that help them blend in with their surroundings, re-
sulting in a camouflaging effect to avoid predators and increase 
the chance of survival (58). However, this camouflaging effect 
makes it challenging to identify the insects in their habitat (59). 
Our classifier performs well even for insect images in camoufla-
ging backgrounds and small foreground-large backgrounds to 
produce reasonable predictions in such challenging cases (see 
Fig. 4(i)a, b), with prediction accuracy ranging from 90 to 100%. 
Examples illustrated include the Thesprotia graminis (American 
grass mantis), which is a brown insect in a brown background; 
Megarhyssa macrurus (long tail giant Ichneumonid wasp) that cam-
ouflages with tree bark; and examples of a green insect on a green 
background, Chrysopa oculata (green lacewing) and Cicadella viridis 
(green leafhopper), which is a very tiny green insect against a 
green leaf.

Challenge #6: Sexual dimorphism
In numerous insect species, male and females have dissimilar and 
distinct features. For example, the Oryctes nasicornis (European rhi-
noceros beetle) is a species of beetle native to Europe, western 
Asia, and northern Africa that reaches up to 4 cm in length (60). 
The differences between male and female European rhinoceros 
beetles are not very pronounced, but there are some noticeable 
physical differences between them. The male has a characteristic 
horn on its head, similar to that of a rhinoceros (Fig. 4(i)c). While it 
is not considered a major harmful insect and primarily feeds on 
decaying matter, it still causes losses as the adults feed on the 
sap of a variety of trees, while the larvae feed on the roots of these 
trees and can cause significant damage to young trees. Our 

classifier is able to correctly identify images belonging to this spe-
cies, regardless of sex.

Challenge #7: Variability in insect orientation and stance
The example of the Papilio troilus (spicebush swallowtail butterfly; 
see Fig. 4(i)d) demonstrates the complexity of classification across 
the instar larvae and adult, where images are often taken from 
varying stances and poses (front, top, side). Our classifier correctly 
identifies the insect species corresponding to these images. It also 
correctly identifies the butterfly with broken wings and an image 
of two butterflies with wings closed.

Challenge #8: Multiple insects in the image frame
In the wild, particularly for smaller-sized insects, multiple insects 
are often present in the same image. Our classifier can make suc-
cessful predictions across a variety of species, including Lycorma 
delicatula (spotted lanternfly) and Solenopsis invicta (red imported 
fire ant), with an accuracy of 100 and 90%, respectively (see 
Fig. S5). A fascinating example of this ability is in the right image 
of Fig. S5, which shows the Cotesia congregata (parasitoid braconid 
wasp) cocoons on late-stage Manduca sexta (tobacco hornworm) 
larva. The female braconid wasp lays her eggs inside the body of 
hornworm larva using a long, needle-like ovipositor. The eggs 
hatch into tiny larvae, which feed on hornworm body tissue, even-
tually killing it. Once the larvae have completed their develop-
ment, they emerge from the host body and spin cocoons on the 
surface of the hornworm’s skin. InsectNet successfully identifies 
multiple braconid wasp cocoons on the hornworm body surface.

Discussion
InsectNet robustly identifies beneficial and harmful insect spe-
cies, and opens up diverse unique opportunities. This includes 
monitoring and surveillance of insects at international cross-
ings/border inspections and tracking insect species’ domestic 
spread and movement. To ensure robust usage, we incorporate 
additional mechanisms such as out-of-distribution detection, 
conformal prediction, and uncertainty quantification to alert 
users to cases where confidence is low or where the model en-
counters unfamiliar data. However, it is important to note that 
InsectNet represents one line of evidence in biosecurity 

a b c d

Fig. 5. InsectNet can identify a) intraspecies dissimilarity of nonnative predator species Harmonia axyridis (Asian lady beetle), b) the difference between 
predator species of nonnative Asian lady beetle and native beetle species Adalia bipunctata (two-spotted lady beetle), c) the difference between nonnative 
predator species Asian lady beetle and harmful insect species Epilachna mexicana (Mexican bean beetle) exhibiting similar features (all pattern variations 
not shown in the figure), d) examples of interspecies similarity in case of look-alike beetles Popillia japonica (Japanese beetles) and Phyllopertha horticola 
(garden chafer) and different kinds of stink bug species.
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applications, and its outputs should be interpreted in conjunction 
with expert identification and other validation techniques. This 
allows practitioners to exercise caution and defer to human ex-
perts when necessary.

InsectNet can be a tool for maintaining and enhancing bio-
diversity for pollinators and other beneficial insects. While there 
are other insect identification apps available, a few have limita-
tions such as operating on a small range of species and lacking ex-
tensive documentation of their accuracy, some of which require 
payment for access to certain features (61–63). A few applications 
operate on a large-scale dataset but still leave key training details 
undisclosed (64). InsectNet’s strength lies in its open approach to 
continued development and enhancement, leveraging SSL pre-
training to improve adaptability and performance. This model 
opens up possibilities for automated identification in images 
and videos and can be fine-tuned for various use cases, whether 
localized insect identification or other applications.

