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A B S T R A C T   

Wind power is the most promising renewable energy source after hydropower because of its 
mature technology and low price, and has great potential for carbon emission reduction. Long- 
term forecasts of its power generation can help power companies to develop operational plans, 
grid configuration and power dispatch, and can also provide a basis for the government to 
formulate energy and environmental policies. However, due to the characteristics of China’s 
monsoon climate and wind power industry development, wind power generation data are char-
acterized by nonlinear cycles and small data volume, which makes accurate prediction more 
difficult. To this end, this paper develops a new prediction model and applies it to the long-term 
prediction of wind power generation in China, and proposes some targeted policy recommen-
dations based on the prediction results to promote the development of China’s wind power 
industry.   

1. Introduction 

1.1. Background 

According to the statistical bulletin on national economic and social development released by the National Bureau of Statistics of 
China, China’s power generation in 2022 was 8534.25 billion kWh, which was 4.5% higher than that of the previous year in terms of 
growth rate, and steadily ranked as the world’s top power generation country, as shown in Fig. 1, with huge power demand. However, 
for a long time, China’s power generation is dominated by thermal power, with a high dependence on traditional energy sources such 
as coal and natural gas, and a relatively homogeneous structure, as shown in Fig. 2. Secondly, thermal power generation has caused 
great pollution to the natural environment. The emission of greenhouse gases, mainly carbon dioxide, has led to global warming, while 
the emission of acidic gases such as sulfur dioxide, as well as nitrogen oxides, has led to an increase in the amount of acid rain and dust 
pollution in many regions [1]. The power industry has become one of the largest polluting industries in China, and poses considerable 
challenges to the sustainable development of the economy and society [2]. Nowadays, human beings have reached a consensus on the 
above-mentioned energy tensions and environmental degradation problems, and it is urgent to actively seek and develop renewable 
energy sources, change the energy structure, alleviate the energy crisis, and improve the environmental problems from the source, and 
adjust and upgrade the energy structure. 

The Chinese government is actively responding to the Paris Agreement’s clear policy of “peak carbon by 2030″ and “carbon neutral 
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by 2060". To accelerate energy restructuring, China’s power industry has resolutely implemented its “double carbon” policy and 
actively implemented clean energy substitution actions. According to the “Energy Production and Consumption Revolution Strategy 
(2016–2030)" published by China’s National Development and Reform Commission and China’s National Energy Administration, the 
share of non-fossil energy generation in all power generation will strive to reach 50% by 2030 [3]. 

Driven by Chinese government policies and real environmental problems, there is an urgent need to find clean renewable energy 
sources to reduce environmental pollution and meet the electricity consumption of society’s production and life. As wind power is one 
of the more mature and competitively priced renewable energy sources, it has become the leading renewable energy source after 
hydropower [4]. The IEA estimates that by 2026, wind power is expected to be the leading renewable energy source. By 2026, the IEA 
expects renewable energy to be the largest source of electricity generation, accounting for about 37% of global electricity generation, 
with solar and wind power reaching nearly 18% of global electricity generation. Fig. 2 shows that among the various types of energy 
generation in China, wind power is growing strongly and rapidly compared to thermal power, hydropower, nuclear power, solar 
power, etc. In China’s 14th Five-Year Plan for the Development of National Strategic Emerging Industries, the wind power industry has 
been listed as one of the national strategic emerging industries. The wind power industry has been listed as one of the national strategic 
emerging industries. As a result, under the combined effect of market demand and industrial policy, China’s investment in the 
development and utilization of wind power projects has been increasing, and the wind power industry has shown unprecedented rapid 
momentum and has been able to leap forward in quality [5]. The wind power industry has shown unprecedented momentum and has 
been able to leapfrog in quality. 

Accurate forecasting of wind power generation is important not only for the planning of production activities and power regulation, 
but also for the development of operational efforts, energy strategies, and energy policies of governments and power companies [6]. 
Specifically, due to the intermittent nature of wind power and the decentralized nature of the power stations, it is difficult to regulate 
the grid with wind power, while short-term forecasting can provide a basis for early scheduling by power companies to prevent grid 
fluctuations. The medium and long-term forecasts of wind power can provide a realistic basis for power companies to plan their power 
generation operations, staffing, and maintenance, and can also provide a basis for the Chinese government to formulate relevant 
policies to promote energy restructuring and achieve the “double carbon” goal. 

This paper focuses on the long-term forecasting of wind power generation in China. However, due to the special climatic char-
acteristics of China and the location of wind power plants, the wind power generation data in China exhibit non-linear characteristics 
characterized by cyclical seasonality and trends, and it is difficult to accurately grasp the potential characteristics of the data with a 
single model structure, so the forecasting results are often poor. Second, the development cycle of wind power in China is relatively 
short, the available data is relatively limited, and there are many factors affecting wind power generation. Based on the above 

Fig. 1. Top 10 countries in global electricity generation in 2021 
Data source: National Bureau of Statistics of China. 
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considerations, the prediction of wind power generation in China is essentially an uncertainty prediction problem based on small 
samples and poor information characteristics. Since gray forecasting methods have significant advantages in forecasting small-sample 
data, they have been widely used in various forecasting problems in recent years, especially in the fields of energy, transportation, and 
economy. However, the traditional gray forecasting model has a good fitting effect on the data series with exponential regularity, and it 
cannot obtain good forecasting accuracy for the dual attribute characteristics of periodic seasonality and trend of wind power gen-
eration in China. The modeling method based on the data decomposition method tends to obtain better prediction results than direct 
modeling using raw data [7]. In summary, to grasp the seasonal and trend characteristics of wind power data and obtain more accurate 
forecasting results, this paper proposes a gray DGM model based on EMD to optimize the original gray forecasting model and shows 
good fitting performance in both the training and test sets. 

1.2. Literature review 

1.2.1. Wind power forecasting study 
Rapidly growing wind generation triggers random fluctuations in the electricity grid, which can compromise grid stability and 

increase grid imbalance costs. Therefore, accurate forecasting of wind generation is critical for capacity deployment, schedule 
improvement, energy restructuring, policy evaluation, and grid balancing of wind power high penetration systems. On the other hand, 
there is also a need to construct forecasting models for different periods to meet various needs, which can be generally classified into 
four categories, as shown in Table 1 [8]. 

