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The process-based water system models have been transitioning from single-functional to integrated
multi-objective and multi-functional since the worldwide digital upgrade of urban water system man-
agement. The proliferation of model complexity results in more significant uncertainty and computa-
tional requirements. However, conventional model calibration methods are insufficient in dealing with
extensive computational time and limited monitoring samples. Here we introduce a novel machine
learning system designed to expedite parameter optimization with limited data and boost efficiency in
parameter search. MLPS, termed the machine learning parallel system for fast parameter search of in-
tegrated process-based models, aims to enhance both the performance and efficiency of the integrated
model by ensuring its comprehensiveness, accuracy, and stability. MLPS was constructed upon the
concept of model surrogation þ algorithm optimization using Ant Colony Optimization (ACO) coupled
with Long Short-Term Memory (LSTM). The optimization results of the Integrated sewer network and
urban river model demonstrate that the average relative percentage difference of the predicted river
pollutant concentrations increases from 1.1 to 6.0, and the average absolute percent bias decreases from
124.3% to 8.8%. The model outputs closely align with the monitoring data, and parameter calibration time
is reduced by 89.94%. MLPS enables the efficient optimization of integrated process-based models,
facilitating the application of highly precise complex models in environmental management. The design
of MLPS also presents valuable insights for optimizing complex models in other fields.
© 2023 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Water environment process-based models, such as sewer net-
works and river models, have emerged as crucial tools for investi-
gating urban water environment problems. These models enable
the quantification of complex pollution processes, identification of
the main sources, and migration pathways of pollutants and pro-
vide valuable insights for decision-making in urban watershed
planning and management [1,2]. However, existing models are
functionally independent and exhibit limited connectivity, thereby
failing to reflect the response relationships among the various el-
ements of the sewerewastewater treatment plant (WWTP)eriver
ier B.V. on behalf of Chinese Soci
access article under the CC BY-NC-
system [3e5]. To address this limitation, the coupling of
multiprocess-based models can facilitate comprehensive simula-
tions of the entire water resource utilization process within the
sewer-WWTP-river system. This integrated approach offers man-
agers a more comprehensive and systematic understanding of
watershed hydrology, hydrodynamics, and water quality [6,7].

Nevertheless, integrated process-based models encounter
challenges related to data accessibility and high computational load
associated with model parameter optimization. On the one hand,
constructing integrated process-based models requires sufficient
basic data for model building, calibration, and validation. The
quality and quantity of data largely determine the quality of model
applications. Unfortunately, practical limitations often lack accurate
long-term monitoring data [8,9]. On the other hand, the model
operation process requires numerous parameters to describe
different pollution processes, including mainly rainfallerunoff, soil
ety for Environmental Sciences, Harbin Institute of Technology, Chinese Research
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erosion, sediment re-suspension, pollutant transport, and trans-
formation processes. These processes exert individual and inter-
active effects on model response variables. and the value of each
parameter affects the final model accuracy [10].

Traditional parameter optimization methods involve repeated
fitting iterations of integrated process-based models, and different
parameter combinations encompass various independent calcula-
tions and subsequent unified storage and analysis of all parameter
combination scenarios. Consequently, this approach incurs a sig-
nificant computational burden and notable time consumption
[10e12]. Thus, developing an efficient global parameter optimiza-
tion method that can yield accurate predictions based on limited
data can enhance the accuracy of integrated sewer networks and
urban river models.

