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A B S T R A C T   

Changes in land use and the resulting human practices in the land urbanization process would 
lead to variations in the function, intensity, and efficiency of CO2 emissions and greatly influence 
urban CO2 emissions. Therefore, using Chinese prefecture-level data for a time period ranging 
from 2003 to 2017, we systematically examine the mechanism of how land urbanization in-
fluences CO2 emissions based on land-use intensity regulation, land-use structure optimization, 
and land-use efficiency improvements. First, the benchmark results show that land urbanization’s 
influence on urban CO2 emissions is significantly positive. This indicates that the consumption 
effect caused by land urbanization exceeds the agglomeration effect. Furthermore, the results of 
the nonlinear analysis using the spatial adaptive semi-parametric and semi-parametric spatial 
dynamic panel models show that the association between land urbanization and carbon emissions 
demonstrates an inverted U-shaped curve. Simultaneously, land urbanization represents a dy-
namic cumulative and spatial spillover effect on urban CO2 emissions. Second, a mechanism 
analysis reveals that effective land urbanization can promote CO2 emission reductions through 
efficiency improvement, structure optimization and proper control of the land-use intensity. 
Additionally, we analyze heterogeneity in regional differences. In the line with study findings, the 
central government in China should promote the optimization of territorial spatial governance, 
optimize energy consumption structures, make comprehensive use of its funds, tax policies, in-
dustrial development support, and market-oriented mechanisms, and further optimize the layout 
of urban space.   

1. Introduction 

Since 1978’s implementation of the Open and Reform Policy, China has significantly promoted economic development through 
rational allocation and effective utilization of land resources augmented the urbanization process and affected the urban CO2 emissions 
[1–3]. The change in land use has also accelerated, with the acceleration in urbanization. As a result, substantial areas of unused and 
agricultural land are transformed into construction of urban land. The proposed process is referred to as land urbanization. This 
process also drives changes in the patterns of land-use, promoting variations in the efficiency, structure, and land-use efficiency [4–6]. 

Abbreviations: 2SLS, two-stage least squares; R&D, research and development; SASP, spatial adaptive semi-parametric model; SPSD, semi- 
parametric spatial dynamic model. 
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It further affects the carbon emission process, carbon cycle, and climate, which consequently forces changes in carbon’s emission levels 
[7,8]. Simultaneously, human activities such as population growth, industrial development, energy consumption, and technological 
change using land resources further affect the level of urban CO2 emissions by influencing energy consumption structures, energy 
utilization intensity, and efficiency [9–11]. Besides this, land-use changes and the resulting human activities have led to changes in the 
function, intensity, and efficiency of CO2 emissions, which are important driving forces of changes in CO2 emissions level in urban 
areas [10,12,13]. 

The land-use changes’ effect on the urban CO2 emission levels related to the land urbanization’s process, is majorly presented in 
four aspects. First, the enhanced level of urban land construction significantly increases carbon’s emissions and sharply declines 
absorption capacity of carbon [14]. The China’s urban construction land enhanced to 55,155.5 square kilometers in 2017, from 20,877 
square kilometers in 1999; thereby, displaying an upsurge of 164% [15]. In addition to this, the urban construction land’s expansion is 
followed by a sharp increase in CO2 emissions because this type of use represents CO2 emissions’ net source. Second, the energy 
consumption’s structure and carbon emission process are profoundly affected by the variations in the land-use structure. In China, the 
proportion of industrial to construction land is maintained at approximately 20%. However, in urban areas with more developed 
production industries including the Pearl and Yangtze River Deltas, the share of industrial land commonly exceeds 40pc, compared to 
the average proportion of 5%–8% globally. Meanwhile, the process of carbon discharge and energy consumption’s structure change 
due to the changes in the structure of land-uses; thus, leading to changes in urban CO2 emissions levels. Third, extreme intensity of land 
development disturbs the biosphere’s carbon balance, thereby affecting CO2 emission levels. China’s unit construction land output, 
that is, land output intensity, almost tripled from 530 million Yuan per square kilometer in 2004 to 1.5 billion Yuan per square 
kilometer in 2017. This intensified land use and excessive intensity of land development destroy the biosphere’s original carbon 
balance; resultantly, affecting and enhancing the process of carbon emissions [15,16]. Fourth, energy-use efficiency is influenced by 
the land-use’s efficiency, which consequently affects CO2 emission levels. In conclusion, land urbanization can stimulate the urban 
carbon emissions in four aspects: the urban land’s construction level, the land-use structure, land development intensity, and land-use 
efficiency. Therefore, there is a need to determine the land urbanization mechanism that influences the level of urban CO2 emissions. 

As the urbanization levels improved, many farmers migrated to the cities, where they were exposed to high levels of carbon. Besides 
this, there is a rise in the infrastructure demand and energy consumption; hence, increasing carbon emissions [17,18] and this finding 
is the scholar’s dominant perspective. The second perspective is that there is an indirect association between urbanization and 
emissions of CO2 [19,20]. This indicates that CO2’s emissions are significantly reduced due to urbanization, owing to the higher ef-
ficiency of energy utilization, and enhanced technical and management levels [19,20]. The third consensus is that there exists an 
inverse U-shaped association between urbanization and CO2’s emissions [21,22]. This means that during the early stage of urbani-
zation, there is an increase in CO2 emissions whereas the carbon emissions reduce in the later stages of urbanization [17–20]. The 
fourth outlook puts forward that there exists an insignificant association between urbanization and emissions of carbon [23]. 

Although many research studies performed on the association between land urbanization and CO2’s emissions, few extant studies 
integrate the impact of land urbanization on the land-use’s efficiency, structure, and intensity into a unified analysis framework, which 
is the main innovation of this study. 

Several factors such as economic, social, and natural environment affect land urbanization. Among them, the natural environment 
is the basic factor that catalyzes changes in land use, such as climate, soil, and hydrology. Other human factors including technology, 
society, and economy determine the efficiency of land resource allocations through land ownership systems, price, and operating 
mechanisms [24,25], and thus change factors such as regional land-use structure, spatial distribution, efficiency, and efficiency. 
Meanwhile, changes in land-use structure, utilization efficiency, and intensity either in direct or indirect manner impact the process 
and level of carbon emission [26–29]. Therefore, it is necessary to integrate factors such as the appropriate intensity control, structure 
optimization, and effective improvement of land-use’s efficiency into a complete theoretical framework, in order to investigate the 
internal mechanism of how to land urbanization affects CO2 emissions. The most imperative significance of this research article lies in 
the aforementioned fact. Furthermore, the influence effect and mechanism of land urbanization on CO2 emissions should also be linked 
to the scale, agglomeration, consumption, and spatial spillover effects of land use, which is another innovation point of this study. 

The major contribution of this research paper is associated with the following two dimensions: Firstly, this article systematically 
explores the land urbanization’s mechanism that affects CO2 emissions, combined with the agglomeration, consumption, and spatial 
spillover effects of land use. Secondly, this paper as a part of the empirical model comprehensively uses the spatial adaptive semi- 
parametric (SASP) model and semi-parametric spatial dynamic (SPSD) model, to confirm the non-linear association between land 
urbanization and CO2’s emissions. 

The remainder of this article is structured as follows. Section 2 reviews the literature and presents the theoretical foundation. 
Section 3 discusses the research data and methodology adopted in this study. Section 4 presents the empirical, benchmark, and 
nonlinear analysis results, and delineates the endogeneity and robustness analysis. Section 5 section expounds on the findings of the 
mechanism analysis, while section 6 presents the results of the heterogeneity analysis. Finally, section 7 summarizes the study’s 
implications and policy recommendations. 

2. Literature review and theoretical foundation 

2.1. Theoretical research on the land urbanization’s effect on the CO2 emissions level 

As land urbanization’s level improved, abundant quantities of agricultural land were transformed into urban construction land 
which changed the land-use structure, efficiency, and intensity, thus affecting the carbon emissions’ level. In this process, land 
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urbanization’s impact on CO2 emissions was mainly reflected in the scale, consumption, agglomeration, structure optimization, 
technological improvement’s spillover effect, and reasonable control effect of government policy. 