The main methods of wind power forecasting are Statistical and econometric methods, machine learning methods, gray forecasting 
methods, and combined forecasting methods, as shown in Table 2. 

Statistical and econometric methods assume relevant statistical distributions for the original data and build predictive models 
based on the relevant assumptions. Statistical and econometric methods are more widely used in the field of wind power and many 
statistical and econometric models have been developed. Machine learning methods are all data-driven to build models, collecting a 
large amount of historical data or other exogenous data as input for prediction [9], compared with statistical and econometric 
methods, machine learning methods do not need to describe the model with the help of complex mathematical relationships and 
assumptions, but establish relationships with a large number of input and output processes that can simulate the relationship between 
historical data and target results, so in the case of big data, it is often able to make accurate predictions and has a stronger learning 
capability [10]. Since wind power generation data are affected by a variety of factors and have nonlinear and non-smooth charac-
teristics, it is difficult for a single model structure to accurately capture its data characteristics, so the prediction effect is often poor. 
The combinatorial modeling approach based on data decomposition methods can achieve better prediction results than direct 
modeling using raw data, so combinatorial models are widely used in the field of wind power prediction [11], and some major studies 
are shown in Table 3. 

1.2.2. Application of gray forecasting in the energy field 
The gray prediction method takes the poor information uncertain system with partly known information and partly unknown 

information as the research object, and mines the system original information by generating and developing the known information to 
achieve the effective description of the system operation behavior and evolution law, as well as the quantitative prediction of the future 
state and change of the system [27]. The research on gray prediction theory is deepening. As the research of gray prediction theory 
deepens and expands, its application scope and field are also gradually expanded. In addition to being widely used in the economic and 
social fields, gray forecasting methods are also widely used in the energy field [28]. 

Xiao [29] and Wang [30] used a periodic truncated cumulative generating operator and a data grouping approach (DGGM(1,1)) to 
transform the periodic data series into a smoothed data series applicable to the GM(1,1) model for forecasting seasonal time series, 
respectively. Ding [31] forecasted the seasonal time series by constructing an adaptive gray forecasting model with modified initial 
values (NSGM(1,1) model) predicting the natural gas consumption in China. Qian [32] proposed a GM(1,1) model construction 
method based on HP filter decomposition for systems with periodic fluctuations, which can achieve effective prediction of evolutionary 

Fig. 2. Comparison of electricity generation capacity by power generation mode in China: 2012-2021 
Data source: National Bureau of Statistics of China. 
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trends of systems with “periodic fluctuations” and achieve good results in wind power generation forecasting applications. Wu [33] 
used a nonlinear gray Bernoulli model (FANGBM(1,1) model) to forecast the total renewable energy consumption, hydroelectric power 
generation, wind energy consumption, solar energy consumption, and other renewable energy consumption, respectively. Guefano 
[34] combined a gray prediction model with a vector autoregressive model (VAR) to forecast electricity consumption. Qian [35] 
designed a new structural adaptive discrete gray forecasting model to capture the nonlinear, linear, periodic, and volatile charac-
teristics present in the renewable energy generation series. 

In summary, first, a large number of wind power forecasting studies have focused on short-term and ultra-short-term forecasting 
studies, while there are few Mid-term and long-term forecasting studies. Second, in terms of forecasting methods, statistical and 

Table 1 
Classification of wind power generation forecast content.  

Prediction Scenarios Period Main role 

Long-term forecast Use “years” as the unit of 
prediction 

It is mainly used for the feasibility study of wind farm design, operation plans, and other long-term 
strategy development. 

Mid-term forecast Use “weeks” as the unit of 
prediction 

It is mainly used for wind farm scheduling and maintenance. 

Short-term forecast Use “hours” as the unit of 
prediction 

In most cases, it is mainly used to predict the power in advance. 

Ultra Short-term 
Forecast 

Use “minutes” as the unit of 
prediction 

It is mainly used for the control of wind turbines and the day’s wind power market bidding.  

Table 2 
Common methods for wind power forecasting.  

Method Features 

Statistical and econometric 
models 

It is required for the raw data to obey a certain distribution. Involved in short, medium and long-term forecasting of wind power. 

Machine learning models Deep learning models are widely used to build predictive models with data-driven requirements for large amounts of data. Often 
used for short-term and ultra-short-term forecasting of wind power. 

Gray prediction models Good prediction for small data, poor information. Often used for long-term forecasting. 
Combined predictive models Two combined models exist, series and parallel, which tend to have higher prediction performance than a single model, but there 

is some flexibility in the choice of combined models for different scenarios. It is involved in all prediction scenarios of wind power.  

Table 3 
Some major studies in the field of wind power forecasting.  

Method Type Research Field Author Models 

Statistical and 
econometric 
models 

Short-term forecast Yatiyana [12] The autoregressive integrated moving average (ARIMA) method was used to develop 
an estimation model for wind power in Western Australia. 

Short-term forecast Liu [13] The autoregressive moving average-generalized autoregressive conditional 
heteroskedasticity (ARMA-GARCH) method is demonstrated to be advantageous in 
capturing the trend changes in mean wind speed variation and volatility. 

Short-term forecast Wang [14] A multi-step ahead wind speed prediction technique based on heteroskedasticity 
multicore learning is designed and its reliability is verified. 

Mid-term forecast Dowell [15] A sparse vector autoregressive model (SVAR) is developed in the parametric 
probability framework of log-normal distribution and its advantages over the 
traditional vector autoregressive model are demonstrated. 

Machine learning 
models 

Short-term forecast Karakus [16] An artificial neural network-adaptive neuro-fuzzy inference system (ANN-ANFIS) was 
developed using a polynomial linear regression (PAR) model. 

Short- and medium- 
term forecast 

Cai [17] The prediction results of the SVR were further enhanced by a multi-task Gaussian 
process (MTGP). 

Short-term forecast Lahouar [18] A quantile random forest model without row parameter tuning is constructed, and the 
accuracy of the prediction confidence interval explicitly constructed by it is 
significantly improved. 