The incorporation of machine learning algorithms, known as
data-driven model simulation techniques, is a key strategy for
constructing comprehensive datasets and accelerating the optimi-
zation of process-based model parameters [13,14]. Machine
learning simulation, a concept pioneered by Blanning and Kleijnen
[15], represents a significant advancement in studying complex
mathematical models over the past decade. It involves establishing
response surfaces and ignoring the internal process dynamics of
process-based models to achieve efficient and fast computational
processes [16e20]. Extensive studies have demonstrated the
application of machine learning in simulation. For instance,
Moreno-Rodenas et al. [21] used a polynomial expansion simulator
to simulate dissolved oxygen in the Dommel River in the southern
Netherlands instead of an urbanwater quality model. Yin et al. [22]
employed surface regressionmodels, artificial neural networks, and
support vector machines in saltwater intrusion prediction and
saltwater purification design to replace high-fidelity solute trans-
port models. Machine learning also addresses the challenge of
missing data, enhancing the fitting accuracy of process-based
models when data is insufficient or hard to obtain. Manley et al.
[23] demonstrated the ability of machine learning to bridge data
gaps in sparse data environments by collecting multiple machine
learning sample datasets. Arriagada et al. [24] showcased the
effectiveness of the machine learning algorithm MissForest in
performing accurate and reliable daily flow time series simulations
in regions with sparse data and high climate variability. Despite the
good performance of model speed and dataset compatibility, the
“data-based” nature of machine learning models blurs the simu-
lation of the pollutant transport and transformation process,
making them hardly replace the process-based model in this
research. However, model surrogation can still be employed to
reduce the time consumption of process-based model optimiza-
tion. In regard to parameter optimization, Cho et al. [25] applied a
fast optimization process to the parameters of the QUAL2K river
water quality model based on the influence coefficient algorithm
and genetic algorithm (GA). Liu et al. [26] investigated a new sup-
port vector machine agent modeling method. They combined it
with the generalized likelihood uncertainty estimation (GLUE)
method for optimization to obtain optimal model parameter in-
tervals. Based on the above research, we infer that integrating the
surrogate model approach with machine learning optimization
may enable the development of an efficient global parameter
optimization system for the process-based model, thereby
advancing the application of integrated process-based models in
the environmental field.

As a time-series neural network, the long short-term memory
(LSTM) technique is beneficial for solving data series prediction
problems due to its memory properties [27]. Recent studies have
demonstrated the effectiveness of LSTM in practical applications
within the water environment. For example, Vu et al. [28] applied
LSTM modeling to bridge groundwater-level data gaps over many
2

years, extending the existing time series. Chen et al. [29] combined
the advantages of LSTM and migration learning techniques to solve
the problem of missing large-scale continuous dissolved oxygen
data at water quality monitoring stations based on limited data.
These studies have confirmed the advantages and reliability of the
LSTM technique in practical applications in the water environment
[30,31], surpassing other machine learning methods commonly
used in water quality prediction. In water quality prediction, the
back propagation (BP) and radial basis function (RBF) neural net-
works are often constrained by the problem of insufficient training
[32]. The hybrid mechanism and artificial neural network (ANN)
model cannot perform extreme value prediction due to the diffi-
culty in learning state characteristics between time series data [33].
Other studies have shown that LSTM ismore suitable for time series
data prediction than machine learning methods [34]. Nevertheless,
the LSTM technique cannot optimize parameters, limiting its
applicability to integrated process-based models of sewage net-
works and urban rivers. Ant colony optimization (ACO) is consid-
ered one of the most widely applicable and efficient optimization
algorithms due to its excellent multiconstraint adaptability, effi-
cient multiobjective optimization capability, and robustness in
solving highly nonlinear problems [11,35,36]. Afshar [37] applied
the ACO algorithm to optimize the key decision variable of the
sewer network node elevation. Zhang et al. [38] developed a new
ant colony optimization and support vector machine model (ACO-
SVM) using the ACO algorithm. The results indicated that the al-
gorithm could optimize the model parameters and provide favor-
able application prospects. However, due to the complexity of the
integrated process-based model, applying ACO for global param-
eter optimization poses significant challenges. Therefore, using the
LSTM technique for model simulator construction and employing
the ACO algorithm for global parameter optimization could effec-
tively improve the parameter calibration efficiency for integrated
process-based models.