First, many farmers migrated to cities, where they were exposed to high levels of carbon during the land urbanization process, thus 
resulting in a substantial increase in residential energy demand. Simultaneously, land urbanization promoted secondary industrial 
development, and the migration of farmers to cities promoted the development of tertiary industries, which further supported a 
significant rise in energy consumption. Furthermore, the increase in demand for energy caused by the household, secondary, and 
tertiary industrial sectors resulted in an uplift in the levels of CO2 emissions. This effect can be seen as the scale or consumption effect of 
land urbanization that tends to increase CO2 emission levels. 

Second, owing to industry- and population’s concentration in larger, denser cities, the agglomeration effect results in reduced 
energy consumption and CO2 emission levels. Compact city theory proposes that high-density urban developments can exert 
agglomeration and economies of scale, leading to a significant lowing of the CO2 emission’s intensity.1 Besides, the industry and 
population’s agglomeration can reduce transaction costs and transportation distances, and improve production efficiency by sharing 
factors, hence, enhancing the energy resource allocations’ efficiency and reducing CO2 emissions. 

Third, the agglomeration of population and industry improves the resource allocation’s efficiency and generates the spillover effect 
of innovative technology and knowledge. Meanwhile, skillful labor adopts formal and informal learning exchanges to transmit ideas 
and information in the agglomeration area. This contributes to production efficiency, organizational competitiveness, and techno-
logical innovation. Complementary enterprises’ collective learning could obtain differentiation and complementary knowledge cre-
ation, diffusion, and accumulation; as a result, improving enterprise innovation. Technological progress plays a substantial role in CO2 
emission reductions and consists of various types, such as price-, R&D-, and learning-induced technological progress.2 

Fourth, the change in the structure- and intensity of land-use also affects CO2’s emission levels. Variations in the landscape patterns 
demonstrate a significant association with changes in different land uses. Consequently, the expansion in urbanization constitutes the 
pattern of an urban landscape which reduces aggregation and increases fragmentation [4]. The land-use structure’s optimization is 
accompanied by transformation of energy- and industrial consumption structure, which results in the low-carbon technologies’ 
development, improvements in energy-efficiency, and reduction in discharge of CO2 [30,31]. There are various effects of land ur-
banization’s expansion on CO2 emissions, owing to variations in spatial industrial and energy consumption structures [19,23,32]. 
Land-use, infrastructure, population, economic, and public service intensities exhibit a positive effect on carbon emissions [2]. 

The rapid increases in urban sprawl and land-use intensity have increased energy demand and consumption. Additionally, owing to 
the uplift in the built-up land, natural land may go through a proportionate reduction. This not only increases carbon emissions but also 
reduces carbon sinks. Many studies insist that growth of land-use intensity uplifts the carbon’s emissions. Wang et al. (2015) [2] find 
out that, owing to commuting, changes in urban structures significantly increase CO2’s emissions. Furthermore, Liu et al. (2014) [33] 
report that urban compactness is directly associated with carbons’ economic efficiency in urban areas. 

However, urban planning and spatial optimization strategies, particularly those highlighting the urban development’s intensity, 
are starting to display a progressively significant role in the CO2 emissions mitigation [2]. The state authorities can appropriately 
regulate the intensity of land development through territorial spatial planning policies, which benefits reducing the possible effect of 
land-use intensity on CO2 emissions. In this regard, some scholars believe that the effective control of land-use intensity can reduce 
CO2’s emission levels. Subsequently, Ou et al. (2013) [31] analyzed the association between land use and carbon’s discharge and 
concludes that a compact pattern of development related to urban land facilitates reducing CO2 emissions. Similarly, Lee and Lee 
(2014) [34] quantified the urban structures’ effect on the individual households’ CO2 emissions. The study findings suggest that there 
is an important role of smart growth policies in developing transit-friendly and compact cities; thus, thereby lowing emissions of 
greenhouse gases. Parallel to this, Wang et al. (2021) [35] demonstrated that the surge in carbon emissions can be effectively mitigated 
by implementing the transfer policy and land development rights throughout the region. The proposed initiative will also ensure the 
associated spatial transfer of carbon emission rights. 

Fifth, the land urbanization’s effect on CO2 emissions is spatially dependent [36]. Based on the geography’s 1st law, geographical 
characteristics are associated with each other in their spatial distributions, and the closer the distances, the closer these attributes are 
connected [37]. Consistent with this, the geographic law is also applicable to carbon emissions. When a city externally lowers carbon 
emissions, the air’s carbon density in the city decreases in the short-term; thereby, reducing the carbon density in the neighboring 
regions with higher carbon densities. Contrary to this, a surge in the city’s carbon emission increases the carbon level in the adjacent 
cities. As a result, the geography’s first law confirms that CO2’s emissions demonstrate significant spatial spillover effects in various 
regions [38]. 

2.2. The effect of government’s land-use decisions on the association between land urbanization and CO2 emissions 

China’s two-tier land system, consisting of collectively owned and state-owned land, emphasizes urban land [39]. Following the 
tax-sharing reform of 1994, the central government garnered a significant share of the fiscal revenue, and created an imbalance be-
tween the administrative and financial powers of local governments. Accordingly, the financial pressures on local governments force 
them to obtain huge land transfer fees by monopolizing the primary market of land, which is termed as land finance [39]. The 

1 Agglomeration resulting in carbon emission reductions can be divided into two major categories namely: diversification and specialization. 
Detailed analysis on this point is available upon request from the author.  

2 Detailed analysis on the impact of different types of technological progress on carbon emissions is available upon request from the author. 
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investment decisions of local authorities are largely influenced by the assessment and promotion mechanism of the central government 
authorities [40]. In the same vein, when the main evaluation indicators for official promotion are economic growth, tax revenue, 
employment, and others, local governments have a strong incentive to compete for investment from enterprises, including those with 
high pollution and high energy consumption [41]. Fortunately, in the past decade, the central government’s assessment indicators 
such as environmental quality and carbon emission targets have become increasingly important [42], and accordingly, local gov-
ernments face a trade-off between economic growth and carbon emission reductions. Currently, the scale, structure, and distribution of 
land are the most effective policy tools in China for balancing economic growth and reducing CO2’s emission. 

Local governments in different regions of China compete to attract investments in political performance evaluations, land finance, 
and other aspects [43]. They must strive for more land development rights and allocation of resources within the framework of central 
government responsibilities and participate in horizontal competition among regions. Therefore, local government applies their 
powers of land disposal strategically to establish land transfer prices and scales in the monopolized land market [40]. On the one hand, 
industrial land is sold by the agreement at a low price as a means of attracting investment which is also known as attracting investment 
by land. On the other hand, commercial- and residential lands can be sold at high prices to earn high land transfer fees, which is also 
known as generating wealth from the land. The competitive behaviors and strategies around land use impact enterprises’ investments, 
which makes land urbanization’s effect on carbon emissions spatially dependent and correlated. Previous studies on the spatial 
spillover effect of land urbanization on carbon’s emissions, from the perspective of local government’s land-use strategies, mostly 
report two results. First, they find that the land urbanization’s spatial spillover effect on CO2’s emissions is positive, which is majorly 
caused by the local governments’ behaviors in response to carbon emission targets. The second is that the spatial spillover effect of land 
urbanization on carbon emissions is negative, which can be explained by Tiebout’s voting with one’s feet theory. 

Several studies have been conducted on the scale, spatial spillover effect, consumption, agglomeration of land use, and govern-
ment’s strategy of land-use. However, these studies did not integrate the structural optimization, intensity control, and efficiency 
improvements of land use with the related scale, consumption, agglomeration, and spatial spillover effects to explore the mechanism of 
land urbanization’s influence on carbon emissions. Therefore, this study comprehensively integrates these dimensions to compre-
hensively examine the mechanisms underpinning land urbanization’s impact on urbanization. This integration serves as the main 
contribution of this study. 

3. Data and methodologies 

3.1. Data 

This study uses panel data on 280 prefecture-level cities from 2003 to 2017 in mainland China. It excludes prefecture-level cities 
that have undergone division changes, adjustments, or have missing data. The research data is retrieved from the Statistical Yearbook 
of Chinese cities (2004–2018). This study uses carbon emissions as the explained- and land urbanization rate as the explanatory 
variables. In addition to this, a series of macroeconomic and characteristic variables that affect CO2 emissions are selected as control 
variables. Based on these variables, we empirically analyze land urbanization’s effect on carbon emissions. Besides this, the inter-
mediate variables are efficiency-, intensity-, and structure of land-use. Consistently, each variable’s measurement methods and data 
sources are indicated in Table 1. 