Short-term forecast Khosravi [19] A model combining multilayer feedforward neural network (MLFFNN) and adaptive 
neuro-fuzzy inference system (ANFIS) with partial swarm optimization algorithm 
(ANFIS-PSO) is used. 

Combination Forecast Short-term forecast Demolli [20] A combination of five machine learning algorithms, minimum absolute shrinkage 
selection operator (LASSO), k nearest neighbor (kNN), extreme gradient boosting 
(XGBoost), random forest (RF), and support vector regression (SVR), is used. 

Short-term forecast Luo [21]、LV [22] 
and Wu [23] 

A combined prediction model is built based on the EMD data decomposition method to 
decompose the original series into different sub-series. 

Short-term forecast Zhang [24] A prediction model based on CEEMD-IGA–FNN–Markov is proposed to improve the 
accuracy of ultra-short-term wind speed prediction. 

Short- and medium- 
term forecast 

Li [25] and Zhao 
[26] 

Based on the TSD–FS–BM combinatorial model, a combinatorial model of VMD-GSO- 
ELM with simultaneous parameter optimization is proposed.  
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econometric models require data to obey typical distributions. In the wind power application scenario, there are various stochasticity’s 
in wind power generation, such as regional economy, seasonality, random effects, and outlier effects, and it is difficult for statistical 
models based on classical distributions to explain all stochastic components and influencing factors, and it is difficult to capture 
statistical distribution patterns when the amount of data or system information is limited. Machine learning requires a large amount of 
data for training, which is very time-consuming and weakly interpretable, and the application scenarios are limited to short-term and 
ultra-short-term forecasting studies. Third, from the perspective of combinatorial models, a large number of forecasting models built 
by data decomposition are Parallel concatenated, while there are few studies on types of tandem connections combinatorial fore-
casting. In this paper, we focus on the long-term forecasting of Chinese wind power generation, decompose the data into periodic and 
trend terms through EMD data decomposition, build a tandem-type combined forecasting model through seasonal factor and DGM 
forecasting model, and make some targeted suggestions for Chinese wind power industry based on the accurate forecasting model. 

2. Research methodology 

2.1. DGM 

In the traditional GM (1.1) model, the jump from the discrete form of the model to the continuous form of the whitening equation 
has always troubled researchers in gray system theory. DGM (1.1) takes this as the starting point of research to solve this theoretical 
problem from the perspective of going from discrete to discrete, and establishes a discrete gray prediction model [36]. 

Definition 1 [36]: Assuming a non-negative sequence x(0) and its 1-AGO (cumulative generating operator) sequences x(1)

respectively. 

X(0) =
(
x(0)(1), x(0)(2),⋯, x(0)(n)

)

X(1) =
(
x(1)(1), x(1)(2),⋯, x(1)(n)

)

which x(0)(k) ≥ 0, x(1)(k) =
∑k

i=1x(0)(i), k = 1,2,⋯, n , called 

x(1)(k+ 1)= β1x(1)(k) + β2 (1) 

GM (1.1) model, or call it a discrete form of the GM (1.1) model. 
Theorem 1 [36]: Assume that the sequence x(0) and the sequence x(1) as defined in Definition 1, the β̂ = [β1, β2]

T is a parameter 
column, and 

Y =

⎡

⎢
⎢
⎣

x(1)(2)
x(1)(3)

⋮
x(1)(n)

⎤

⎥
⎥
⎦,B=

⎡

⎢
⎢
⎣

x(1)(1) 1
x(1)(2) 1

⋮ ⋮
x(1)(n − 1) 1

⎤

⎥
⎥
⎦

Then, the least squares estimated parameter column x(1)(k+1) = β1x(1)(k) + β2 satisfying 

β̂ = [β1, β2]
T
=
(
BTB

)− 1BTY (2) 

Theorem 2 [36]: Assume Y and B are as defined in Theorem 1 β̂ that β̂ = (BTB)− 1BTY, 
Let x(1)(1) = x(0)(1) , then x(1)(k+1) = β1x(1)(k) + β2 the time response equation of 

x̂(1)
(k+ 1)= β1

k
(

x(0)(1) −
β2

1 − β1

)

+
β2

1 − β1
, k= 1, 2,⋯, n − 1.

Proof: Shaped like 

x(1)(k+ 1)=Ax(1)(k) + B (3)  

of the difference equation is solved identically as 

x(1)(k)=CAk +
B

1 − A
(4)  

where C is an arbitrary constant that can be determined according to the initial conditions given by the problem 
The above equation is the same as x(1)(k+1) = β1x(1)(k) + β2 the difference equation that is exactly equivalent to A = β1,B = β2 

and therefore has 

x(1)(k)=Cβ1
k +

β2

1 − β1
(5)  

When k = 0 When, take x(1)(0) = x(0)(1) , substitute into the equation, we get C =
[
x(0)(1) − β2

1− β1

]
, substitute C back into Equation to 

obtain the proof. 
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The reduction equation is given by the following equation [36]: 

x̂(0)
(k+ 1)= x̂(1)

(k + 1) − x̂(1)
(k)

= (β1 − 1)
(

x(0)(1) −
β2

1 − β1

)

βk
1, k= 1, 2,⋯, n − 1 (6)  

2.2. EMD 

Data-driven empirical modal decomposition (EMD) based on data is powerful and adaptive in analyzing nonlinear and non- 
stationary data sets. It essentially acts as a binary filter, separating complex signals with wide frequency bands into relatively sim-
ple components with different time scales, IMF, which includes information about the local characteristics of the trend and fluctuations 
of the original signal at different scales, and helps to analyze the true physical meaning of the signal to some extent [37]. Empirical 
modal decomposition decomposes the signal based on the time-scale characteristics of the data itself and therefore does not require any 
prior setting of the characteristics of the basic functions. Huang [38], the proposer of EMD, argued that any signal can be split into the 
sum of several implicit modal components. And the implicit modal components have two constraints.  

(1) In the whole data segment, the number of extreme value points and the number of over zero points must be equal or must not 
differ by more than one at most.  

(2) At any moment, the average value of the upper envelope formed by the local maxima and the lower envelope formed by the 
local minima is zero, i.e., the upper and lower envelopes are locally symmetric concerning the time axis. 

The decomposition steps are as follows.  

