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Abstract

Transcription factors (TFs) are fundamental controllers of cellular regulation that function in a complex and combinatorial
manner. Accurate identification of a transcription factor’s targets is essential to understanding the role that factors play in
disease biology. However, due to a high false positive rate, identifying coherent functional target sets is difficult. We have
created an improved mapping of targets by integrating ChIP-Seq data with 423 functional modules derived from 9,395
human expression experiments. We identified 5,002 TF-module relationships, significantly improved TF target prediction,
and found 30 high-confidence TF-TF associations, of which 14 are known. Importantly, we also connected TFs to diseases
through these functional modules and identified 3,859 significant TF-disease relationships. As an example, we found a link
between MEF2A and Crohn’s disease, which we validated in an independent expression dataset. These results show the
power of combining expression data and ChIP-Seq data to remove noise and better extract the associations between TFs,
functional modules, and disease.
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Introduction

Transcriptional networks are fundamental to many aspects of

biology and disease. Gene expression is a carefully controlled

process orchestrated by the activities of transcription factors (TFs)

which regulate the transcription of each gene. TFs usually do not

work in isolation, but instead multiple factors combine in different

ways to regulate groups of genes in a concerted, often cooperative

fashion [1–6]. The ENCODE project has begun to determine the

binding locations of many transcription factors using chromatin

immunoprecipitation (ChIP) followed by high-throughput se-

quencing (ChIP-Seq) [7,8].

Despite the abundance of data about the genomic binding sites

for transcription factors, determining transcription factor targets

and when factors are active remains challenging. ChIP-Seq

measurements can be noisy and reflect the particular condition

in which the experiments are performed. Collecting more data

alone will not solve this problem. As additional experiments are

performed for each factor, critical and frequently used binding

regions do become apparent, but it is often difficult to determine a

signal threshold to distinguish common sites from condition-

specific sites and general non-thematic associations from interest-

ing biology. For example, NFkB binds to over 15,000 regions of

the genome covering all possible regulatory targets of the factor.

But in any given biological context, such as a local cooperative

interaction with another transcription factor such as Stat1, only a

handful of these genes are actively regulated by NFkB at any one

time [4]. This property of TF function gives the illusion that TFs

are operating broadly when in fact they perform specific context-

dependent functions–in many cases with specific partners. These

difficulties conspire to make the regulome challenging to study at a

global level.

Thus, to understand transcription factor function, there is a

need for computationally-efficient methods to (i) improve TF-

target identification, (ii) identify small functional modules that

represent context-specific biology, regulated by transcription

factors, and (iii) annotate those modules with their functional

implications (e.g. the role of the module in human disease).

Recently, a number of methods were developed to derive a

network structure to connect sets of genes (modules) to the factors

that control their expression [9–11]. These methods use gene

expression data to derive the most parsimonious regulatory

structure. However, because of their computational complexity,

they can only account for a limited number of factors, require a

specific type of input datasets, and, in their current form, cannot

integrate other experimental data (e.g. ChIP-Seq). Thus, these

methods may not be sufficient to capture the scale and complexity

of the human regulome. Additionally, their usefulness is hampered

by an assumption that the activity of the TF can be estimated by its

expression, which, the authors of these methods acknowledge is
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not true in many cases [9]. Efficient approaches with the capability

to integrate multiple data modalities are needed in order to

properly leverage high-throughput experiments in the study of

disease.

In this paper, we use factor analysis as a computationally-

efficient method to (i) improve the identification of transcription

factor targets, (ii) identify functional modules from gene expression

data, and (iii) use these modules to annotate transcription factors

and connect them to diseases. There are several methods for

decomposing expression data to find groups of genes that work

together. Network Component Analysis (NCA) is a method for

inferring transcription factor activity from expression data [12]

and has been used to build regulatory networks for model

organisms [13]. However, NCA requires a priori knowledge of the

regulatory structure which is often not available, and introduces

bias in the associations between TFs and functional components.

On the other hand, independent component analysis (ICA) is an

unbiased and efficient method for deconvolving the signal from a

fixed set of sources measured by a set of sensors (Figure 1). In

essence, ICA is a computational method for extracting a set of

signals from noisy data. When applied to gene expression data –

like those recorded by microarrays – ICA can identify coherent

functional modules (we refer to each ICA component as a

module). Importantly, ICA allows genes to participate in multiple

modules and thus has some ability to capture different biological

contexts. A set of 423 data-driven modules derived from an ICA of

9,395 human expression microarrays covering a wide diversity of

human biology was recently reported [14].

Here, we hypothesize that regulation of each of these ICA-

derived modules is controlled by a small set of TFs. Using our

method (which we call TFICA), we associated transcription factors

to modules and then analyzed the genes contained within each

module. Intersecting these target modules with ChIP-Seq binding

sites improves target identification and elucidates the functional

roles of the factors–both individually and in combination. We

compare our approach to traditional methods in three areas: the

identification of (i) transcription factor targets, (ii) TF-TF coopera-

tivity, (iii) and the functional roles in the context of various diseases.

In each of these cases, we found that our approach significantly

outperforms the traditional methods. Further, we found improved

performance when our approach is used in combination with

traditional methods, implying that we are capturing an independent

modality of transcription factor activity. Our data-driven approach

is unbiased and computationally efficient enabling systematic

identification of novel TF-disease relationships. Finally, we validate

one such association between MEF2A and Crohn’s disease.

Results

Functional modules improve the identification of
transcription factor targets

We used a set of functional modules derived using ICA [14].