The dependent variable for carbon’s emission (cemiss) is estimated by using the amount of nighttime light data as a proxy in 
accordance with Chen et al. (2021) [44] and Chen et al. (2020) [26] (Table 1). First, the Chinese provincial CO2 emissions are 
calculated as per the Intergovernmental Panel on Climate Change and Chinese provincial energy consumption data. Then, we match 
DMSP/OLS and NPP/VIIRS nighttime light data and predict the CO2’s emissions for 280 Chinese prefecture-level cities for a time 
period from 2003 to 2017 [44]. The main explanatory variable is land urbanization (urbanrate) which is estimated through the 

Table 1 
Variables and data descriptions.  

Variables Definition Variable 
Notation 

Unit Description or Calculation Method 

Explained 
variable 

Carbon emission cemiss Million ton Use of nighttime light data as a proxy to estimate CO2 emissions 

Explanatory 
variable 

Land Urbanization 
Rate 

urbanrate % It is measured by the proportion of construction land to total land in urban 
districts. 

Control variables Population population Ten thousand The data is obtained from Statistical Yearbook of Chinese cities.  
Economic growth level pergdp yuan It is measured in terms of gross regional product per capita in urban districts.  
Greening level bupgrate % It is measured by the green coverage of urban built-up areas.  
Water Pollution 
emissions 

pwater Ten thousand 
ton 

It is measured by the amount of industrial wastewater discharged by each 
prefecture-level city.  

Air Pollution emissions semiss ton It is measured by the industrial emissions of sulfur dioxide in each 
prefecture-level city.  

Advanced industrial 
structure 

hindustr n/a It is measured by the ratio of the output value of the tertiary and the 
secondary industries of each prefecture-level city.  

R&D expenditure rd million yuan It is measured by the provincial R&D expenditure data of each prefecture- 
level city.  
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proportion of construction land to the total land in urban districts. The control variables include population, economic growth level, 
greening level, water pollution emissions, air pollution emissions, advanced industrial structure, and R&D expenditure. The economic 
growth level (pergdp) is measured as gross regional product per capita in urban districts. The greening level (bupgrate) is estimated with 
the help of urban built-up regions’ green coverage. The water pollution emissions (pwater) are measured by the amount of industrial 
wastewater discharged by each prefecture-level city. Air pollution emissions (semiss) are measured by the industrial emissions of sulfur 
dioxide in each prefecture-level city. The advanced industrial structure (hindustr) is scaled using the ratio of the output value of the 
tertiary and secondary industries of each prefecture-level city. R&D expenditure (rd) is measured by the provincial R&D expenditure 
data of each prefecture-level city. 

Table 2 populates the descriptive statistics of the explained (cemiss), explanatory (urbanrate), and control variables and indicates 
the approximate distribution of each variable. 

3.2. Methodologies 

3.2.1. Benchmark empirical model 
This study’s benchmark empirical model that uses panel data model with fixed effects is provided below: 

Yit = c + αZit + βXit + μi + λt + εit (1)  

where, Yit stands for the CO2 emissions of the prefecture-level city i in period t. Zit is the land urbanization rate of prefecture-level city i 
in period t. Xit represents a series of control variables, including a series of macroeconomic and characteristic variables affecting CO2 
emissions (e.g., population, pergdp, bupgrate, pwater, semiss, hindustr, rd). μi, λt , εit represent urban and time-fixed effects, and standard 
error terms, respectively. The time-fixed effects adjust for shocks to preferences and technology common to all cities. The city-fixed 
effects capture differences in unobservable factors across cities. 

The changes in the efficiency, intensity, and structure of land use in an area impact industrial development, CO2 emissions, and 
efficiency. In turn, CO2 emissions and efficiency will influence the land-use efficiency and decisions of local governments. Because all 
the variables that affect urban CO2 emissions cannot be included, there may be some missing variables, and therefore endogeneity, in 
the benchmark model. Therefore, there is a need to devise instrumental variables to resolve the possible endogeneity. 

A robustness analysis of the benchmark model is conducted using the instrumental variables. The specific robustness analysis is 
divided as follows: First, we replace the dependent variable with urban energy consumption and ascertain the land urbanization’s 
effect on energy consumption. Second, we replace land urbanization with population urbanization to investigate and analyze the 
population urbanization’s effect on carbon emissions. Third, this paper further explores land urbanization’s effect on CO2’s emissions 
with a one-year lag, to prevent the possible lag effect in the analysis. 

In addition, this paper conducts the following heterogeneity analysis to determine the benchmark model’s robustness: First, 
prefecture-level Chinese cities are categorized into the southern and northern regions. Second, Chinese prefecture-level cities are 
classified into the western, eastern, and central areas to conduct a heterogeneity analysis and perform the benchmark model’s 
robustness test. Third, this study divides all the city samples into key and non-key cities for environmental protection to conduct group 
regressions to further investigate the regional differences related to the land urbanization’s role in the CO2’s emissions. Fourth, we 
perform group regressions based on whether a city is a resource- or non-resource based to examine the effect of regional differences in 
land urbanization on CO2 emissions. 

3.2.2. Semi-parametric spatial panel data analysis 
There is an uneven distribution of urban CO2 emissions in space and time. In terms of spatial distribution, there exist variations in 

terms of the intensity, scale, and efficiency of CO2 emissions in various regions; thus, leading to an uneven distribution of CO2 
emissions in geographical space. Additionally, CO2 emissions are related to economic development in terms of variables, such as 
industrial development, technological levels, natural ecological environment, climate conditions, residents’ lifestyles, and human 
carbon emission reduction behaviors and investments. Furthermore, the land use’s effect on urban carbon emissions depends on the 
economic development’s stage and is nonlinear. Therefore, both the spatial effect and the nonlinear characteristics of the impact 
should be considered while studying the land use’s effect on urban CO2 emissions. The SPSD panel model can simultaneously capture 
the nonlinear relationship, spatial correlation, and dynamic effect between dependent and independent variables [45]. Moreover, it 

Table 2 
Descriptive statistics of the main variables.  

Variables Mean SD Min Max N 

cemiss 24.797 22.904 1.530 230.710 4,200 
urbanrate 8.353 9.334 0.000 93.810 4,188 
population 139.540 179.227 14.080 2451.000 4,196 
pergdp 45,100.000 35,100.000 1847.000 468,000.000 4,162 
bupgrate 36.957 14.025 0.360 386.640 4,187 
pwater 7253.293 9464.162 7.000 91,300.000 4,129 
semiss 56,100.000 58,100.000 2.000 683,000.000 4,127 
hindustr 0.985 0.585 0.090 5.340 4,199 
rd 32,600.000 43,700.000 121.260 234,000.000 4,200  
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can consider and improve the estimation accuracy and fitting efficiency of the model [46]. Simultaneously, the land urbanization’s 
spatial and dynamic effects and nonlinear characteristics on the urban carbon emissions is analyzed in depth. 

Taking urban carbon emission as the explained variable and land urbanization rate as the explanatory variable while selecting the 
previously mentioned control variables, we established an SPSD panel model of the land urbanization’s impact on CO2’s emissions. We 
employ the proposed model to empirically forecast the role of land urbanization on urban CO2’s emissions [45,46]: 

Yit = αYi,t− 1 + ρWYit + f (Zit)+ δXit + μi + λt + εit (2)  

W denotes the spatial weight matrix, Yi,t− 1 stands for the urban CO2 emissions with one year lag and α reflects the dynamic effect of 
urban CO2’s emissions. ρ is the spatial autocorrelation coefficient, which indicates the spatial impact of CO2’s emissions of 
geographically adjacent regions or regions with similar levels of economic development on CO2 emissions in this region. Lastly, δ 
stands for the control variables’ estimated coefficient and f(Zit) indicates the non-parametric term. 