(1) Draw the upper and lower envelopes according to the upper and lower extreme points of the original signal, respectively.  
(2) Find the mean value of the upper and lower envelopes and draw the mean envelope.  
(3) The original signal minus the mean envelope to obtain the intermediate signal.  
(4) determine whether the intermediate signal satisfies the two conditions of IMF, if so, the signal is an IMF component; if not, use 

the signal as the basis and redo the analysis of 1~4. The acquisition of IMF components usually requires several iterations. 

Fig. 3. EMD algorithm flow.  

M. Ran et al.                                                                                                                                                                                                            



Heliyon 9 (2023) e18053

7

Fig. 4. Flow chart of EMD-DGM modeling.  
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The EMD method enables the decomposition of any type of signal, especially non-stationary and non-linear data [39]. Since wind 
power generation data are nonlinear and non-stationary, empirical modal decomposition helps to extract its features and thus im-
proves model prediction capability. The specific algorithm flow chart is shown in Fig. 3. 

2.3. Combined prediction method of EMD-DGM 

Since complex time series are often composed of many interacting components, it is often difficult to build corresponding fore-
casting models directly based on the original data. To address this problem, this paper adopts a decomposition method for complex 
time series, and adopts a “divide and conquer” approach to build the corresponding prediction models separately [40]. In this paper, 
we adopt a “divide and conquer” approach to building the corresponding forecasting models. 

Time series are usually assumed to be composed of four components: a trend component, a cyclic component, a periodic 
component, and an irregular component. The long-term trend component reflects the long-term pattern of change in a complex data 
series, while the cyclical component reflects the non-fixed-cycle change in the data series [41]. Since the long-term trend component 
and the cyclic component are difficult to distinguish in practical complex time series identification, the trend and cyclic components 
are often used together as the trend-cyclic component [42]. The cyclic component, compared to the cyclic component, reflects the 
fixed-period variation, while the irregular component reflects the irregular fluctuation of the complex time series, and the component 
is usually considered as the smooth component with bounded variance and zero means. The combination of complex data series 
components can be generally classified into two categories, which are additive form and multiplicative form [43]. In this paper, the 
multiplicative model is used to obtain the seasonal adjustment factor with the following equation 

Yt = StYT
t , t = 1, 2, 3, 4 (7)  

Where YT
t is the decomposition trend component, and St is the seasonal adjustment factor. 

Let the series X(0) = (x(0)(1), x(0)(2),⋯, x(0)(n)) be a set of periodic fluctuation series, for which the EMD decomposition is applied 
to obtain the corresponding trend term series X(0)T = (x(0)T(1),x(0)T(2),⋯,x(0)T(n)). 

Assuming that the effect of the seasonal adjustment factor is fixed for the time series [43], the seasonal adjustment factor will be 
obtained as 

Si =
∑ x(0)(ki)

x(0)(ki)T , i= 1, 2,⋯, T (8)  

Where i denotes the period T for each point in time within x(0)(ki) and x(0)(ki)T denote the true values of the data in the series at the 
same time point as x(0)(k) the true value of the data at the same time point of each cycle and the corresponding value of the trend term 
after EMD decomposition. 

Due to the late start and short development time of China’s wind industry, less data can be collected, while China’s wind power 
generation data shows complex characteristics such as cyclical seasonality, trend, and randomness. Traditional forecasting models are 
not effective in predicting them. In response to the above situation, this paper decomposes Chinese wind power generation data based 
on the EMD algorithm, and finds that the EMD algorithm can effectively strip cycle seasonality and trend, and its stripped trend term 
has an obvious quasi-exponential law, as the gray forecasting model can accurately predict the data with quasi-exponential law in the 
case of small data. Therefore, this paper constructs a discrete DGM gray prediction model for the trend term series and decomposes the 
seasonal index Si according to Eqs. (7) and (8), and then uses the seasonal index to correct the predicted trend to establish the EMD- 
DGM model, as shown in Fig. 4. The algorithm flow profile is shown in Table 4. 

Table 4 
Algorithm flow.  

Steps Specific operation 

Start Initializing the software. 
Step 1 Collection of cyclical seasonal data. 
Step 2 Perform EMD decomposition of the data. 
Step 3 Determine whether the period component and trend component are effectively separated, if they are effectively separated then go to the next step, if not, 

the algorithm ends. 
Step 4 DGM modeling of trend components for trend prediction. 
Step 5 The periodic components were separated from the raw data and the seasonal factors were calculated using the formula. 
Step 6 Adjustment of the fitted and predicted values of the DGM model using seasonal factors. 
Step 7 Obtain adjusted fitted and predicted values. 
Step 8 Judge whether the fitting accuracy and prediction accuracy of the model meet the requirements, if they do, proceed to the next step, if they don’t, the 

algorithm ends. 
Step 9 Application of the model for specific case studies. 
End Exporting specific data.  
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2.4. Model evaluation indicators 

To measure the prediction accuracy of a model scientifically and reasonably, it is often necessary to introduce corresponding 
evaluation indexes for analysis. The commonly used evaluation indexes for model prediction effectiveness mainly include mean ab-
solute error (MAE), root mean square error (RMSE), absolute. 

Pairwise percentage error (APE), mean absolute percentage error (MAPE).  

1. Mean absolute error 

The mean absolute error (MAE) is the average of the absolute errors between the predicted and true values, and is a linear score in 
which all individual differences are equally weighted on the mean. 

MAE=
1
n
∑n

i=1

⃒
⃒
⃒
⃒
⃒
e(i)

⃒
⃒
⃒
⃒
⃒

(9) 

With x(0)(i) is the true value, and x̂(0)
(i) is the predicted value, and e(i) = x(0)(i) − x̂(0)

(i) is the error value, then the mean absolute 
error (MAE) is calculated as  

2. Root mean square error 

Root mean square error (RMSE) is the average of the sum of squares of errors between the predicted and true values and then the 
square root, which enhances the role of errors with large values in the overall evaluation system and improves the sensitivity of the 
indicator. 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
e(2)(i)

√

(10) 

e(i) as defined above, then the root mean square error (RMSE) is calculated as  

3. Absolute percentage error and average absolute percentage error 

Absolute percentage error (APE) is a percentage that represents the percentage value between a single error and the true value, i.e., 
the percentage of a single error. Mean absolute percentage error (MAPE), on the other hand, is the average of the absolute percentage 
errors, and it is one of the most common metrics used to assess prediction accuracy. 

x(0)(i), e(i) As shown above, the absolute percentage error (APE) and the mean absolute percentage error (MAPE) are calculated as 

APE=

⃒
⃒
⃒
⃒

e(i)
x(0)(i)

⃒
⃒
⃒
⃒× 100% (11)  

MAPE=
1
n

∑n

i=1

⃒
⃒
⃒
⃒

e(i)
x(0)(i)

⃒
⃒
⃒
⃒× 100% (12) 

The use of mean absolute percentage error (MAPE) to measure model prediction effectiveness usually follows the grading criteria 
shown in Table 5. 