We then used ENCODE ChIP-Seq experimental data to connect

transcription factors to individual modules if the factor bound a

significant number of genes in that module (Figure 2A; see

Materials and Methods). For 143 transcription factors and 379

modules, we identified 5,002 significant TF-module associations

(with adjusted p,0.01, Fisher’s exact test; Figure S1 and Table

S1) for an overall FDR of 16.6%. We hypothesized that the

components from ICA represent a single regulatory signal

analogous to a single voice recorded by set of microphones (as

in Figure 1). Thus, modules that associate with only one or a few

Figure 1. Independent Component Analysis (ICA) can be used
to identify transcriptional modules from gene expression data.
(A): The classical example of ICA is the ‘‘cocktail party problem,’’ where a
number of microphones are placed in a room, capturing a mixture of
conversations. Source separation methods such as ICA attempt to
deconvolve the recorded mixed signals into their separate source
signals (individual conversations). (B): An analogous application involves
identifying source signals of transcriptional regulators from complex
gene expression measurements.
doi:10.1371/journal.pgen.1004122.g001

Author Summary

Transcription factors (TFs) are crucial to the precise
regulation of many cellular processes and thus, are
responsible for many human phenotypes and diseases.
Now that the ENCODE project has mapped hundreds of
TFs to their genomic binding locations, extracting func-
tional biological signals is the next step in understanding
their role in disease. In this paper, we present a novel
approach to identifying TF targets and use these targets to
find regulatory relationships between TFs and diseases. We
present a large open dataset of putative TF-TF interactions
and TF-disease associations which includes known con-
nections as well as novel ones. We validate the association
of one of our novel TF-disease associations, MEF2A and
Crohn’s disease, suggesting that our approach generates
testable disease association hypotheses. Integrating these
datasets will be crucial for understanding phenotypes and
complex diseases.

A Regulatory Network of Human Disease
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factors correspond to cleaner signals than those associated with

many factors. We identify 31 associations which we called ‘‘high-

confidence’’ as there was only one TF significantly associated

with the the module and another 142 ‘‘medium-confidence’’

associations, where the module was associated with three or fewer

TFs.

We found that many of the modules nearly or fully overlap with

targets of only one or a few transcription factors (Figure S3A–C).

We found that for 171 modules the top associated TF could

account for 80% of the targets in the module (Figure S3D).

Additionally, the modules that explain the most variance across

the compendium of 9,395 gene expression experiments are

significantly associated with a larger number of TFs (Figure S4),

and may represent large transcriptional programs.

Validation of target identification using shared functional
annotations

Used in combination with the ChIP-Seq data, we hypothesized

that these modules can improve identification of transcription factor

targets. Specifically, we believe that putative targets (as determined

by ChIP-Seq) which are also contained within significantly

associated modules will be more likely to be ‘‘true’’ targets of the

TF. To test this hypothesis, we used a set of specific GO terms [15]

and we considered shared functional annotation as a proxy for a

high quality TF-target association. This strategy has been used

successfully in computational evaluation previously [15]. As

expected, we found that TF-target pairs, particularly ones with

high ChIP-Seq scores, were enriched for pairs with shared

functional annotations (p,0.001; Figure 2B). When considering

only the targets in the 5,002 modules associated with TFs, we find a

significantly higher enrichment for shared annotations (Figure 2B).

This enrichment is maintained across all ChIP-Seq peak scores (p,

0.05). Additionally, if we only consider targets in the 142 medium-

confidence or the 31 high-confidence modules, this enrichment is

increased further at all peak score thresholds (p,0.001).

Validation of target identification using expression
correlation

In an analogous fashion to the shared functional annotation

approach, we used expression analysis to validate our TF-target

associations under the assumption that factor expression can be

used as a proxy for factor activity. We hypothesized that for high-

confidence modules (i.e. those associated with just one TF) the

genes within this module should be controlled predominantly by

that single factor. To test this hypothesis we examined the

correlation between the expression of the module (see Methods)

and the expression of the factor across the compendium of 9,395

gene expression experiments. For example, AP-2c is the sole

significant association for module 360 (OR = 1.66; adjusted

p = 0.006) and we found a significant correlation between the

expression correlation between module 360 and AP-2c (Spearman

r= 0.38, p,0.001).

We systematically evaluated all 5,002 TF-module pairs in this

manner (Table S2). We compared our method to two ‘‘naive’’

approaches for generating TF modules: (i) a ‘‘best-module’’

constructed from only the best ChIP-Seq hits for each TF

according to their peak scores and (ii) a ‘‘matched-module’’

constructed from a random sample of the TF’s ChIP-Seq targets

with the same distribution of peak scores as was found in the ICA

module. For high-confidence and medium-confidence modules

TFICA outperforms the best-module method 60% of the time

(binomial p = 0.011), and the matched-module method 77% of the

time (binomial p = 3.2e-11; Figure S5). In fact, TFICA outper-

forms both naive approaches even for those modules associated

with many transcription factors (.3). This holds until modules are

associated with 40 or more transcription factors, at which point the

individual factor expression signal can no longer be observed

(Figure S5) and best-module begins to outperform TFICA. TFICA

outperforms matched-modules regardless of the number of factor

associated to the module (Figure S5). Additionally, six of the

modules that are most enriched for a TF’s targets are also the most

Figure 2. Association of TFs to expression modules. (A): A TF is associated to a module if its targets are significantly enriched in a particular
module. TF are connected to their targets using ChIP-Seq data, which may (solid) or may not (dashed) be contained with an expression module. GO
annotations (colored blue/yellow) are used in enrichment analysis to associate modules and their factors to functional pathways. (B): We evaluated
the quality of TFICA derived TF targets based on the hypothesis that if a TF does regulate a target, then it is more likely that the TF and the target will
share a functional annotation. Across ChIP-Seq scores, TFICA outperforms the naive method, and this performance is further increased when only
considering high and medium-confidence modules (see text).
doi:10.1371/journal.pgen.1004122.g002
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correlated module for that TF (OR = 25.4, Fisher’s exact P = 2.8e-

7), and 15 are in the top 5% of all modules (OR = 5.6, Fisher’s

exact P = 1.9e-10). Finally, we found that the top co-expressed

module is significantly enriched (Materials and Methods) for

ChIP-Seq binding sites for 37 TFs (OR = 4.9, Fisher’s exact

P = 2.2e-12). We exhaustively evaluated the expression correlation

between all TFs and all modules to estimate a null distribution,

and found that our TFICA TF-module pairs were significantly

more correlated than expected by chance (r= 0.05 vs. 20.06; t-

test p = 1e-204). Additionally, in all, 327 TF-module pairs

remained significantly correlated when compared to an empiri-

cally derived TF-specific null distribution (p,0.05; Figure S5).