In this study, we proposed a parallel LSTM-ACO parameter
search system for an integrated process-based model. The study
encompasses the following key steps: (1) constructing an inte-
grated process-based model of the sewer network and urban rivers
based on the stormwater management model (SWMM) and water
quality analysis simulation program (WASP); (2) leveraging the
ACO algorithm in conjunction with an LSTM mode to obtain the
optimal parameter set, which is subsequently utilized to enhance
the integrated process-based model; (3) evaluating the water
quality prediction results of the optimized, integrated process-
based model during dry and rainy seasons and throughout the
year to evaluate the model accuracy; and (4) investigating the
reasons for model accuracy improvement by comparing the pa-
rameters before and after optimization. This study could promote
the integration of machine learning and process-based models,
offering a general and efficient parameter optimization solution for
complex process-based models in the urban water pollution con-
trol and earth sciences fields.

2. Materials and methods

2.1. Study area and data acquisition

The study area encompassed an urban river in southern China,
the Jiuqu River, which is located in the central Sichuan Basin. The
geographical coordinates of the river range from 104�310e104�380 E
and 30�060e30�120 N. The mainstream section of the river spans a
length of 38.3 km, encompassing a watershed area of 216.78 km2.
The topography of the region exhibits higher elevations in the
northwest, gradually decreasing towards the southeast, with ele-
vations ranging from 346 to 482 m. The Jiuqu River watershed is
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predominantly characterized by hilly terrain, accounting for
approximately 94% of the total area. The geological structure of the
watershed is stable, and the soil types mainly include purple
sandstone, weathered shale, sand, and clay. Land usage within the
area predominantly comprises arable land, accounting for 56.72% of
the total area (40.99% dry land and 15.73% paddy fields), along with
woodland (14.70%), residential land (18.93%), and other land types
(9.65%). The urban land is concentrated in the lower reaches of the
watershed, including the urban area of Ziyang, part of the suburb,
and seven towns, while village land is scattered throughout the
watershed. The watershed experiences a subtropical humid
monsoon continental climate, with abundant rainfall and mild
climate conditions. The rainy season extends from April to October,
and the dry season spans from November to March. Local pollution
often occurs because of the complex point source and non-point
source pollution conditions in the watershed. Notably, the river
has exhibited concentrations of ammonia nitrogen and total
phosphorus surpassing the Chinese water quality standard (GB
3838-2002) by factors of 3.5 and 2.0, respectively.

The urban area of Ziyang is located in the lower reaches of the
Jiuqu River, with a total area of 41.04 km2 and a population of 2.3
million people. The urban sewer network uses a combined drainage
system with 195.46 km of pipelines and 23.18 km of drainage
channels. The river section flowing through the urban area is an
artificial channel where the banks and part of the riverbed have
been solidified. Additionally, dredging was carried out in the Jiuqu
River between December 2017 and February 2018. Therefore, the
influence of sediment re-suspension on river water quality was
ignored in this research. For domestic sewage treatment, a WWTP
is located in an urban area with a daily capacity of 50,000 tons. In
terms of data collection, a weather station located in the urban area
downstream and an automatic water flow and quality monitoring
station located near the confluence point, where the Jiuqu River
meets a larger river, provided the main data support in this study.

This research mainly obtained the required data from local
government departments and stations, as listed in Table 1. Data
from December 2018 to December 2019 were used for model
construction, and the remaining data were used as a reference to
ensure data rationality. Geographical information, including the
river length, cross-sectional profiles, location coordinates, digital
elevation model (DEM) (30 m � 30 m), and remote sensing images,
originated from the database of the local water bureau, and the data
was collected in December 2018. Watershed meteorological infor-
mation originated from the local weather station, including the
temperature, rainfall, wind speed, and solar radiation intensity
Table 1
Data sources for SWMM and WASP setup.