We also demonstrate the practical usage of our model by tran-
sitioning from a global pretrained model to a locally fine-tuned 
model for region-specific use cases. By fine-tuning the global mod-
el on an expert-verified dataset of 54 insect species prevalent in 
the US Midwest region, we achieved a notable accuracy of ap-
proximately 99% and a mean-per-class accuracy (MPCA) of 96%. 
In comparison, training a local model from scratch without pre-
training resulted in lower overall accuracy of 94% and an MPCA 
of 90%. This showcases the effectiveness of the global-to-local 
fine-tuning approach, particularly for improving model perform-
ance in specialized regional contexts worldwide.Researchers in 
any country can use InsectNet’s global-to-local model architec-
ture to create crop-specific insect models efficiently. They can 
start with manually collected images of targeted insect species 
or use existing datasets after verifying and refining species 
labels. If necessary, additional images for underrepresented or 
misclassified species could be collected to improve dataset 

Fig. 6. Performance of InsectNet on species with low classification accuracy. The figure highlights three groups of insect species where the classifier 
struggled to achieve high accuracy. (Top)—(left) Enallagma ebrium, (center) Enallagma hageni, and (right) Lestes disjunctus, all belonging to the suborder 
Damselflies (Zygoptera) pose difficulty to the classifier in distinguishing them due to their highly similar features. (Middle)—Pieris virginiensis (left) and Pieris 
oleracea (right), both belonging to the family Pieridae, the classifier faced challenges in differentiating these butterfly species, likely due to their close 
morphological resemblance. (Bottom)—,(left) Bombus huntii, (center) Bombus vancouverensis, and (right) Bombus vagans, all from the family Apidae, the 
classifier also encountered difficulty, as these bumblebee species share similar features that complicate accurate identification. These results underscore 
the challenge of identifying closely related species that share subtle distinguishing features.
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quality. These approaches minimize redundancy by leveraging 
existing or minimal resources while enhancing insect species 
class with low mean-per-class accuracy. Therefore, InsectNet is 
an effective tool for building specialized local models with re-
duced effort. InsectNet opens up several follow-up possibilities, 
including automated identification of insects in images and videos 
and better integration of these technologies in integrated pest 
management (IPM) and climate-smart pest management (CSPM).

While the InsectNet classifier performs well in many cases, there 
are still notable challenges in distinguishing certain species, particu-
larly those with subtle morphological differences and taxonomic 
ambiguities. The classifier showed difficulties in distinguishing visu-
ally similar species, such as Enallagma ebrium, Enallagma hageni, and 
Lestes disjunctus (Fig. 6), which share common features. These chal-
lenges emphasize the model’s struggle with closely related species 
that exhibit overlapping traits. Similarly, the taxonomic ambiguity 
between the Acmon Blue (Icaricia acmon) and Lupine Blue (Icaricia lupi-
ni) poses a significant challenge, as they are nearly indistinguishable 
from photographs alone, often requiring detailed morphological 
examination by experts to differentiate. Pieris virginiensis and Pieris 
oleracea, two butterfly species from the family Pieridae, presented clas-
sification challenges, likely due to their closely related morphology. 
Additionally, the classifier struggled with identifying Bombus huntii, 
Bombus vancouverensis, and Bombus vagans, three bumblebee species 
from the family Apidae, which also share similar physical character-
istics. These instances highlight the inherent difficulty in achieving 
high classification accuracy for species with overlapping morpho-
logical traits. Collecting more images for these species in the future, 
especially those capturing finer details that distinguish them, could 
improve the model’s ability to differentiate these species accurately. 
Additionally, inconsistent name assignments in public databases 
further complicate classification, making high-confidence predic-
tions difficult. These examples underscore how dataset limitations 
can impact model performance and highlight the importance of lo-
calized fine-tuning with expert-validated data to improve accuracy 
in specific contexts. In addition to its practical applications, it is im-
portant to consider the ecological and ethical implications of relying 
on automated systems for species identification, particularly in bio-
security contexts. Misidentifications, whether false positives or false 
negatives, could have significant ecological and economic conse-
quences. This is especially relevant when identifying invasive spe-
cies, where a false negative could allow the spread of harmful 
insects, or rare beneficial insects, where a false positive might lead 
to unnecessary actions. To mitigate these risks, we emphasize the 
importance of incorporating uncertainty quantification (UQ) and 
out-of-distribution (OOD) within our model to flag potentially unreli-
able classifications, allowing for further expert validation when ne-
cessary (35, 36). As part of future work, we aim to implement an 
ensemble approach to enhance confidence scoring, along with a 
qualitative confidence scale that leverages existing OOD and UQ to 
improve transparency and user trust.

The current study underscores the critical importance of large- 
scale data collection through citizen science, presenting a valuable 
contribution opportunity to enrich this data pool. We have identified 
specific insect species that are underrepresented in data, leading to 
suboptimal performance of our models due to a scarcity of images 
and a lack of diversity in the available datasets. This situation high-
lights the benefit of researchers adding to existing citizen science da-
tabases, thereby eliminating the need for duplicate efforts in 
gathering data on species that citizen science projects have already 
covered. Furthermore, our research points out the utility of citizen 
science data in pinpointing deficiencies and facilitating focused 
data collection efforts for those insect species that are either 

underrepresented or lacking sufficient data. Within the broader con-
text of insect species research, this approach fosters collaborative 
and systematic efforts in data collection, encompassing both com-
monly observed and less frequently observed insect species. Such 
concerted actions are essential for advancing our understanding of 
various species and contributing to sustainable farming practices 
and the preservation of ecosystems. Finally, we anticipate that this 
work (and the model weights) opens up efforts to extend to insect 
counting rather than just classification as shown in existing applica-
tions like those by Geissmann et al. (23), with applications in crop 
production (65) and plant breeding (66).

Notes
a It is thought that the stochastic nature of the training endows such 

models—especially when trained on massive datasets—with resili-
ence against noisy labels.

b We note that image-based identification will only work when in-
sects are reasonably resolved using standard (phone) cameras 
and visible to the naked eye, thus putting a strong lower bound of 
insect size.
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