TFICA modules are enriched for known transcription
factor functional annotations

Many modules connected to TFs were significantly enriched for

functional annotations known to be associated with the factor

(Table 1 and Figure S2). For instance, sterol regulatory element-

binding protein 2 (SREBP2) and module 158 was our most

significant TF-module association (Figure 2A; OR = 45.2; 95%

CI = (27.8, 71.6); adjusted p = 1e-31). SREBP2 is essential for

cholesterol and fatty-acid biosynthesis, and module 158 is

significantly enriched for GO terms related to lipid, sterol,

cholesterol, and steroid synthesis (adjusted p,0.05; Table 1). In

addition, SREBP2 shares many of the same target modules as

SREBP1 (Figure S2), which are known regulatory partners.

Another example is the association between the transcription

factor ZNF274 and module 111. Module 111 includes many zinc

finger proteins of which ZNF274 is a known regulator [16]. In

addition, ZNF274 clusters near SETDB1 and KAP1 (Figure S2A)

and has been shown to recruit both of these transcription factors to

repress the expression of other zinc finger proteins [17,18]

(Table 1).

Module 57 was associated with the greatest number of

transcription factors (121 different factors; Table 1, Figure S2). This

module also contains the greatest number of transcription factors as

targets (14 factors). We found this module to be significantly enriched

for DNA binding, regulation of transcription, and transcription

regulator activity (among other regulatory terms; Table 1), and may

represent a master regulatory module of other TFs.

Transcription factors that share associated modules show
evidence of potential interactions

As we have demonstrated, we can significantly improve the

identification of TF targets using TFICA modules. Therefore, we

hypothesized that TFs that target overlapping modules may

function together to regulate gene expression. We found 3,696

transcription factor pairs (comprising 135 individual TFs) that

share a significant proportion of target modules (adjusted p,0.01,

Fisher’s exact test; Table S3). We assessed the putative TF-TF

interactions predicted by TFICA using expression correlation,

literature co-occurrences, and shared functional annotation. We

compared the predictions of two TFICA similarity metrics (simple

Tanimoto and a weighted approach which places more emphasis

on higher confidence TF-module pairs) to those from a naive

method of simply intersecting ChIP-Seq targets. We evaluated

using multivariate linear models and assessed significance with an

ANOVA (Figure 3A). Both TFICA approaches outperform the

naive method in all 3 evaluations (Figure 3A) with weighted

TFICA exhibiting the best performance. In addition, the

combined model of both TFICA-similarity plus shared targets

significantly outperforms the naive approach alone in all three of

these metrics (Figure 3A and Figure S6). TF pairs from TFICA are

significantly (1) more correlated in their overall gene expression

across the compendium (simple: F = 28.6, p = 1.03e-7; weighted:

F = 41.2, p = 1.75e-10), (2) more likely to co-occur in Pubmed

abstracts (simple: F = 22.0, p = 2.92e-6; weighted: F = 57.2,

p = 6.51e-14), and (3) more likely to share functional annotations

(simple: F = 67.0 p = 5.24e-16; weighted: F = 119.4, p = 6.50e-27).

Of the top 30 pairs ranked TF-TF pairs according to module

similarity, 14 have been previously reported, such as NF-YA and

NF-YB, as well as Pol2 with a number of other initiating factors

(Figure 3B). Many of the unreported results may be due to sparse

annotation of individual genes (e.g. CHD2, CCNT2, and HEY1),

and may indicate new biological links. For example, CHD2

clusters with CCNT2 and Sin3a, which are known cell cycle

regulators. CHD2 has previously been proposed as involved in the

cell cycle [19] consistent with its role as a DNA damage signaling

protein.

Modules associate transcription factors with disease
We used enrichment analysis to associate ICA functional modules

to diseases from the Gene Association Database [20]. Combined

with the TFICA analysis, these two datasets allow us to create a

transcription factor-disease network. We created a network of 143

transcription factors connected by their targeted functional modules

(note that this network is naive to any disease associations). TFs

clustered together according to the diseases with which they are

significantly associated (Figure 4). In total, we found 7,808

significant associations between 141 transcription factors and 253

diseases. The average number of diseases we associate to a

transcription factor is 36 (Figure S8A) with four transcription

factors having just one significant disease association (e.g. BAF170 is

associated with macular degeneration) and p300 associated with the

most (204) diseases. The number of diseases associated with a

transcription factor was significantly related to both the number of

targets (Figure S8B; Spearman r= 0.47, P = 1.2e-7) and the

number of GO annotations for the factor (Figure S8C; Spearman

r= 0.39, P = 1.4e-5). The complete list of significant transcription

factor-disease associations is available in Table S4.

Transcription factors with known relationships to disease

clustered into distinct groups (Table 2). For example, we found a

significant association between module 320 and acquired immu-

nodeficiency syndrome (AIDS) (OR = 12.4; 95% CI = 4.7–28.7;

adjusted p = 5.2E-4). Three of the TFs associated with this module

(NFKB, IRF4, and BATF) are known to be involved in the

transcriptional regulation of human immunodeficiency virus [21–

23] and cluster together in the interaction network (Figure 4A).

We found a significant association between module 4 and

arrhythmogenic right ventricular dysplasia (OR = 82.2, 95% CI:

15.5–531.4, adjusted p = 1.1e-5). ER-a, c-Jun, STAT3, and STAT1

are associated with module 4, and all have known relationships with

arrhythmias [24–28] and clustered together (Figure 4B). Thus, our

network supports the previous suggestion that ER-a may be a

promising prognostic marker for the development of atrial

fibrillation [24]. In addition, we found that module 123 was

significantly enriched for genes associated with thrombocytopenia

(OR = 9.9; 95% CI = 2.89–27; adjusted p = 0.022). A number of

TFs independently associated with thrombocytopenia, including

p300 and GATA1,cluster together in the interaction network and

are associated with module 123 (Figure 4C).

Finally, for breast cancer, we found significant associations with

modules 2, 13, 46, and 154 with odds ratios of 8.6 (95% CI 5.6–

13.4, adjusted p = 2.3e-19), 3.1 (1.8–5.2, adjusted p = 0.004), 3.1

(1.8–5.1, adjusted p = 0.002), and 4.2 (2.4–7.3, adjusted p = 2.1e-

4), respectively. Based on their connectivity to these modules, the

A Regulatory Network of Human Disease
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transcription factors E2F6, CHD2, NFYA, IRF1, HEY1, and

E2F1 all cluster together in the TF-TF network (Figure 4D).