3. Case studies 

3.1. Data sources and data processing methods 

In the context of the goal of “carbon peaking and carbon neutrality”, wind power is a highly efficient and clean energy source that 
gradually replaces inefficient and polluting fossil energy sources. However, wind energy is an unstable renewable energy source, as 
shown in Fig. 5, the wind power generation in China is characterized by obvious trends and cyclical fluctuations, so this study in-
vestigates the changes in wind power generation in China from the perspective of cyclical seasonality and trends, which is of strategic 
significance to improve the energy structure and rational allocation of power resources [1]. This study is of strategic importance to 
improve the energy mix and rationalize the allocation of power resources. 

Table 5 
Prediction accuracy grading table.  

MAPE (%) Predicted Effect MAPE (%) Predicted Effect 

<10 Good 20–50 General 
10–20 Better >50 Poor  
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Such as the appeal, in order to compare the accuracy of the four models, this study selected the cyclical seasonal wind power 
generation data for the spring of China from 2015 to 2022 for the case study, and the data required for modeling were obtained from 
the National Bureau of Statistics of China, as shown in Table 6. Considering the latitudinal location of China, the months of March–May 
in a year are therefore classified as spring, June–August as summer, September–November as autumn, and December–February as 
winter. Spring, summer, autumn and winter are defined as Q1-Q4 in that order, abbreviated as 2015Q1-2022Q1, as shown in the 
specific data. It is obvious from the table that the seasonal variation of wind power generation is great, showing a general seasonal 
pattern of Q1>Q4>Q3>Q2 by and large. However, starting from the spring of 2020, the data of wind power generation gradually 
deviates from the overall trend. The reason behind this is mainly the impact of the new crown pneumonia epidemic, which led to the 
closure of a large number of factories and enterprises and brought some hindrance to the normal development of wind power. Among 
them, the data from 2015Q1-2020Q4 is used as the model training set, and the data from 2021Q1-2022Q1 is used as the model testing 
set. 

3.2. Model construction 

In Fig. 6 below, the raw data are decomposed by EMD to present obvious trend and period terms, where IMF is the period term and 
residue is the trend term. 

In this paper, the traditional DGM(1,1) model, the DGGM(1,1) model based on seasonal grouping, and the Holt-Winters model are 
proposed as comparative models. Among them, the DGGM model with seasonal grouping is constructed as the GM(1.1) model, 
respectively, and the corresponding model time response equation is. 

x̂(1)
(1, t) = 3324.132e0.170(t− 1) − 2856.20

x̂(1)
(2, t) = 2768.184e0.160(t− 1) − 2417.28

x̂(1)
(3, t) = 3852.391e0.138(t− 1) − 3444.39

x̂(1)
(4, t) = 3370.203e0.172(t− 1) − 2926.20  

Which x̂(1)
(i, t), i = 1, 2,3, 4 stands for Q1,Q2,Q3,Q4. 

Fig. 5. China Wind Power Quarterly Data: 2015Q1-2022Q1 
Data source: National Bureau of Statistics of China. 

Table 6 
Wind power generation in China from 2015 to 2022 to spring: 10^8 KW h   

Q1 Q2 Q3 Q4 

2015 468 350.9 408 444 
2016 585.5 458.8 533.2 597.5 
2017 718.3 559.5 711.2 839 
2018 918.9 649.2 745.4 909.9 
2019 1037.8 701.3 845.1 952.4 
2020 1192.4 887.2 996 1323.7 
2021 1449.5 1087.7 1321.4 1513.3 
2022 1895     
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The indexes of the fitted Holt-Winters model are shown in Table 7. Using Equations (1)–(6), the time response of the original DGM 
model is 

x̂(1)
(k+ 1)= 1.05k ∗ 8449 − 7981, k= 1, 2,⋯, n − 1 

After decomposing the raw data into EMD data, the cycle impact factor was calculated using Eqs. (7) and (8), and the calculated 
seasonal factors are shown in Table 8 below. Using Equations (1)–(5), a DGM model was developed for the trend term, and its time 
response equation was 

x̂(1)
(k+ 1)= 1.05k ∗ 8708.2 − 8240.2, k = 1, 2,⋯, n − 1 

The data are reduced using equation (6), and then the DGM model is modified using seasonal factors to finally complete the 
decomposition, integration, and prediction of the data. 

3.3. Model comparison 

To verify the superiority of the model, we compared the EMD-DGM model with other related benchmark models Holt-Winters 
model, DGM model and DGGM model, and selected three indicators, MAE, RMSE and MAPE, as the evaluation criteria to compare 
the accuracy of the models, where MAE, RMSE and MAP are calculated by Equations (9)–(12). The actual, predicted and error values 
are shown in Table 9, and the evaluation results of the indicators are shown in Table 10. The distribution of the predicted and actual 
values of the four models is shown in Fig. 7. 

The traditional DGM gray prediction model tends to have more satisfactory simulation and prediction effects for data series with 
near-exponential growth, but it is less applicable to the periodic fluctuation data similar to this study. From the model results, the 
simulation errors of the DGM gray prediction model for periodic fluctuation data are relatively large in both the training and test sets, 
and its MAE, RMSE, and MAPE indicators are higher than the corresponding indicators of other models. The value of its RMSE is more 
than twice that of the newly proposed EMD-DGM model, and the value of MAPE is as high as 13%, which is between 10% and 20%, 
with unsatisfactory simulation accuracy. If the DMG model is not adjusted and optimized, and the model is still used for subsequent 
forecasting, it will be difficult to achieve better forecasting results for cyclical seasonal data. 