3.2.3. Mechanism analysis 

3.2.3.1. Land-use structure optimization. The theoretical analysis suggests that the relationship between land urbanization and urban 
CO2 emissions may be influenced by the land-use structure. Land use structure optimization could reduce the impact of land ur-
banization on urban CO2 emissions. The interaction effect model allows us to examine how the relationship between an independent 
and dependent variable varies depending on the value of a third variable. Therefore, we employ an interaction effect model to 
effectively capture the mechanism of land-use structure optimization. The land urbanization’s mechanism model that influences urban 
CO2 emissions by adjusting the land-use structure is as follows: 

Yit = αZit + βMit + γZit ∗ Mit + δXit + μi + λt + εit (3)  

where, Mit indicates the land-use structure, α represents the land urbanization’s effect on urban emissions of carbon, and β represents 
the effect of land-use structure on urban CO2’s emissions. Meanwhile, the interaction term’s coefficient γ between land urbanization 
and land-use structure reflects the mechanism by which land-use structure further influences urban CO2 emissions in the land ur-
banization’s process. The land-use structure in each prefecture-level city can be assessed by determining the proportion of wetland 
area to the total area. Wetlands are known to offer numerous valuable ecosystem services, such as carbon sequestration. They act as 
significant carbon sinks and play a crucial role in regulating the climate [47]. Therefore, we use the proportion of wetland area to the 
total area of each prefecture-level city to measure the mechanism variable of land-use structure in our study. 

3.2.3.2. Land-use efficiency improvement. Similarly, the relationship between land urbanization and urban CO2 emissions may be 
influenced by land-use efficiency, as suggested by theoretical analysis. Therefore, we also employ an interaction effect model to better 
capture the influencing mechanism of land-use efficiency improvement. The land urbanization’s mechanism model on urban carbon 
emission by affecting land-use efficiency is as follows: 

Yit = αZit + βPit + γZit ∗ Pit + δXit + μi + λt + εit (4)  

where, Pit denotes the land-use efficiency, α shows the impact of land urbanization, and β indicates the impact of land-use efficiency on 
urban CO2 emissions. Consistent with this, the interaction term’s coefficient γ between land urbanization and land-use efficiency 
reflects the mechanism by which land-use efficiency further influences urban CO2 emissions in the land urbanization process. Land-use 
efficiency is measured using the slack-based model with undesired output, which incorporates a range of indicators. These indicators 
include input indicators, expected output variables, and undesired output variables (refer to Table 3 for details) [48,49]. 

3.2.3.3. Land-use intensity control. Land use intensity encompasses both output intensity and input intensity per unit of land. It serves 
as an indicator of the extent to which human activities disrupt the natural ecosystem. The increase in land use intensity can be observed 
through changes in the structure of land use and improvements in the efficiency of land utilization. Consequently, it is crucial to 
examine the impact of land urbanization on land use intensity and the subsequent effect of land use intensity on carbon emissions. 
Accordingly, the land urbanization’s influencing mechanism on urban carbon emissions by affecting land-use intensity is as follows: 

Nit = αZit + δXit + μi + λt + εit (5)  

Yit = γZit + βNit + δXit + μi + λt + εit (6) 

Table 3 
Input, expected output, and undesired output variables for measuring land-use efficiency.  

Types of variables Variables 

Input variables Capital input, labor input, built-up area, water consumption, electricity consumption 
Expected output variables Gross domestic product, fiscal revenue, urban green area 
Undesired output variables Wastewater discharge, exhaust gas  
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where, Nit stands for land-use intensity. It is measured by using the regional GDP of various prefecture-level cities divided by their 
administrative area. 

If both the coefficients α and β are significant, the mediating effect of land-use intensity control is significant. Accordingly, if the 
coefficient γ is significant (insignificant), land urbanization’s total effect on urban CO2 emissions is realized only partially (completely) 
through land-use intensity. 

4. Empirical results 

4.1. Benchmark model’s regression results 

The empirical model’s regression result, Eq. (1), which controls different fixed effects with or without control variables, is pre-
sented in Table 4. The findings show that the influence of land urbanization on urban CO2’s emissions is significantly positive 
regardless of whether the controlled variables are included, and whether the city, time-fixed effects or both, are controlled. The 
significantly positive coefficients of the land urbanization rate indicate that land urbanization indeed promotes carbon emissions in 
urban regions. This supports the finding that the consumption effect of land urbanization exceeds the agglomeration effect [32]. In 
addition to this, it further indicates that the rise in energy consumption, owing to the increment in consumption level, service demand, 
and economic output, exceeds the scale effect of land urbanization. Accordingly, our findings support the suggestion that the Chinese 
authorities must strengthen the integrated utilization of energy and support information’s spillover and technology advancement 
supported by land urbanization [50–52]. Besides this, our results support the suggestion that local government should strengthen 
land-use management, optimize the structure, reasonably control the intensity, and strive to incline the land-use efficiency [15,32,53]. 

4.2. Regression results of the nonlinear analysis 

At various stages of economic development, economic variables including population scale, industrial structure, technological 
levels, and consumption patterns are different [54]. Similarly, energy consumption represents several forms, processes, structures, and 
efficiencies at various stages of economic development [17,21]. Resultantly, all these factors cause nonlinear influence of land ur-
banization on urban carbon emissions [55–57]. Parallelly, we introduce the land urbanization rate’s square term to the benchmark 
model, Eq. (1) to empirically estimate the nonlinear association between land urbanization and urban CO2 emissions. Table 5 presents 
the non-linear model’s regression results and indicates that the association between land urbanization and urban CO2’s emissions 
projects an inverted U-shaped curve. In the early stage of economic development, the economic growth level is relatively low, the 
land-use pattern is relatively extensive, and residents’ consumption is not dominated by green and energy-saving products. As a result, 
these factors cause the consumption effect of land urbanization to exceed the agglomeration effect, which leads to a direct association 
between land urbanization and discharge of carbon. 

In contrary to this, when the economy develops to an advanced phase, the land-use pattern shifts to high-quality use, the 

Table 4 
Results of the benchmark model.   

Variables 
(1) (2) (3) (4) 

cemiss cemiss cemiss cemiss 

urbanrate 0.210*** 
(0.027) 

0.186*** 
(0.021) 

0.161*** 
(0.018) 

0.115*** 
(0.018) 

population  0.046*** 
(0.003) 

0.053*** 
(0.002) 

0.037*** 
(0.002) 

pergdp  0.000*** 
(0.000) 

0.000*** 
(0.000) 

0.000*** 
(0.000) 

bupgrate  0.082*** 
(0.009) 

0.010 
(0.008) 

0.006 
(0.008) 

pwater  − 0.000 
(0.000) 

0.000 
(0.000) 

− 0.000*** 
(0.000) 

semiss  0.000 
(0.000) 

0.000 
(0.000) 

− 0.000*** 
(0.000) 

hindustr  1.358*** 
(0.312) 

1.921*** 
(0.286) 

1.864*** 
(0.284) 

rd  0.000***(0.000) − 0.000 
(0.000) 

− 0.000 
(0.000) 

_cons 22.907*** 4.133*** 2.116** 5.797*** 
(0.257) (0.726) (0.926) (0.664) 

City fixed effect Yes Yes No Yes 
Year fixed effect No No Yes Yes 
R2 0.015 0.511 0.525 0.636 
N 4188 4059 4059 4059 

Note: Standard errors are in parentheses, ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively. 
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technological levels, and energy efficiency are improved, and residents’ consumption includes mostly green and energy-saving 
products. These factors cause the agglomeration effect of land urbanization to exceed the consumption effect, which leads to a 
direct relation between land urbanization and CO2 emissions. Owing to this, the nonlinear association between land urbanization and 
urban carbon emissions is in accordance with the theories of urban environmental transition and ecological modernization. These 
theories indicate that more CO2 emissions will be generated when the expansion of urbanization is dominated by economic growth. 
However, CO2 emissions may be inhibited via technological innovation, environmental regulations, sustainable development, or 
variations in the composition of the economic sector when societies evolve to higher development stages [58,59]. Simultaneously, the 
nonlinear result is supported by Shahbaz et al. (2016), Martinez-Zarzoso and Maruotti (2011), Zhang et al. (2017), Shafiei and Salim 
(2014), Tiba (2019) [21,56,60–62], who reported inverted U-shaped curve between urbanization and CO2’s emissions. 

In the context of the first law of geography, CO2 emissions demonstrate spatial spillover effects [63,64] and are spatially dependent 
on different cities [36]. Thus, spatial factors should be considered when depicting the association between land urbanization and 
carbon emissions. Some Chinese studies consider the spatial effect of energy-based CO2 emissions by using a spatial econometric model 
[36]. Nevertheless, these spatial econometric models cannot explain the spatial heterogeneity among different regions. Consequently, 
a SASP model is adopted to report the land urbanization’s influential mechanism on CO2 emissions, in order to accommodate spatial 
heterogeneity among various cities, and avoid model setting misspecification which is the dimensionality’s drawback in the 
nonparametric model. The proposed SASP model is in accordance with Tang and Hu (2021) [15] and Ruppert et al. (2003) [65] and is 

Table 5 
Results of the nonlinear model.   