Evaluation on independent data sets shows improved
transcription factor disease associations

We performed an evaluation of our TF-disease associations by

comparing our derived associations to an independent standard

created by combining (1) 37 transcription factor-disease associa-

tions from the GWAS Catalog, and (2) 46 associations from

OMIM (see Methods). We assessed overall performance using the

Area Under the Receiver Operating Characteristic Curve

(AUROC). TFICA achieved an AUROC of 0.712 on this test

dataset (Figure S7). For comparison, we also evaluated two control

strategies: (1) a simple enrichment analysis on the ChIP-Seq

targets associated with each transcription factor, and (2) the

GREAT tool for annotation cis-regulatory elements in the genome

[29]. The simple approach achieved an AUROC of 0.612,

whereas GREAT achieved 0.687 (Figure S7). When combined

together in a logistic regression model, TFICA significantly

improved the performance of GREAT, increasing the AUROC

from 0.687 to 0.761 (+10.7%, Chi-Squared = 19, P = 1.1E-5),

suggesting the two approaches are complementary. Finally, we

Table 1. Functional modules recapitulate known transcription factor biology.

Rank Transcription Factor (name)
Functional
Module ID

Number of genes in
module bound by TF

Number of genes
in module Odds Ratio Adjusted P Value

1 SREBP2 (Sterol regulatory element-
binding protein)

158 30 119 45.2 1E-31

Module Enriched GO Terms (P,0.05)

lipid biosynthetic process, sterol biosynthetic process, sterol metabolic process, cholesterol metabolic process, steroid biosynthetic process, cholesterol biosynthetic
process, steroid metabolic process, isoprenoid biosynthetic process, isoprenoid metabolic process, oxidation reduction, endoplasmic reticulum, endoplasmic
reticulum membrane, nuclear envelope-endoplasmic reticulum network, endoplasmic reticulum part, organelle membrane, endomembrane system, microbody,
peroxisome

Module Enriched KEGG Pathways (P,0.05)

Steroid biosynthesis, Terpenoid backbone biosynthesis

2 GCN5 (Histone acetyltransferase) 104 8 69 33 5.13E-08

Module Enriched GO Terms (P,0.05)

nucleosome assembly, chromatin assembly, protein-DNA complex assembly, nucleosome organization, DNA packaging, chromatin assembly or disassembly,
cellular macromolecular complex assembly, cellular macromolecular complex subunit organization, chromatin organization, chromosome organization,
macromolecular complex assembly, macromolecular complex subunit organization, nucleosome, protein-DNA complex, chromatin, chromosomal part,
chromosome, intracellular non-membrane-bounded organelle, non-membrane-bounded organelle, DNA binding

Module Enriched KEGG Pathways (P,0.05)

Systemic lupus erythematosus

3 GCN5 (Histone acetyltransferase) 62 13 183 20.5 2E-10

Module Enriched GO Terms (P,0.05)

translational elongation, translation, cytosolic ribosome, ribosome, ribosomal subunit, cytosolic part, ribonucleoprotein complex, cytosol, cytosolic small ribosomal
subunit, cytosolic large ribosomal subunit, large ribosomal subunit, small ribosomal subunit, intracellular non-membrane-bounded organelle, non-membrane-
bounded organelle, structural constituent of ribosome, structural molecule activity, RNA binding

Module Enriched KEGG Pathways (P,0.05)

Ribosome

4 NELFe (Negative elongation factor E) 104 19 69 19.5 2.85E-14

See annotations for #2

5 ZNF274 (zinc finger protein 274) 111 71 196 18.6 7.2E-50

Module Enriched GO Terms (P,0.05)

transcription, regulation of transcription, DNA-dependent, regulation of transcription, regulation of RNA metabolic process, zinc ion binding, DNA binding,
transition metal ion binding, metal ion binding, cation binding, ion binding

Module Enriched Interpro Terms (P,0.05)

Zinc finger, C2H2-type/integrase, DNA-binding, Krueppel-associated box, Zinc finger, C2H2-type, Zinc finger, C2H2-like

71 NFKB 8 217 257 4.6 1.8E-21

Module Enriched GO Terms (P,0.05)

cell activation, leukocyte activation, lymphocyte activation, T cell activation, leukocyte differentiation, hemopoietic or lymphoid organ development, hemopoiesis,
immune system development, lymphocyte differentiation, positive regulation of lymphocyte activation, positive regulation of T cell activation, T cell differentiation

Various Module significantly associated with 121
Factors

57 Various 159 Various Various

Module Enriched GO Terms (P,0.05)

regulation of RNA metabolic process, regulation of transcription, regulation of transcription from RNA polymerase II promoter, regulation of transcription, DNA-
dependent, transcription, DNA binding, sequence-specific DNA binding, transcription factor activity, transcription regulator activity

Top 5 TF-module associations, as well as NFkB and a general transcription module (associated with 141 different TFs) are shown.
doi:10.1371/journal.pgen.1004122.t001
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repeated this analysis using the AUROC50 which is a common

measure used to evaluate performance at low false positive rates

(FPR,0.5). We found an AUROC50 value of 0.185 for the naive

metric, 0.248 for GREAT, 0.253 for TFICA, and 0.292 for the

combined metric, indicating again that TFICA is adding an

independent source of information for TF binding.

A regulatory network of human disease
Using the TFICA disease annotations, we visualized the highest

confidence transcription factor-disease associations (see Materials

and Methods) in a regulatory network connecting 62 transcription

factors to 253 human diseases (Figure 5). As expected, substantial

parts of this network reflect known biology. For example, TFICA

associates HNF4G with metabolic disorders, which corresponds to

its KEGG annotation. STAT3’s role in fibrotic diseases is well-

studied, as it is implicated in the proliferation of fibroblasts and

excess ECM proteins [30]. In total, the network visualization

describes 491 relationships, 33 are known associations according

GAD, OMIM, and GWAS Catalog and thus the remaining 458

are potentially novel transcription factor-disease relationships.

Transcription factors are connected with an average of 7.9 diseases

and each disease was associated with an average of 1.9

transcription factors. The high confidence associations visualized

in Figure 5 and all of the significant ICA-derived associations are

available in Table S4.