The DGGM(1,1) model divides the seasonal time series into several groups, constructs a GM(1,1) model for each group separately, 
and finally integrates them uniformly. This model has the best fitting accuracy in the training set, and its MAE and MAPE are 33.15 and 
4%, respectively, with the smallest error, but the RMSE value is larger than that of EMD-DGM, which proves that its fitted data do not 

Fig. 6. EMD decomposition results for wind power in China (spring 2015 to spring 2022) 
Data source: National Bureau of Statistics of China. 

Table 7 
Fitting results of Holt-Winters model: 2015Q1- 
2022Q1.  

Fitting statistics 

Stable R-side 0.346 
R-side 0.959 
RMSE 80.393  
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capture the characteristics of periodic seasonal data as well as the EMD-DGM model. And the model has a MAPE value of 6.6% in the 
test set, which is not the best fit compared with other models, although the difference between the before and after fitting accuracy is 
not significant. The reason for this is that the DGGM(1,1) model is relatively susceptible to the influence of random disturbances. The 
prediction accuracy of the DGGM(1,1) model decreases significantly when the amount of modeled data is small and abnormal data 
appear. Combined with the current events, this study speculates that the presence of the epidemic has caused the wind power data 
series to deviate from the overall trend to some extent. And due to the exponential form of the model, the subsequent error will increase 
rapidly if the model continues to be used for forecasting. 

The Holt-Winters model introduces a seasonal term based on the Holt model, which can be used to deal with the behavior of 

Table 8 
Seasonal indices (spring 2015 to spring 2022).   

Q1 Q2 Q3 Q4 

Seasonal Index 1.16201 0.8261 0.91846 1.02331  

Table 9 
Forecast values and errors generated using four different models: 2015Q1-2022Q1.  

Time Actual value DGM DGGM Holt-Winters EMD-DGM 

Forecasted value Error (%) Forecasted value Error (%) Forecasted value Error (%) Forecasted value Error (%) 

Training Stage 
2015Q1 468   468 0.00 457.53 2.24 397.89 14.98 
2015Q2 350.9   454.32 29.47 358.32 2.11 382.90 9.12 
2015Q3 408   474.26 16.24 426.77 4.60 445.74 9.25 
2015Q4 444   495.08 11.50 476.18 7.25 532.18 19.86 
2016Q1 585.5   516.82 11.73 592.14 1.13 629.61 7.53 
2016Q2 458.8   539.51 17.59 443.98 3.23 452.68 1.33 
2016Q3 533.2   563.19 5.62 528.36 0.91 526.98 1.17 
2016Q4 597.5   587.91 1.61 589.1 1.41 629.17 5.30 
2017Q1 718.3   613.72 14.56 759.22 5.70 744.36 3.63 
2017Q2 559.5 582 4.02 640.66 14.51 559.12 0.07 535.19 4.35 
2017Q3 711.2 651.2 8.44 668.79 5.96 644.89 9.32 623.03 12.40 
2017Q4 839 803.8 4.20 698.15 16.79 739.25 11.89 743.84 11.34 
2018Q1 918.9 939.1 2.20 728.8 20.69 967.69 5.31 880.02 4.23 
2018Q2 649.2 728 12.14 760.79 17.19 717.41 10.51 632.73 2.54 
2018Q3 745.4 878.2 17.82 794.19 6.55 810.49 8.73 736.58 1.18 
2018Q4 909.9 936.7 2.95 829.05 8.89 864.54 4.99 879.41 3.35 
2019Q1 1037.8 948.9 8.57 865.45 16.61 1036.02 0.17 1040.41 0.25 
2019Q2 701.3 657.2 6.29 903.44 28.82 770.64 9.89 748.05 6.67 
2019Q3 845.1 742 12.20 943.1 11.60 873.24 3.33 870.83 3.04 
2019Q4 952.4 927.43 2.62 984.5 3.37 984.6 3.38 1039.69 9.17 
2020Q1 1192.4 1247.17 4.59 1027.72 13.81 1119.69 6.10 1230.04 3.16 
2020Q2 887.2 789.1 11.06 1072.84 20.92 827.69 6.71 884.38 0.32 
2020Q3 996 1078.6 8.29 1119.93 12.44 1015.72 1.98 1029.54 3.37 
2020Q4 1323.7 1283.83 3.01 1169.1 11.68 1145.25 13.48 1229.18 7.14 

Test Stage 
2021Q1 1449.5 1438.07 0.79 1220.42 15.80 1033.53 0.99 1454.22 0.33 
2021Q2 1087.7 1164.17 7.03 1273.99 17.13 1194.66 4.98 1045.57 3.87 
2021Q3 1321.4 1237.97 6.31 1329.92 0.64 1417.96 9.59 1217.18 7.89 
2021Q4 1513.3 1667.2 10.17 1388.3 8.26 1601.15 6.30 1453.21 3.97 
2022Q1 1895 1774.8 6.34 1449.25 23.52 1033.53 15.51 1719.26 9.27  

Table 10 
Prediction accuracy and performance evaluation of the four models (2015Q1-2022Q1).  

Model MAE RMSE MAPE 

Training Stage 
DGM 97.65 113.39 13% 
DGGM 33.15 86.12 4% 
Holt-Winters 40.58 60 5.02% 
EMD-DGM 40.64 50.42 6% 

Test Stage 
DGM 198.92 245.58 13% 
DGGM 96.3 124.76 6.6% 
Holt-Winters 142.53 169.14 9.09% 
EMD-DGM 77.38 97 5%  
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periodic fluctuations in the time series, and is suitable for non-stationary series containing linear trends and periodic fluctuations. The 
model fits relatively well in the training set, and the prediction accuracy is basically the same compared with the EMD-DGM model, but 
the fitting effect in the test set is far inferior to the latter, with MAE value of 142.53, RMSE value of 169.14, and MAPE value of 9.09%, 
and the values of each index are approximately twice that of the EMD-DGM model, which shows that the Holt-Winters model does not 
have an advantage in the trend portrayal of the test set. 