Variables 
(1) (2) 

cemiss cemiss 

urbanrate 0.449*** 
(0.062) 

0.349*** 
(0.047) 

urbanrate2 − 0.004*** 
(0.001) 

− 0.003*** 
(0.001) 

population  0.048*** 
(0.003) 

pergdp  0.000*** 
(0.000) 

bupgrate  0.082*** 
(0.009) 

pwater  − 0.000 
(0.000) 

semiss  0.000 
(0.000) 

hindustr  1.338*** 
(0.312) 

rd  0.000*** 
(0.000) 

_cons 21.574*** 
(0.401) 

3.077*** 
(0.774) 

City fixed effect Yes Yes 
Year fixed effect No No 
R2 0.020 0.513 
N 4188 4059 

Note: Standard errors are in parentheses, ***, **, and * denote statistical significance at the 
1%, 5%, and 10% levels, respectively. 

Table 6 
Results of the spatial adaptive semi-parametric (SASP) model.  

Variable SASP Model 

Population 0.0527*** (0.0000) 
Pergdp 1.680E-04*** (0.0000) 
Bupgrate − 1.244E-03 (0.9343) 
Pwater 2.553E-04*** (0.0000) 
Semis 9.986E-05*** (0.0000) 
Hindustr 4.113*** (0.0000) 
Rd 2.140E-05*** (0.0001) 
N 2910 
Degree of freedom 13.54 
Spar Statistics 10.19 
Number of knots 34 

Note: p-values are in parentheses, ***, **, and * denote statistical 
significance at the 1%, 5%, and 10% levels, respectively. 
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as follows: 

cemissit = β0 + β1populationit + β2pergdpit + β3bupgrateit + β4pwaterit + β5semissit + β6hindustrit + β7rdit + f (urbanrate)

+
∑Km

k=1
bk
(
urbanrate − κm

k

)p
+

(7)  

where β0 is a constant, βi(i= 1,2,⋯，7) represent the coefficients for each linear control variable, f(urbanrate) connotes the non- 
parametric term, κm

k (k= 1, 2,⋯,Km) show knots, Km indicates the knots’ dimension, (urbanrate − κm
k )

p
+

is equal to (urbanrate − κm
k )

p 

if (urbanrate − κm
k ) > 0 and bkbk is its coefficient, p stands for the exponential power of the kth knot, and m stands for the type of knot. 

The SASP model’s parametric estimation results, Eq. (7), of land urbanization and carbon emissions are presented in Table 6, 
whereas the fitting graph of land urbanization and CO2 emissions is demonstrated in Fig. 1. Accordingly, Fig. 1 shows that the relation 
between land urbanization rate and total CO2 emissions projects an inverted U-shaped curve [32,56,66]. Although most of the data still 
reflect that land urbanization promotes the increase of CO2 emissions, carbon emission reductions may indeed be promoted with the 
optimization of the land urbanization’s rate. Therefore, the Chinese government can promote the land urbanization’s agglomeration 
effect to exceed its consumption effect by implementing systematic policies promoting the land-use structure’s optimization, effec-
tively regulating intensity, while striving to uplift the land-use efficiency. Accordingly, this may transform and upgrade the industrial 
structures, low carbonization of energy consumption structures, and enterprises’ technological innovation levels, thereby improving 
the spatial spillover effects of the entire country. As a result, land urbanization and carbon emission reductions will accelerate sus-
tainable development in China. 

The SASP model uses only spatial adaptive characteristics in the process of fitting sample data. In addition, the impact of land 
urbanization policies and measures in other adjacent areas or areas with similar economic development on regional CO2 emissions are 
not analyzed in the SASP model, nor does it consider the temporal dynamic effect of urban CO2 emissions. Therefore, the temporal 
dynamic and spatial spillover effects of land urbanization on carbon emissions is further estimated with the help of SPSD model. This 
model accommodates the influences of certain covariates related to urban CO2 emissions by extending the ordinary spatial auto- 
regressive models [45,46,67]. The weight matrix W used in the model is the inverse distance weight matrix. The SPSD model’s re-
sults according to the empirical model shown in Eq. (2) are shown in Table 7. Meanwhile, the linear prediction curve between land 
urbanization and CO2’s emissions for the SPSD model is shown in Fig. 2 and indicates that the SPSD model fits the data well. Moreover, 
the plot of partial derivatives of fitted values in the context of non-parametric term is shown in Fig. 3 which demonstrates that the 
marginal carbon emission effect of land urbanization shows an N-shaped relationship, which first increases, then decreases, and then 
increases again. This signifies that the marginal carbon emission effect of land urbanization decreases when the land urbanization rate 
is in the approximate range of 8%–22%. Consistently, Table 7 illustrates that the influence of urban CO2’s emissions with a one-year lag 
on current CO2 emissions is significantly positive, as is the spatial autocorrelation coefficient. This indicates that the carbon emissions’ 
influence represents a dynamic cumulative effect. Simultaneously, it demonstrates that the land urbanization level in neighboring 
areas exerts a significantly positive influence on carbon emissions in a particular region, which points out that land urbanization 
displays a spatial spillover effect on the urban CO2’s emissions. 

4.3. Endogeneity analysis 

Omitted variables and reverse causality may cause an endogeneity between land urbanization and CO2 emissions [32,61]. As a 
result, this study selects the land urbanization’s instrumental variables and performed a 2-stage least squares (2SLS) with instrumental 
variables, to resolve the possible endogeneity and undertake a further robustness check of the benchmark results (Table 4: [68–70]). In 
accordance with Tang and Hu (2021) [15] we chose the number of plots as leased land (M1), the area of leased land (M2), and 
nighttime light data (M3) as the land urbanization’s instrumental variables. The VIIRS sensor on the Suomi NPP satellite is used to 
derive nighttime light data. This helps to provide spatially explicit observations at night of artificial lighting sources across the human 
settlements, without moonlight [5]. Afterward, the data on the number of land plots being leased, and the area of land that was leased 
are acquired from the Chinese Land and Resources Yearbook (2004–2018) and Chinese Land and Resources Statistical Yearbook 
(2004–2018). 

The nighttime light data serves as economic development’s appropriate instrumental variable, including land urbanization [69, 
71]. Additionally, the area and scale of land being leased also represent sound instrumental variables for land urbanization since these 
variables are not only directly associated with land urbanization but also serve as exogenous variables controlled by the federal 
government in China. Subsequently, the association between land urbanization and urban carbon emissions, based on 2SLS model with 
the instrumental variables, is shown in Table 8 and indicates that the previous results concerning land urbanization’s influence on 
urban CO2’s emissions are robust. Besides, land urbanization displays a significantly positive influence on urban carbon emissions 
regardless of the combination of M1, M2, or M3 that are used as instrumental variables. In addition, the results support the benchmark 
model’s results (Table 4). 

4.4. Robustness analysis 

This study performs a series of robustness tests, to further cross-check the baseline results’ reliability. Firstly, we replace the 
dependent variable with urban energy consumption and assess the land urbanization’s influence on energy consumption. The results 
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are populated in column (1) of Table 9 and demonstrate that the land urbanization’s effect on urban energy consumption is signifi-
cantly positive. This shows that the benchmark results are robust. Second, we replace land urbanization with population urbanization 
to estimate the population urbanization’s effect on CO2 emissions (column 2; Table 9). This result reveals that population urbanization 
exerts a significantly positive influence on carbons’ discharge, thus suggesting that the estimated conclusions are still robust. Finally, to 
prevent the lag effect of land urbanization on CO2’s discharge, we further examine the land urbanization’s effect on CO2’s emissions 
with one year lag. As demonstrated in Table 9’s 3rd column, the land urbanization coefficient is also significant; thereby, reflecting that 
land urbanization exerts a significant lagged effect on promoting CO2’ emissions. 

Fig. 1. The fitting curve between land urbanization and CO2 emissions based on the spatial adaptive semi-parametric model for Chinese prefecture- 
level cities of year 2003–2017. 

Table 7 
Results of the semi-parametric spatial dynamic (SPSD) model.  