Expression of MEF2A and its target genes differentiates
patients with Crohn’s disease from healthy controls

Using our network analysis, we identified MEF2A as the factor

with the highest association with Crohn’s disease. MEF2A has

been previously associated with cardiovascular disease [31], but is

not recognized to have a role in inflammatory bowel disease.

MEF2A was associated with Crohn’s disease through three

modules: 69, 262, and 320. We validated this association using

an independent expression dataset (not used in the training set) of

59 patients with Crohn’s disease and 42 controls [32]. For each of

these modules, the genes comprising the module showed

significantly higher levels of differential expression between the

two groups compared to genes not in one of the modules

(P = 0.017, 1.4e-06, and 0.0084, for modules 69, 262, and 320,

respectively). We used permutation testing to correct for a

potential bias towards higher differential expression for genes

contained within functional modules, after which module 262

remained significant (P = 0.025), which includes genes such as

STAT4, CCR5, and SMAD3. We found that expression of

MEF2A itself was significantly higher in Crohn’s disease patients

(Fig. 4A, P = 0.0013, Wilcoxon rank-sum test). Additionally,

among genes targeted by MEF2A, genes in module 262 also

exhibited a higher level of differential expression among patients

with Crohn’s disease (P = 0.0019).

To investigate the role of module 262 and MEF2A in

classification of Crohn’s disease, we projected the expression

values in the Crohn’s dataset to generate an expression value of

the module (see Materials and Methods) and found an overall higher

expression of the module in patients with Crohn’s disease (Fig. 4A,

P = 4.6e-09, Wilcoxon rank-sum test). We evaluated MEF2A and

the module expression for their performance in a disease classifier

using area under the receiver operating characteristic curve

(AUROC). Both MEF2A and the aggregated expression of

module 262 were significantly predictive (P = 0.0012 and

P = 4.5e-06, logistic regression) with AUROCs of 0.77 and 0.86,

respectively (Fig. 4B). Finally, we combined MEF2A expression

and aggregated module expression into a single model and found

that this combined statistic outperformed the other two classifiers

(F-test p = 5.8e-11, AUROC = 0.90, Fig. 4B).

Figure 3. Predicting TF-TF interactions using shared modules as a measure of shared function. (A): Prediction of (i) gene expression
correlation, (ii) literature mentions, and (iii) shared functional annotations using a Naive approach, shared TFICA modules, and weighted TFICA
modules. The Naive approach (‘‘Naive’’) links TFs to TFs by the similarity of their ChIP-Seq targets, ‘‘TFICA’’ links TFs to TFs by the similarity of their
significantly associated modules, and weighted TFICA weights these modules in the similarity by their confidence. b coefficients in a linear model are
shown with 95% confidence intervals. In each case, TFICA and weighted TFICA significantly outperforms the Naive approach. In addition, we used
permutation testing to validate these results. In each case (expression, literature, function) the b coefficient for the permuted model was not
significant (bexp = 0.16; 95%CI 20.02–0.34; blit = 20.02 95%CI 20.08–0.05; bfun = 20.04 95%CI 20.14–0.06, P.0.05 for each). Data not drawn. (B): The
top 30 highest-scoring pairs are shown, as measured by target module similarity, 14 of which are known associations (solid lines). Many of these
factors form a tight sub-network of activators and repressors.
doi:10.1371/journal.pgen.1004122.g003
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Discussion

We present a computationally efficient and conceptually simple

method that is useful in linking transcription factors to their

targets and to disease as well as derive several novel such

relationships. Using current approaches, such an analysis is

challenging as TFs in the ENCODE dataset bind near an average

of 6,050 genes. Simple enrichment analysis on the full target set

often does not reveal coherent functional groups. Factors may

exhibit multifaceted functional roles and target genes in very

different cellular contexts, and when all of a TF’s targets are

grouped together, it becomes difficult to isolate these individual

contexts. Our method overlays data-driven functional module

information – from a large compendium of human gene

expression data – on top of TF binding data from ChIP-Seq.

We demonstrate that our method (1) significantly improves TF

target identification, (2) accurately identifies the functional roles

of factors both independently and in combination with another

factor, and (3) discovers new disease associations through these

functional modules.

We show that TFICA identifies targets that are significantly more

functionally coherent than targets identified by naive (peak-based)

methods. Importantly, TFICA can identify these targets even in

cases that lack strong support from ChIP-Seq binding data (i.e. sites

that are not among the strongest bound peaks). We hypothesized

that TFICA would be better able to identify targets that, despite

lower binding levels, are biologically important. Our ‘‘matched’’

analyses tests this hypothesis and we observe that TF-target

functional annotation sharing (Figure 2B) and expression correla-

tion (Figure S5) is higher for TFICA targets than naively identified

targets. In fact, despite that stronger binding more tightly couples

TF and target expression, the expression correlation among

modules identified by TFICA are consistent with those of the

‘‘best’’ module (genes with highest peak scores) until the modules are

associated with more than 40 factors. Additionally, by linking TFs to

established modules of gene expression we identify genes where

binding of the factor is not observed, but instead, the TF is exerting

indirect genetic control. In these cases, we hypothesize that the TF

may be controlling expression of a module through its direct targets,

some of which may be in the module.

Our factor interaction analysis is useful for suggesting the

functional roles of TF through guilt by association, particularly for

poorly described factors. For example, CHD2 is a helicase whose

function remains to be fully understood. In our TF-TF network,

we found that CHD2 is connected with the cyclin CCNT2

(Figure 3B), supporting the hypothesis that CHD2 plays a role in

Figure 4. Transcription factor interaction network reveals functional and disease sub-networks. Transcription factors are connected
solely on the basis of the similarity of the modules that they regulate. Transcription factors are colored according to a selection of diseases; (A, green):
AIDS; (B, blue): arrhythmia; (C, pink): breast cancer; (D, red): hemorrhage. Nodes are annotated with strong (dashed black borders) and weak (solid
grey borders) literature support. See Table 2 for details.
doi:10.1371/journal.pgen.1004122.g004
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cell cycle [19]. It is important to acknowledge that our method for

identifying TF-TF interactions, which uses all of the shared

modules between two transcription factors may miss those that are

unique to particular biological contexts. Future work will be

required to model this type of interaction. In spite of this

limitation, we identify many known relationships and outperform

traditional approaches (Figure 3A).