The EMD-DGM model fits well on the training and test sets. Its MAE, and MAPE values ranked second among the comparison 
models in the training set and first in the test set, indicating the high fitting accuracy of the model. From the distribution plots of the 
predicted and actual values of the EMD-DGM model, the model portrays the seasonal trends and key turning points of the series data 
more accurately, and its RMSE values are the smallest in both the training and test sets. The EMD-DGM model uses the EMD algorithm 
to decompose the seasonal time series and trend characteristics, constructs a discrete DGM gray prediction for the trend characteristics 
of the data series model, decompose the seasonal indices, and then use the seasonal indices to correct the predicted trends. Overall, the 
EMD-DGM model can better simulate the seasonal variation pattern of wind power generation in China, and has better adaptability 
compared with the DGM, DGGM, and Holt-Winters forecasting models. 

3.4. China wind power forecast 2022–2027 

Based on the superiority of the EMD-DGM model, this study will use the model to forecast the wind power generation in China from 
summer 2022 to winter 2027, and the forecast results are important for power companies to develop operational strategies, ensure the 
stable development of the wind power industry, and the government to develop policies to adjust the energy structure and promote 
carbon emission reduction based on the forecast results. In order to make the forecast results more ideal, all data from spring 2015 to 
spring 2022 are included in the modeling process in this study. The trend term of EMD decomposition is modeled as DGM, whose time 
response equation is. 

x̂(1)
(k+ 1)= 1.05k ∗ 8573.64 − 8240.2, k= 1, 2,⋯, n − 1.

The data were reduced using Equation (6), and then the DGM model predicted data were corrected using the seasonal indices in 
Table 4 to complete the modeling of EMD-DGM, and the predicted values in Table 11 were obtained, and the correlation distribution is 
shown in Fig. 8. 

According to the model forecast results in Table 11, China’s wind power generation will reach 485,643 million kWh by the winter 

Fig. 7. Distribution of actual and forecast quarterly values conducted by the four models: 2015Q1-2022Q1.  

Table 11 
EMD-DGM model predicted electricity consumption results from 2022Q2-2023Q4: 10^8 KW h  

Year EMD-DGM model prediction results 

Q1 Q2 Q3 Q4 

2022  1360.810 1587.494 1855.875 
2023 2211.259 1649.490 2019.087 2249.583 
2024 2680.361 1999.418 2332.493 2726.814 
2025 3248.979 2423.587 2827.313 3305.291 
2026 3938.226 2937.735 3427.114 4006.483 
2027 4773.699 3560.953 4154.148 4856.434  
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of 2027. This study finds that China’s wind power generation will continue to exhibit trend and seasonal characteristics, with steady 
growth while still featuring seasonal fluctuations. Unlike historical data, wind power generation is higher in winter relative to spring 
over the next five years, while it remains at its lowest level in summer, and the gap between the maximum and minimum values is 
gradually increasing. The seasonal fluctuations of wind power cannot be ignored, and the relevant power departments need to allocate 
and regulate the power resources reasonably to ensure the smooth implementation of various activities. 

3.5. Retesting the prediction accuracy of forecasting models 

In order to study the effectiveness of the prediction model proposed in this paper, the wind power generation data from 2022Q2 to 
2022Q4 have been updated at the National Bureau of Statistics of China at the time of this paper becoming a manuscript, and for this 
reason, in order to verify the ability of the model to predict the future, it is compared to further verify the prediction ability of the 
model. The results are shown in Table 12. Overall, the forecasting models are all less than 10%, which proves their excellent fore-
casting ability and further validates the excellent performance of the model proposed in this paper in dealing with cyclical seasonal 
data in the case of small data. 

4. Policy recommendations and conclusion 

4.1. Policy recommendations 

The established EMD-DGM model has made an accurate forecast of wind power generation in China. In this regard, through the 
analysis of the forecast results, this paper makes some targeted suggestions on the seasonal characteristics of wind power generation in 
China, the relationship between new power generation and social demand for electricity, the geographical distribution and types of 
wind power generation, and the improvement of power generation efficiency.  

(1) Synergistically develop multiple power generation modes, and quickly adjust energy structure 

According to the “Opinions on Comprehensively and Accurately Implementing the New Development Concept and Doing a Good 
Job in Carbon Emission and Carbon Neutral Work” issued by the Chinese State Council in October 2021, the proportion of non-fossil 
energy consumption in China is expected to reach about 20% by 2025 and more than 80% by 2060. And according to the Energy 
Research Institute of the National Development and Reform Commission, it is expected that wind power will account for 38.5% of 
energy consumption by 2050, a predicted result that is still a long way from the goal of reaching 80% of non-fossil energy consumption. 
At the same time, Fig. 9 points out that between 2014 and 2021, the electricity demand of the whole society far exceeds the amount of 
wind power generation, and according to the forecast results, the current development rate of wind power generation is far from 
enough to supply the whole society with electricity, and as the proportion of fossil energy generation decreases, the contradiction of 
electricity consumption in China will be further highlighted, which requires China’s policy to increase policy support, so that a variety 

Fig. 8. Distribution of predicted and actual values: 2015Q1-2023Q4.  

Table 12 
Retesting of forecast accuracy: 2022Q2 - 2022Q4.  

Quarterly True Value Predicted value Prediction error (%) 

2022Q2 1443.3 1360.81 5.1% 
2022Q3 1691.4 1587.494 6.1% 
2022Q4 1989.8 2029.8 8.4%  
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of clean energy generation methods synergistic development, to accelerate the adjustment of energy structure. This will require 
China’s policy to increase policy support, so that multiple clean energy generation methods can be developed in a coordinated manner 
to accelerate the adjustment of the energy structure. 

According to the above analysis and forecast, the seasonal characteristics of China’s wind power generation will continue, with an 
uneven pattern of low power generation in summer and autumn and high-power generation in spring and winter. However, the hot 
weather in summer and autumn has always been the peak of electricity consumption, so we should adopt various clean energy 
generation methods such as hydroelectric power, nuclear power and tidal power to make up for the electricity demand gap. For the 
current situation in China, the most effective way is to adopt wind power and hydropower to complement each other. Based on China’s 
climate characteristics, summer and autumn are China’s rainy seasons with high precipitation, and China is also a mountainous 
country with a high potential energy of water, which has a good foundation for hydroelectric power generation. Adopting the com-
plementary power generation method of wind power and hydropower can solve the dilemma of high electricity demand but low wind 
power generation in summer and autumn in China.  