Variables SASP Model 

L.cemiss 0.383*** (0.014) 
Wcemiss 2.07E-06*** (7.61E-08) 
Population 0.003** (0.001) 
Pergdp − 6.33E-06*** (1.83E-06) 
Bupgrate 7.292E-04 (0.003) 
Pwater − 1.3E-05 (1.03E-05) 
Semis 1.44E-06 (1.59E-06) 
Hindustr 0.179 (0.166) 
Rd 6.75E-06*** (4.64E-06) 
N 2910 
Number of observations 3640 
R2 0.435 

Note: Standard errors are in parentheses, ***, **, and * denote statistical 
significance at the 1%, 5%, and 10% levels, respectively. 

Fig. 2. The linear prediction curve between land urbanization and CO2 emissions based on the semi-parametric spatial dynamic model for Chinese 
prefecture-level cities of year 2003–2017. 
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5. Mechanism analysis 

5.1. Land-use efficiency improvement 

Our theoretical analysis explores the notion that land urbanization could potentially facilitate carbon emission reductions through 
enhanced land-use efficiency. Therefore, the interaction effect model is employed to test this theory as per the empirical model (Eq. 
(4)). Table 10 points out that the land-use efficiency’s effect on CO2’s emissions is negative overall, whereas the land urbanization’s 
effect is positive. However, the interaction coefficient of land-use efficiency and land urbanization is lower than the land urbanization 
coefficient. This result reveals that the improved land-use efficiency reduces the positive effect of land urbanization on carbon’s 
emissions. As a result, land-use efficiency can be improved by land urbanization through scale, agglomeration, and spillover effects 
caused by technological innovation and efficiency improvements, thus promoting carbon emission reductions. Hence, the government 

Fig. 3. Plot of partial derivatives of fitted values with respect to non-parametric terms based on the semi-parametric spatial dynamic model for 
Chinese prefecture-level cities of year 2003–2017. 

Table 8 
Results of two-stage least squares estimation with instrumental variables.   

Variables 
(1) (2) (3) (4) 

cemiss cemiss cemiss cemiss 

urbanrate 0.689*** 
(0.109) 

0.656*** 
(0.112) 

0.670*** 
(0.109) 

0.648*** 
(0.111) 

population 0.051*** 
(0.003) 

0.052*** 
(0.003) 

0.051*** 
(0.003) 

0.052*** 
(0.003) 

pergdp 0.000*** 
(0.000) 

0.000*** 
(0.000) 

0.000*** 
(0.000) 

0.000*** 
(0.000) 

bupgrate − 0.007 
(0.015) 

− 0.007 
(0.015) 

− 0.005 
(0.015) 

− 0.007 
(0.015) 

pwater 0.000*** 
(0.000) 

0.000*** 
(0.000) 

0.000*** 
(0.000) 

0.000*** 
(0.000) 

semiss 0.000*** 
(0.000) 

0.000*** 
(0.000) 

0.000*** 
(0.000) 

0.000*** 
(0.000) 

hindustr 3.937*** 
(0.438) 

3.869*** 
(0.450) 

3.885*** 
(0.438) 

3.866*** 
(0.450) 

rd 0.000*** 
(0.000) 

0.000*** 
(0.000) 

0.000*** 
(0.000) 

0.000*** 
(0.000) 

_cons − 6.764*** 
(0.936)  

− 6.975*** 
(0.940)  

− 6.697*** 
(0.932)  

− 6.942*** 
(0.939)  

M1  No  Yes  No Yes  

M2  No  No  Yes  Yes  

M3  Yes  Yes  Yes  Yes  

City fixed effect  Yes  Yes  Yes  Yes  

Year fixed effect No No No No 
R2 0.650 0.651 0.650 0.652 
N 4059 3722 4000 3722 

Note: Standard errors are in parentheses, ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively. 
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Table 9 
Robustness check results.   

Variables 
(1) (2) (3) 

energy cemiss L.cemiss 

urbanrate 7.841*** 
(1.228)  

0.090*** 
(0.018) 

popurbanrate  0.115*** 
(0.021)  

population 3.347*** 
(0.166) 

0.024*** 
(0.002) 

0.033*** 
(0.002) 

pergdp 0.007*** 
(0.000) 

0.000*** 
(0.000) 

0.000*** 
(0.000) 

bupgrate 0.864 
(0.538) 

− 0.001 
(0.007) 

0.003 
(0.008) 

pwater − 0.005*** 
(0.001) 

− 0.000*** 
(0.000) 

− 0.000*** 
(0.000) 

semiss − 0.001*** 
(0.000) 

− 0.000 
(0.000) 

− 0.000*** 
(0.000) 

hindustr 12.331 
(19.609) 

0.002 
(0.261) 

1.825*** 
(0.296) 

rd − 0.000 
(0.000) 

− 0.000*** 
(0.000) 

− 0.000 
(0.000) 

_cons 137.239*** 
(46.458) 

− 1.610 
(1.178) 

7.441*** 
(0.703) 

City fixed effect Yes Yes Yes 
Year fixed effect Yes Yes Yes 
R2 0.514 0.623 0.635 
N 4200 3420 3920 

Note: Standard errors are in parentheses, ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively. 

Table 10 
The regression results of the interaction effect between land urbanization and land-use efficiency.   

Variables 
(1) (2) (3) 

cemiss cemiss cemiss 

urbanrate 0.148*** 
(0.033) 

0.155*** 
(0.025) 

0.076*** 
(0.022) 

urbanrate*eco 0.192*** 
(0.059) 

0.093** 
(0.043) 

0.120*** 
(0.037) 

eco 1.894** 
(0.845) 

− 2.193*** 
(0.621) 

− 2.477*** 
(0.537) 

population  0.046*** 
(0.003) 

0.037*** 
(0.002) 

pergdp  0.000*** 
(0.000) 

0.000*** 
(0.000) 

bupgrate  0.085*** 
(0.009) 

0.009 
(0.008) 

pwater  − 0.000 
(0.000) 

− 0.000*** 
(0.000) 

semiss  0.000 
(0.000) 

− 0.000*** 
(0.000) 

hindustr  1.347*** 
(0.312) 

1.854*** 
(0.283) 

rd  0.000*** 
(0.000) 

− 0.000 
(0.000) 

_cons 22.229*** 
(0.374)  

4.748*** 
(0.746)  

6.492*** 
(0.679)  

City fixed effect  Yes  Yes  Yes  

Year fixed effect No No Yes  

R2 0.024 0.513 0.638 
N 4188 4059 4059 

Note: Standard errors are in parentheses, ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively. 
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authorities support industries with high energy efficiency to replace industries with low energy efficiency by adjusting land-use 
policies, in the land urbanization process. Simultaneously, the state authorities introduce tax incentives, fiscal subsidies, and other 
policies to support enterprises, in order to increase investment in technological innovation and improve land-use efficiency, thus 
reducing CO2 emission levels. The results are parallel to Dong et al. (2020) [72], Talaei et al. (2020) [73], and Yu et al. (2020) [74], and 
prove that land-use efficiency exerts an indirect impact on carbon emission’s intensity, and the agglomeration and spillover effects of 
urbanization is able to effectively improve the carbon emission’s efficiency; thereby, lowering CO2 emissions. 

5.2. Land-use structure optimization 

Reasonable and effective land urbanization can promote carbon emission reductions by optimizing land-use structures, adjusting 
industrial structures, and promoting industrial structure transformations. Therefore, the interaction effect model is applied to assess 
the mechanism of how to land urbanization promotes carbon emission reductions through land-use structure optimization as per the 
empirical model expressed in Eq. (3). Table 11 reflects that the interaction coefficient of land-use structure and land urbanization is 
lower than the land urbanization’s coefficient, although the land-use structure’s coefficients are insignificant in column (3). 
Furthermore, this result reveals that optimizing the structure of land-use can decrease the positive impact of land urbanization on 
carbon’s emissions. By promoting land-use in low-carbon industries, land urbanization can effectively optimize the land-use structure, 
support the industrial structure transformation, and improve carbon emission efficiency, thus promoting carbon emission reductions. 
Hence, the regulatory bodies may encourage enterprises with high-energy efficiency to replace enterprises with low-energy efficiency 
by adjusting land-use policies in the land urbanization process [75–79]. The aforementioned literature found that land-use structure 
optimization could promote industrial structure adjusting, and thus negatively affect CO2 emissions. 