Further, we were able to recapitulate many known TF-disease

associations without any prior knowledge linking the factor to the

disease. For example, our factor-disease network (Figure 5) links

ER-a to arrhythmogenic right ventricular dysplasia, supporting

recent findings that this protein may be used as a prognostic

marker [24]. STAT1 and STAT3, which we also associate with

arrhythmogenic right ventricular dysplasia, were recently found

to be elevated in mice with sustained atrial fibrillation [27]. In

fact, we find too many known associations in this network to

enumerate here (refer to Table 2 for an annotated sampling of

these associations, and Table S4 for the complete list).

Furthermore, we found that the number of diseases associated

with a given transcription factor varied widely from just one to

hundreds. We hypothesize that this is related to the roles that a

particular factor may play in different cellular contexts, with

more general factors (e.g. p300, GR, and Pol2) associated with

more diseases than more specific factors. We tested this by

examining the relationship between the number of diseases

associated with a TF and two measures of functional diversity: (1)

the number of targets found for that TF by ChIP-Seq and (2) the

number of unique GO annotations. In both cases, we found

significant positive relationships (Figure S8B–C). In addition, our

factor-disease network suggests a novel role for MEF2A in

Crohn’s disease – an association that would not have been found

using the naive method (naive adj. p = 1) and that we validated

using an independent data set and analysis (Figure 5A–B). Our

module analysis suggests MEF2A is promoting inflammatory

response via module 262, which includes STAT4, CCR5, and

SMAD3.

It is important to note, however, that this approach is dependent

on the quality of the functional networks used. Other methods for

generating cohesive functional networks, including data-driven

approaches (e.g. PPI networks) and knowledge-based (e.g.

functional annotations from ontologies), may complement the

approach and improve performance. Further, we derived our

Figure 5. Regulatory network of human disease. Transcription factors (blue) are connected to diseases (red) through modules in this bipartite
graph. Prominent clusters of diseases are highlighted, as well as some highly-connected transcription factors. Importantly, STAT3 is connected to
many fibrotic diseases, while E2F1 and E2F4 are connected to breast and ovarian cancer. (A): Expression of MEF2A and the projection of module 262
are significantly predictive of disease state. Individuals are ranked by their combined score (sum of normalized expression and module projection).
(B): ROC curve for prediction of Crohn’s disease from MEF2A expression, module 262 projection, and combined metric.
doi:10.1371/journal.pgen.1004122.g005
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modules using a set of 9,395 gene expression experiments without

regard to the particular context in which the experiment was

performed. Focusing this analysis using a contextually specific set

of experiments (e.g. only data focused on cardiovascular disease)

could provide further specificity to the disease associations that are

derived.

Our work dissects transcription factor function by examining

associations with specific gene modules derived from a large

compendium of human expression experiments under a wide

variety of conditions. This approach is generally applicable in

cases where the biological function can neither be described by a

single gene nor the entire genome, but instead operates at an

intermediate level – groups of genes or groups of functional

pathways. We demonstrate improved identification of TF targets

and construct a regulatory network of human disease. Finally, we

find and validate a novel transcription factor-disease association.

We make three databases publicly available to the community: (1)

a database of 5,002 transcription factor-module associations, (2) a

database of 3,696 putative transcription factor interacting pairs,

and (3) a database of 7,808 transcription factor-disease relation-

ships. These resources should further enable researchers to explore

TF interactions as well as their roles in human disease.

Materials and Methods

Data sources
We obtained transcription factor binding data from UCSC, which

included 2,750,490 reproducible binding sites from the ENCODE

project [7,8] and 41,972 gene annotations from RefGene (build

hg19). 423 gene expression modules (a.k.a. ‘‘components’’) deter-

mined previously from independent component analysis (ICA) are

available at https://simtk.org/home/fcanalysis [14]. These modules

were derived from a compendium of human gene expression data

downloaded from the Gene Expression Omnibus (GEO). All 9,395

Affymetrix Human Genome U133 Plus 2.0 array deposited in GEO

as of May 28, 2008 were downloaded. The ICA analysis was

performed and published previously [14]. We obtained gene-disease

associations from the Gene Association Database [20] and filtered for

positive genome-wide and curated associations, as well as diseases

with greater than five genes. We then used the NCBO Annotator

[33] service to map the disease terms to terms in the Disease

Ontology, resulting in 34,392 distinct associations. 4,267 and 5,279

validation associations were downloaded from the NHGRI GWAS

catalog [34] (accessed on 3/31/12) and OMIM (http://omim.org),

respectively. For both of these datasets, we mapped local disease

terms to standardized terms in the Disease Ontology using the

annotator, resulting in 1,842 and 9,866 annotations (of which 35 and

46 map to the transcription factors in our dataset), respectively.

Generating the transcription factor-ICA module network
We mapped transcription factor binding sites to the nearest

gene within 100 kb (gene boundaries 100 kb upstream or

downstream of the boundaries of the binding site) in the RefGene

annotation to determine putative binding targets of each factor

(Figure S1). We linked each transcription factor to each module

using an enrichment analysis between the target genes of the

transcription factor and the genes contained within each module.

We used the hypergeometric distribution to model the expected

amount of shared genes and a Fisher’s Exact test to test the

significance of any deviations. Finally, we corrected for multiple

hypothesis testing and filtered for transcription factor-module pairs

that were significant with an adjusted p-value less than 0.01 and an

odds ratio greater than 1. We clustered TFs using complete-

linkage clustering and Euclidean distance (Figure S2). In each

module, TFs were ranked by number of genes in the module

bound, and a greedy approach was used to determine how many

TFs were necessary to account for genes in the module (Figure S3).

We associated each module with between 1 and 121 transcrip-

tion factors. Our hypothesis is that those that are associated with

fewer TFs will be of higher confidence than those associated with

many, which may contain more noise. We therefore identified two

subsets of TF-module pairs: (i) a ‘‘high-confidence’’ set of TF-

module pairs where the module was only associated with one TF

and (ii) a set of ‘‘medium-confidence’’ TF-module pairs where the

module was associated to at most three TFs. We use these subsets

in our evaluation of the TFICA TF-target predictions we make

through the associated modules. Additionally, we computed the

(Spearman) expression correlations between all TFs and all

modules (projections) and used this distribution of correlations as

an empirical null distribution. The correlations from the 5,002

significantly overlapping TF-module pairs were z-transformed to

this distribution to determine the number of pairs that were

empirically significantly correlated at the expression level.