(2) Vigorously develop onshore wind power, and steadily promote offshore wind power 

With ample wind and land resources, low costs and huge market potential, onshore wind is currently one of the most competitive 
sources of new power generation. Currently, China is the largest onshore wind power market, accounting for about one-third of the 
world’s installed capacity. The vigorous development of onshore wind power is the best path to achieve the dual carbon goal and drive 
economic development. Compared to onshore wind power, offshore wind power has higher construction costs and technical diffi-
culties, and longer construction periods. However, offshore wind power also has its unique advantages, with higher energy efficiency, 
power generation efficiency and average service life of wind resources. And offshore wind power does not occupy land resources, 
generally built in the coastal area, and the coastal area of electricity demand is large, so it can also significantly reduce transmission 
costs. With the continuous upgrading of technology policy boost, the cost of offshore wind power cost gradually reduced, and the scale 
effect also emerged, which will usher in a booming wave of development.  

(3) Enhance long-distance transmission technology, and accelerate the construction of extra-high voltage backbone channels 

The main wind power stations in China are located in the northwest, northeast, north China, and coastal areas, as shown in Fig. 10, 
and the overall pattern of “west-to-east” and “north-to-south” power transmission requires consideration of long-distance transmission 
losses and grid construction. Therefore, enhancing long-distance transmission technology and improving the construction of trans-
mission networks is the basic condition to ensure the reasonable distribution of power resources. Accelerating the construction of 
extra-high voltage backbone channels not only enables high-capacity, low-loss and high-efficiency power transmission, but also en-
hances cross-region and cross-province power exchange capacity, improves the flexibility and reliability of power grid operation, and 
is of great significance to the rational allocation of power resources. 

4.2. Conclusion 

In this paper, we propose a combined EMD-DGM forecasting model based on EMD data decomposition, which can effectively 
capture the trend and periodicity of cyclical seasonal data. Comparing the fitting results of the SARIMA model, DGM model, and DDGM 
model, the EMD-DGM model possesses high fitting accuracy in both training and prediction sets and has good adaptability to cyclical 
seasonal data. The main conclusions of this paper are as follows. 

Fig. 9. Electricity demand for the whole society: 2014-2021 
Data source: National Bureau of Statistics of China. 
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(1) In this paper, a parallel combined forecasting model is established by EMD decomposition and seasonal factors, which enhances 
the interpretability of the decomposed data and the interpretability of the forecasting model.  

(2) The traditional DGM gray forecasting model has a good forecasting effect for data with exponential patterns, but it does not 
apply to data with trend and periodicity characteristics. In this paper, the EMD-DGM forecasting model is proposed by 
decomposing the data into trend and periodic terms through EMD and calculating the seasonal index based on the multiplicative 
seasonal model. The model achieves good forecasting accuracy on the Chinese 2015–2022 wind power dataset.  

(3) After forecasting the Chinese wind power data set, Chinese wind power will continue to show seasonal cyclical characteristics. 
And the development rate of wind power is not able to keep up with the development rate of China’s social electricity con-
sumption. Therefore, based on the current situation in China, this paper proposes the coordinated development of multiple 
power generation modes, accelerating energy structure adjustment, vigorously developing onshore wind power, steadily 
promoting offshore wind power, upgrading long-distance transmission technology, and accelerating the construction of extra- 
high voltage backbone channels.  

(4) EMD, as an adaptive data decomposition algorithm, has excellent data decomposition capability and can effectively extract the 
characteristics of cyclical seasonal data, but the “endpoint effect” of EMD is still obvious, and in this case, there is an obvious 
“endpoint anomaly” in 2015Q1. For this reason, trying a better data decomposition algorithm may significantly improve the 
prediction accuracy of the model. Second, this paper assumes that the seasonal impact factor is constant, however, in real life, 
sudden climate changes and weather anomalies occur, and the seasonal impact factor is constantly changing. In order to further 
improve the prediction accuracy of the model, how to construct seasonal factors with variable weights by using each year’s data 
set for weighting will be the key to further research. So far, we have some ideas, but they are not comprehensive, and we share 
them here. 

Let the periodic seasonal series be X with period n, n = 1, 2,3, 4, …n, and m be the components of its period, m = 1,2, 3, 4. 
Decompose it by EMD, and the trend component of the decomposed series is TR(nm), n = 1,2, 3,4,…n, and the periodic component is 
PE(nm), n = 1, 2,3, 4,…n. Let the seasonal factor be Qns, s = 1,2, 3,4. Let X = TR(nm) ∗ Q, at this time, Qs =

X
TR(nm)

. Arrange X into a 
matrix form T according to the period n as follows. 

Fig. 10. Distribution of major wind power stations in China 
Data source: National Energy Administration of China. 
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T =

Q1
Q2
Q3
Q4

⎡

⎢
⎢
⎢
⎢
⎣

1 2 3 … n
TR(11) ∗ Q11 TR(21) ∗ Q21 TR(31) ∗ Q31 … TR(n1) ∗ Qn1
TR(12) ∗ Q12 TR(22) ∗ Q22 TR(32) ∗ Q32 … TR(n1) ∗ Qn2
TR(13) ∗ Q13 TR(23) ∗ Q23 TR(33) ∗ Q33 … TR(n1) ∗ Qn3
TR(14) ∗ Q14 TR(23) ∗ Q23 TR(33) ∗ Q33 … TR(n1) ∗ Qn4

⎤

⎥
⎥
⎥
⎥
⎦

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
Periodicity 

At this time, the seasonal factor of each cycle can be obtained, and in fact, the seasonal factor proposed in this paper is the average 
of its seasonal factor of each cycle. The difficulty of the current study is that (1) sudden weather is uncertain and its impact cycle after 
the occurrence of sudden weather is also uncertain. This means that although dynamic seasonal factors can be constructed, it is not 
possible to choose which cycle length seasonal factor fragment to predict. (2) Even if we artificially determine a seasonal factor 
fragment, it is still static in the forecasting process, so its dynamization in forecasting still needs to be solved. 
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