5.3. Land-use intensity control 

The theoretical analysis shows that it is possible to promote carbon emission reductions, or at least reduce the rate at which they 
increase, by reasonably controlling land-use intensity in the land urbanization process; thus, reducing the disturbance of land-use 
activities to ecological and environmental systems. Therefore, we should investigate this mechanism using economic performance 
data. We use the mediation effect model to identify whether land urbanization can achieve carbon emission reductions by promoting 
land-use intensity control according to the empirical models shown in Eqs. (5) and (6). Table 12 (regression results) posits that land 
urbanization’s influence on land-use intensity is significantly positive. In case both land-use intensity and land urbanization are 
included in the same empirical model, the land urbanization and land-use intensity’s effect on CO2’s emissions are also significantly 
positive. This result indicates that land-use intensity performs a partially positive mediating role in the land urbanization’s process 
affecting CO2’s emissions. Furthermore, it indicates that land-use intensity has not been properly controlled in China, and its impact on 
carbon emissions is still positive. In the future, the Chinese government should further rationally control and optimize land devel-
opment intensity, strengthen territorial space planning, and cause the land-use intensity’s effect on CO2’s emissions to change from 
positive to negative. 

6. Heterogeneity analysis 

The southern and northern regions of mainland China are classified based on the Qinling-Huaihe line (the Huai River line and the 
Qin Mountains). In addition, the prominent factors that separate the two stated regions are climate factors namely: precipitation and 
temperature. On the one end, the northern areas consist of Beijing, Gansu, Tianjin, Xinjiang, Hebei, Henan, Shanxi, Inner Mongolia, 
Jilin, Liaoning, Heilongjiang, Shandong, Shaanxi, Qinghai, and Ningxia. While, on the other end, the southern regions comprise Fujian, 
Shanghai, Hubei, Zhejiang, Anhui, Hainan, Jiangsu, Jiangxi, Hunan, Chongqing, Guangdong, Guangxi, Yunnan, Guizhou, and Sichuan. 
The heterogeneity analysis based on the southern and northern cities (Table 13) shows that land urbanization plays an affirmative role 
in terms of carbon’s emission in both northern and southern cities, and the impact in the southern cities is higher than that in the 
northern cities since the land resources’ scarcity in the southern regions forces the intensive use of land. However, land and mineral 
resources including natural gas, oil, and coal are relatively abundant, which makes the land use of northern cities relatively extensive. 
Simultaneously, southern cities have improved industrial development and have higher technological and human capital levels. This 
results in most of the mineral resources in the north being shipped to southern cities for consumption. As a result, land urbanization in 
southern cities demonstrates a higher impact on CO2’s emission than it does in northern cities. 

Chinese provinces are divided into three regions namely: western, central, and eastern, from the perspective of economic zones. 
The northeastern, central, and western regions are combined and named mid-western regions. Primarily, the eastern zone consists of 
Tianjin, Beijing, Zhejiang, Hebei, Guangdong, Jiangsu, Fujian, Hainan, Shandong, and Shanghai. Moreover, the mid-western zone 
consists of the remaining other provinces. The heterogeneity analysis for the mid-western and eastern cities (Table 14) reflects that 
land urbanization exerts a positive effect on CO2 emissions in both eastern and mid-western cities, and the impact in eastern cities is 
greater than it is in midwestern cities. The land-use intensification’s degree is higher in the eastern zone than the mid-western zones. 
While, the eastern region’s technological levels and economic development are comparatively high than the mid-western zones [30]. 
Because of greater economic development, better industrial development, and higher technological levels, residents, and enterprises in 
eastern cities have higher energy consumption demands, resulting in higher carbon emission levels. As a result, land urbanization, in 
eastern cities, demonstrates a higher effect on CO2 emissions than it does in midwestern cities. 

To further investigate the regional differences in terms of land urbanization’s effect on CO2 emissions, we divide all the city samples 
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Table 11 
The regression results of the interaction effect between land urbanization and land use structure.   

Variables 
(1) (2) (3) 

cemiss cemiss cemiss 

urbanrate 0.163*** 
(0.032) 

0.106*** 
(0.026) 

0.053** 
(0.022) 

urbanrate*lstruc 0.006** 
(0.003) 

0.012*** 
(0.002) 

0.010*** 
(0.002) 

lstruc 1.383*** 
(0.089) 

− 0.342*** 
(0.078) 

0.029 
(0.070) 

population  0.047*** 
(0.003) 

0.037*** 
(0.002) 

pergdp  0.000*** 
(0.000) 

0.000*** 
(0.000) 

bupgrate  0.083*** 
(0.009) 

0.007 
(0.008) 

pwater  − 0.000 
(0.000) 

− 0.000*** 
(0.000) 

semiss  0.000 
(0.000) 

− 0.000** 
(0.000) 

hindustr  1.315*** 
(0.311) 

1.811*** 
(0.283) 

rd  0.000*** 
(0.000) 

− 0.000 
(0.000) 

_cons 14.002*** 
(0.608) 

5.969*** 
(0.849) 

5.499*** 
(0.772) 

City fixed effect Yes Yes Yes 
Year fixed effect No No Yes 
R2 0.096 0.515 0.639 
N 4188 4059 4059 

Note: Standard errors are in parentheses, ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively. 

Table 12 
The regression results of the interaction effect between land urbanization and land use 
intensity.   

(1) (2) 

linten cemiss 

urbanrate 377.149*** 
(9.988) 

0.082*** 
(0.024) 

population 5.744*** 
(1.361) 

0.045*** 
(0.003) 

pergdp 0.061*** 
(0.002) 

0.000*** 
(0.000) 

bupgrate 11.206*** 
(4.138) 

0.079*** 
(0.009) 

pwater − 0.015 
(0.011) 

− 0.000 
(0.000) 

semiss − 0.009*** 
(0.002) 

0.000** 
(0.000) 

hindustr 213.749 
(149.306) 

1.299*** 
(0.309) 

rd 0.020*** 
(0.002) 

0.000*** 
(0.000) 

linten  0.000*** 
(0.000) 

_cons − 2.3e+03*** 
(347.366)  

4.766*** 
(0.724)  

City fixed effect Yes Yes 
Year fixed effect No No 
R2 0.535 0.519 
N 4059 4059 

Note: Standard errors are in parentheses, ***, **, and * denote statistical significance at the 
1%, 5%, and 10% levels, respectively. 
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into key- and non-key cities for environmental protection to conduct group regressions. The 11th Five-Year Plan for National 

Table 13 
Heterogeneity analysis of northern and southern cities.   

(1) (2) 

Northern cities Southern cities 

cemiss cemiss 

urbanrate 0.157*** 
(0.058) 

0.255*** 
(0.081) 

population 0.077*** 
(0.023) 

0.039*** 
(0.007) 

pergdp 0.000*** 
(0.000) 

0.000*** 
(0.000) 

bupgrate 0.221*** 
(0.058) 

0.051*** 
(0.012) 

pwater − 0.000 
(0.000) 

− 0.000 
(0.000) 

semiss 0.000 
(0.000) 

0.000 
(0.000) 

hindustr 0.991 
(0.986) 

0.119 
(0.680) 

rd 0.000* 
(0.000) 

0.000*** 
(0.000) 

_cons − 1.174 
(4.437)  

5.588** 
(2.456)  

City fixed effect Yes Yes 
Year fixed effect No No 
R2 0.526 0.571 
N 1884 2175 

Note: Standard errors are in parentheses, ***, **, and * denote statistical significance at the 1%, 5%, 
and 10% levels, respectively. 

Table 14 
Heterogeneity analysis of eastern and midwestern cities.  