For each of the 9,395 gene expression datasets, we projected the

(log-transformed) gene expression measurements of each gene

onto the loadings for each module. In cases where the module

contained the transcription factor itself, we removed the

transcription factor prior to computing the prediction. For

modules with significant associations with at most three transcrip-

tion factors, we tested the (Spearman) correlation between the

projection and the logged gene expression value of the transcrip-

tion factor.

We evaluated our TFICA approach by comparing to two

different naive approaches: a ‘‘best’’ naive approach consisting of a

set of equal size to the module and comprised of the top bound

genes (i.e. those with the highest ChIP-Seq scores), and a

‘‘matched’’ naive approach, which is an equal-sized set with

randomly chosen targets matched to the score distribution of the

targets in the component. We then assessed whether TF

expression is better correlated with projections from modules

from TFICA (from above) compared to the average expression of

the genes in these naive modules. We segregated by number of

transcription factors associated with each module and presented

how often TFICA outperforms the naive method for that ‘‘number

of TFs’’ threshold. Additionally, we performed a paired t-test at

each threshold comparing the r2 values between TF-module

correlations from TFICA and the naive methods. Finally, we

examined the proportion of TF-target pairs that share functional

annotations based on the hypothesis that true regulatory targets

are more likely to share these annotations. We split the TFICA

associations into three groups: (i) high confidence associations, (ii)

medium confidence associations, and (iii) all associations. We

compared each of these three groups to the naive approach.

Building the transcription factor interaction network
We used the Tanimoto coefficient as a measure of similarity

between each pair of transcription factors. The Tanimoto

coefficient is a common set similarity comparison technique used

to compare two sets. It is defined as the size of the intersection of

the two sets divided by the size of the union of the two sets. In this

case, the sets were the modules that were significantly associated

with each transcription factor. We used these similarities to build

two transcription factor interaction networks. The first was a

small network of the top 30 interactions based on the tanimoto

coefficient (Figure 3B). We annotated this network with curated

information on the function (activator or repressor) and biological

interactions between these factors. This network also visualizes

the pairwise Pearson’s correlation between the expression pattern
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across the 9,395 gene expression experiments in the compendi-

um.

The second network contains 140 factors and was generated by

connecting transcription factors whose pairwise tanimoto score

was greater than 0.2. We used Cytoscape [35] (version 2.8.2) and

the force-directed weighted layout visualize this network. To test

the significance between the number of shared modules between

each pair of transcription factors, we used enrichment analysis

using the hypergeometric distribution and correction (adjusted p,

0.01 and odds ratio .1).

Evaluation of TFICA TF-TF network versus other
approaches

We evaluated our TFICA TF-TF network against a naive

approach which linked TFs simply by their shared ChIP-Seq

targets. In the naive approach, we used Tanimoto similarity to

quantify the relationship between each pair of TFs. For TFICA

TF similarity we used two approaches: (i) the Tanimoto similarity

between the TFICA modules associated with each TF and (ii) a

weighted version of the Tanimoto similarity between the TFICA

modules associated with each TF. In the weighted version we

upweighted high confidence TF-module associations over low-

confidence. We believe that the fewer TFs a given module is

associated with the higher the confidence. We used the following

equation to generate a weighted Tanimoto similarity score for

each TF-TF pair:

Tweighted A,Bð Þ~

PN
i

1
NTFi

fi[A&i[Bg
PN

i
1

NTFi
fi[AEi[Bg

Where A and B are the sets of modules associated with the two

factors, N is the total number of modules, and NTFi is the total

number of TFs significantly associated with module i. We

compared these three TF-TF similarity values for their relation-

ship with correlation in TF expression, co-reporting in literature,

and shared functional annotations. For each, we fit a linear model

and report the b coefficients, confidence intervals, and p-values.

We directly compared the TFICA approaches to the naive

approach using an ANOVA.

Construction of the transcription factor-disease network
We associated the derived 423 ICA modules to the 632 diseases

reported in GAD (Genetic Association Database) by analyzing the

overlap of the genes associated with a given disease with the genes

in a given module. We used enrichment analysis with correction

(FDR) for multiplicity to determine significant overlaps. Previously

we linked factors to modules to produce TF-module pairs. From

this analysis, we have module-disease pairs and thus, we can link

TFs to diseases through their shared modules. For example, if a

TF significantly targets a module and that module has a significant

proportion of a disease’s known genes, then we predict a

relationship between the TF and the disease.

We generated two lists of transcription factor disease associa-

tions. The first contains all significant associations (adjusted p,

0.01 and odds ratio .1), which was used for validation (below).

The second is a small set of high confidence associations, which

included a stringent set of associations (odds ratio .3, adjusted p,

0.001), as well as the best association with adjusted p,0.01 and

odds ratio greater than 1 for those diseases that had no ‘‘stringent’’

associations used for visualization. We used Cytoscape [35]

(version 2.8.2) and the spring embedded layout to visualize the

resulting network.

In order to assess the predictive performance of the algorithm

we needed to optimize the alpha level for determining significance

between modules and diseases. We used a subset of 632

associations from the GAD that are for transcriptions factors

directly to calibrate this parameter. We computed the AUROC at

a range of thresholds (Figure S7A) to determine the optimal value

(determined to be adjusted FDR = 0.15).

We tested the performance of our method (using module-

disease p value) against an independent validation dataset of

known disease to gene (and thus, disease to TF) associations, a

combination of the NHGRI GWAS catalog and OMIM (Figure

S7B). We compared the performance to a naive method, where

we evaluated the enrichment between the raw transcription factor

targets and known disease genes (Fisher’s test p value was used as

a predictor). Additionally, we compared TFICA to an established

method for determining enrichment for particular genomic

annotations, GREAT (binomial p value was used as a predictor)

[29]. We used the AUROC and AUROC50 values as summary

statistics of the predictive performance of the methods. We

combined the predictors from our method and GREAT using

logistic regression and used an ANOVA to assess the additive

contribution of our approach to GREAT testing significance with

a Chi-Squared test. Comparisons of ROC curves were performed

using DeLong’s method in the pROC package for R.

Validation of association between MEF2A and Crohn’s
disease

We obtained a publicly-available expression dataset for 59

Crohn’s patients and 42 healthy controls (GEO Accession

Number: GSE3365) [32]. Gene expression measurements were

determined using the median measurement of all probes in the

gene. For each gene, differential expression between cases and

controls was determined using a Student’s t-test. The distributions

of absolute values of these t-statistics were tested using a Student’s

t-test/Wilcoxon rank-sum test to determine significant differences

in differential expression of gene sets.

To generate an expression value for the module, a projection

was calculated, using the dot product of the expression values of

each gene in the module and their individual loadings derived

from ICA. Expression of MEF2A and the projection of the module

were normalized to a z-score and summed to create a ‘‘combined’’

metric. These three metrics were compared among cases and

controls using a Wilcoxon rank-sum test and fit using a logistic

regression (binomial).

Statistical analysis
All statistical analyses were performed with the R statistical

computing package (version 2.14.1). Enrichment analyses were

computed using Fisher’s exact test, with p-values corrected using

the Benjamini-Hochberg FDR correction for multiple hypotheses.

All expression correlations were performed using Spearman

correlations. ROC curves were generated using the ROCR

package for R [36] and comparisons of ROC curves were

performed using DeLong’s method in the pROC package for R.

Supporting Information

Figure S1 Method details. (A): The distance between TF binding

sites from ENCODE and the nearest gene in RefGene are shown. (B):

The distribution of genes putatively regulated by each of the

transcription factors (TFs) on the basis of their proximity is shown.

Many transcription factors map to thousands or tens of thousands of

genes. (C): Enrichment between genes regulated by each TF and
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genes found in modules generated by ICA results in 5,002 TF-module

associations. These modules are associated with up to 121 TFs.

(PDF)

Figure S2 TF-module associations. Enrichments between tran-

scription factor target sets and genes found in each module from

ICA are plotted and hierarchically clustered by TF and module.

The most striking cluster along modules is module 57 (red box),

which includes many transcription factors as targets themselves. See

Table 1 for further description of modules and Table S1 for the full

dataset. (A): The association between ZNF274, SETDB1, and

KAP1 is shown in module 111, which includes many zinc finger

genes. (B): Module 158 contains many fatty acid synthesis genes and

is significantly enriched for targets of SREBP1 and SREBP2. (C):

The complex association between GCN5, GTF2B, NELFe, and

others with modules 104 and 62 is shown.

(PDF)

Figure S3 TFs can explain modules identified by ICA. The

number of significantly enriched transcription factors that are

required to regulate (A) 80%, (B) 90%, and (C) 100% of all possible

genes in a module. Possible genes are defined as genes that are

targeted – as determined by ChIP-Seq experimental data – by at least

one of the 148 TFs in the dataset. 87 modules could not be explained

by targets of any associated TF (shown in the N/A column). Only

significant TF-module associations are used to calculate TFs required.

(D) A histogram of the proportion of the modules that are

‘‘explainable’’ by TF targets determined by ChIP-Seq.

(PDF)

Figure S4 Variance explained by modules. The number of

transcription factors significantly associated with each module

correlates with (A) the rank of the module when sorted by the

module’s variance (r = 20.296, p = 4.8e-10) and (B) the percent of

total variance of that module (r = 0.265, p = 2.8e-08).

(PDF)

Figure S5 TFICA outperforms naive modules in expression

correlation. For each of the 9,395 gene expression experiments, the

expression values of each gene in a module are projected using the

ICA loadings. For each TF-module pair tested, this projection is

compared to the mean expression of two modules based directly on

ChIP-Seq data: a ‘‘best’’ naive module, a set of genes (the same

number as the TFICA module) with the highest ChIP-Seq binding

scores (black), and another equally-sized ‘‘matched’’ set with

binding scores matched to the scores of bound genes in the module

(red). These comparisons are separated on the basis of modules

associated with a varying number of transcription factors. (A): The

proportion of cases where TFICA is more correlated than

expression than each of the two naive modules. Diamonds indicate

significantly higher differences, as determined by a binomial test.

Note that TFICA outperforms the ‘‘matched’’ module at every

threshold, and the ‘‘best’’ module at high- and medium-confidence

associations (one and three or fewer TFs per module; see text). (B–

C): The correlation values at each threshold are compared using a t-

test and the one-sided p-value where the TFICA correlation is

higher (B) and lower (C) is shown here. (D): The number of

significant TF-module pairs in each bin are plotted.

(PDF)

Figure S6 TF-TF interaction prediction performance compari-

son. Similarity of target modules among TF pairs is correlated with

gene expression correlation (top row), literature co-reporting

(middle row), and shared functional annotations (bottom row): We

compared three approaches: (i) a naive similarity approach based on

the proportion of targets two TFs share (left column), (ii) a TFICA

approach based on the proportion of significant modules two TFs

share (middle column), and (iii) a TFICA approach where the TF-

module were weighted by the confidence of the association (right

column). In each case the weighted method is most correlated,

followed by the non-weighted TFICA method, with the naive

approach being the least correlated.

(PDF)

Figure S7 Performance assessment. (A): A number of module-

disease FDR cutoffs were assessed against a training dataset of

associations from GAD to train our method (B): The TFICA

method (red) identifies TF-disease associations, which are

compared to enrichments using GREAT (blue), as well as a

simple target enrichment method (black). Performance is visual-

ized using ROC curves using a combination of the NHGRI

GWAS catalog and OMIM as a gold standard dataset. A

composite measuring using our method and GREAT is shown

in purple.

(PDF)

Figure S8 Associated diseases by TF. A histogram of the

number of TFs associated with a given number of diseases is

shown in (a). Additionally, Two estimates of global function are

plotted: (b) the number of GO annotations for a given TF and (c)

the number of ChIP-Seq targets for a given TF. In both cases the

number of diseases associated to a TF using the TFICA algorithm

is significantly correlated to the TF’s diversity of function.

(PDF)

Table S1 Significant associations between transcription factors

and modules.

(CSV)

Table S2 Projections of gene expression measurements for

module-TF pairs.

(CSV)

Table S3 Modules shared, expression correlation, and literature

evidence between pairs of transcription factors.

(CSV)

Table S4 A regulatory network of human disease.

(CSV)
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