Variables (1) (2) 

Eastern cities Midwestern cities 

cemiss cemiss 

urbanrate 0.185* 
(0.100) 

0.173*** 
(0.053) 

population 0.041** 
(0.020) 

0.048*** 
(0.010) 

pergdp 0.000*** 
(0.000) 

0.000*** 
(0.000) 

bupgrate 0.049*** 
(0.014) 

0.136*** 
(0.037) 

pwater − 0.000 
(0.000) 

0.000 
(0.000) 

semiss − 0.000 
(0.000) 

0.000 
(0.000) 

hindustr 1.393 
(2.093) 

1.431** 
(0.697) 

rd 0.000* 
(0.000) 

0.000** 
(0.000) 

_cons 12.066* 
(6.227)  

− 0.648 
(2.059)  

City fixed effect  Yes  Yes  

Year fixed effect No No 
R2 0.466 0.567 
N 1234 2825 

Note: Standard errors are in parentheses, ***, **, and * denote statistical significance at the 1%, 5%, 
and 10% levels, respectively. 
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Environmental Protection has listed 113 key cities for the control and comprehensive prevention of air pollution.3 As a result of this, 
these cities represent the focus of emission reduction and energy conservation [69]. In this context, the local governments in these 
cities should concentrate on the adverse impacts of land development activities on environmental pollution and CO2 emissions and 
impose stricter restrictions on them. Table 15 shows the heterogeneity analysis results for the key and non-key cities for environmental 
protection. The findings reflect that land urbanization’s effect on CO2 emissions is significantly positive in both key and non-key cities 
for environmental protection, and the impact in key cities is greater than in non-key cities. Consistently, to reduce the enhancing effect 
of land urbanization on CO2’s emission, governments in key cities for environmental protection should further optimize the structure, 
rationally control the efficiency, and improve the efficiency of land-use. Governments in non-key cities should also endeavor to 
optimize land urbanization, to ensure environmental protection and minimize CO2 emissions. 

The Sustainable Development Plan for Resource-based Cities of China (2013–2020) states that resource-based cities serve as the 
imperative strategic bases for resources and energy in China.4 Generally, such cities are dominated by resource-based firms with high 
energy consumption and pollution, and their energy and resource utilization efficiency is relatively low [80]. In particular, these cities 
are also faced with substantial pressure to transform, and the Chinese government is committed to develop and transform these cities. 
Contrary to this, non-resource-based cities are substantial carbon emitters and energy consumers [69]. We perform group regressions 
based on whether the region includes non-resource- and resource-based cities to further highlight the regional differences in terms of 
the land urbanization’s effect on carbon emissions. Table 16 shows the heterogeneity analysis results of resource-and non--
resource-based cities, which confirm that the land urbanization’s influence on CO2’s emissions is significantly positive for both of 
them. Furthermore, the impact in non-resource-based cities is higher than it is in resource-based cities. This reveals that local au-
thorities of both type cities should further optimize the structure, rationally control the intensity, and improve the efficiency of 
land-use, to vigorously decline the adverse effect of land urbanization on increased CO2 emissions. 

7. Conclusion and policy commendations 

Using Chinese prefecture-level data from 2003 to 2017, we systematically investigated land urbanization’s effect on urban carbon 
emissions and explored the mechanism of how land urbanization influences CO2’s emissions based on the land-use structure opti-
mization, efficiency improvement, and intensity regulation. The main results of our study are: First, in general, the land urbanization’s 
effect on urban CO2 emissions is significantly positive, which indicates that the land urbanization’s consumption effect exceeds the 
agglomeration effect. Second, the nonlinear analysis confirms that the association between land urbanization and CO2 emissions 
exhibits an inverted U-shaped curve. Third, a mechanism analysis reveals that effective land urbanization can promote CO2 emission 
reductions through adequate control of the land-use intensity, land-use structure optimization, and efficiency improvements. Fourth, 
the heterogeneity analysis demonstrates that there exist regional differences in terms of land urbanization’s impact on CO2 emissions 
for northern, southern, eastern, mid-western, key- and non-key cities for environmental protection, as well as resource- and non- 
resource-based cities. 

The aforementioned study conclusions are helpful for policy makers and local authorities to devise sound policies to preserve local 
land, reduce energy consumption, and minimize the carbon emissions. Therefore, this study proposes the following policy recom-
mendations: Firstly, the Chinese government must transform the land-use policy and promote the optimization of territorial spatial 
governance and high-quality land use. Furthermore, the Chinese state should vigorously optimize the land use, effectively control the 
intensity, and strive to improve the efficiency of land-use, to ensure that the agglomeration effect of land use exceeds the consumption 
effect and to effectively promote carbon emission reductions. In particular, the state authorities should strengthen controlling the land 
use of industries with high energy consumption and emissions and allocate more land indicators to low-carbon and efficient industries 
by applying differentiated land supply policies. Simultaneously, the government should strengthen the connection between territorial 
spatial and industrial development planning, industrial energy consumption, and carbon emission control targets, and jointly control 
the total energy consumption of high-carbon industries. These initiatives will help to not only ensure an appropriate use of local land 
but also reduce the emission of greenhouse gases. Second, there is a need to optimize the energy-consumption’s structure, reduce 
traditional fossil energy’s consumption, and enhance renewable and green- and energy consumption. Particularly, the Chinese au-
thorities need to control the connection between territorial space use and the reduction control plan for fossil energy. Meanwhile, 
controlling the use of territorial space is termed as a crucial channel to control the scale of fossil energy consumption and still ensure 
the green and renewable energy supply. Third, the Chinese government can make comprehensive use of its fiscal funds, tax policies, 
industrial development support, market-oriented mechanisms, and other policies and measures to rapidly promote land urbanization 
and carbon emission reductions. Finally, it should further optimize the layout of urban space, and develop compact cities, especially 
high-density, mixed-function, and multi-center cities, in order to promote reducing carbon emissions. A set of several policy recom-
mendations put forward in this study are expected to not only benefit Chinese economy but also the surrounding developing economies 
who represent socio-economic conditions similar to China, and are either directly or indirectly adversely influenced by the carbon 
emissions of China. 

3 State Council of the People’s Republic of China, 2007. The National Eleventh Five-year Plan for Environmental Protection (2006–2010). http:// 
www.gov.cn/zwgk/2007-11/26/content_815498.htm (accessed 22 November 2007).  

4 State Council of the People’s Republic of China, 2013. The National Sustainable Development Plan for Resource-based Cities (2013–2020). 
http://www.gov.cn/zwgk/2013-12/03/content_2540070.htm (accessed 12 November 2013). 

M. Tang and F. Hu                                                                                                                                                                                                    

http://www.gov.cn/zwgk/2007-11/26/content_815498.htm
http://www.gov.cn/zwgk/2007-11/26/content_815498.htm
http://www.gov.cn/zwgk/2013-12/03/content_2540070.htm


Heliyon 9 (2023) e19834

17

Table 15 
Heterogeneity analysis of key and non-key cities for environmental protection.  

Variables (1) (2) 

Key cities for environmental protection Non-key cities for environmental protection 

cemiss cemiss 

urbanrate 0.331*** 
(0.044) 

0.090*** 
(0.019) 

population 0.042*** 
(0.004) 

0.030*** 
(0.005) 

pergdp 0.000*** 
(0.000) 

0.000*** 
(0.000) 

bupgrate 0.191*** 
(0.033) 

0.068*** 
(0.007) 

pwater − 0.000*** 
(0.000) 

0.000*** 
(0.000) 

semiss 0.000** 
(0.000) 

− 0.000 
(0.000) 

hindustr 1.508** 
(0.710) 

0.996*** 
(0.283) 

rd 0.000*** 
(0.000) 

0.000*** 
(0.000) 

_cons 3.772** 
(1.874)  

4.408*** 
(0.652)  

City fixed effect  Yes  Yes  

Year fixed effect No No 
R2 0.565 0.260 
N 1650 2550 

Note: Standard errors are in parentheses, ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively. 

Table 16 
Heterogeneity analysis of resource- and non-resource-based cities.  

Variables (1) (2) 

Resource-based cities Non-resource-based cities 

cemiss cemiss 

urbanrate 0.115*** 
(0.035) 

0.208*** 
(0.024) 

population 0.079*** 
(0.009) 

0.043*** 
(0.003) 

pergdp 0.000*** 
(0.000) 

0.000*** 
(0.000) 

bupgrate 0.138*** 
(0.020) 

0.071*** 
(0.009) 

pwater 0.000** 
(0.000) 

− 0.000** 
(0.000) 

semiss − 0.000 
(0.000) 

0.000*** 
(0.000) 

hindustr 2.304*** 
(0.450) 

0.698* 
(0.404) 

rd 0.000 
(0.000) 

0.000*** 
(0.000) 

_cons − 1.963 
(1.234)  

6.232*** 
(0.982)  

City fixed effect  Yes  Yes  

Year fixed effect No No 
R2 0.306 0.662 
N 1695 2505 

Note: Standard errors are in parentheses, ***, **, and * denote statistical significance at the 1%, 5%, and 10% 
levels, respectively. 
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