Boundary condition group Boundary condition name Data

Meteorological data Temperature Ziya
Rainfall
Wind speed and direction
Sunlight intensity
Cloudiness

River hydrological and quality information River flow Jiuq
Water depth
Ammonia nitrogen concentration
Total phosphorus concentration
Tributary flow and quality Ziya

Pollution information Sewage treatment plant discharge Ziya
Planting-related pollutants
Breeding-related pollutants

3

observations. The meteorological data ranged from January 2010 to
December 2020, with measurements recorded every 3 h. River
hydrological and quality information, including river flow, water
depth, and pollutant concentration (ammonia nitrogen and total
phosphorus) observations, originated from the automatic water
quality monitoring station, with a frequency of once a week. River
pollution information, including pollution point sources such as
sewage treatment plants, separate system outlets (sewage and
rainwater), combined system outlets (overflow), and non-point
source pollution statistics, such as planting and breeding in-
dustries, were retrieved from local environmental protection
bureaux. Monitoring data of sewage treatment plants and drainage
outlets were collected once a day, and non-point source pollution
data were estimated once a month (calculated based on the
planting area and breeding quantity) during the data collection
period from January 2018 to December 2020 [39]. The estimation
coefficient for non-point sources was derived from the calculation
of Sichuan Province in 2017 [40], and the results are close to the
estimates of non-point sources in the Tuojiang River watershed
(the larger river into which the Jiuqu River flows) in the recently
published article [41].
2. 2.2. Integrated sewer network and urban river model

In this study, an integrated sewer network and urban river
model using the SWMM and WASP was constructed to predict the
water quality of the Jiuqu River. The complete structure of the in-
tegrated model is depicted in Fig. 1.

The SWMM is a sewer network model widely used in 200 cities
worldwide, with functions for the simulation of rainfall confluence,
rainwater and sewage collection, and sewage mixing and trans-
portation inside sewers [42]. In regard to urban rainwater and
sewage simulation, an SWMM of the sewer network in the Ziyang
urban area was built based on the User Manual of the StormWater
Management Model (SWMM) version 5.1 of the US Environmental
Protection Agency (EPA) and the work of Baek et al. and Li et al.
[43,44]. The required sewer.shp files were updated according to the
latest sewer network status to establish a drainage systemmodel of
Ziyang with 39.5 km of confluence pipes, 169.1 km of sewage pipes,
and 204.2 km of rainwater pipes. The model covered an area of
129.4 km2, which was divided into 145 subcatchments. Meteoro-
logical and rainfall data were provided by the meteorological
monitoring station, and sewage production data were estimated
according to the population distribution in each region [45]. The
model was run with a simulation period of one year (January 01,
source Time period Data frequency

ng weather station January 01, 2019, to
December 31, 2019

3 h

u River water quality monitoring station January 01, 2019, to
December 31, 2019

1 week

ng water affairs bureau 1 day

ng environmental protection bureau January 01, 2019, to
December 31, 2019

1 day
1 month



Fig. 1. Structure of the integrated sewer network and urban river model.

Y. Li, L. Ma, J. Huang et al. Environmental Science and Ecotechnology 18 (2024) 100320
2019, to December 31, 2019).
The WASP is a widely used hydraulic and quality model for river

water developed by the EPA, especially in nitrogen and phosphorus
simulations [46e48]. First, we selected the mainstream section of
the Jiuqu River as the model domain. Cross-sections of the river
were created in the WASP according to the obtained elevation in-
formation for spatial model establishment. Subsequently, boundary
conditions, such as tributaries, agricultural non-point sources,
WWTP point sources, and drainage outlets, were added to the
model based on the spatial position. Specifically, the model
encompassed four tributaries, one WWTP point source, and 134
drainage outlets. Water flow and pollutant concentration (such as
nitrogen, phosphorus) time series createdwith the data collected in
Section 2.1 were added to each boundary condition. The non-point
source pollution data for the upper and middle reaches were
available monthly, while the sewage discharge (from the SWMM
model) was updated daily. The model parameters were assigned
based on expert experience, as listed in Table 3. Finally, we set the
simulation time from January to December 2019, and the simulated
flow, ammonia nitrogen, and total phosphorus concentration re-
sults at the outlet of the catchment were compared to the mea-
surements at the station to evaluate the model performance. The
SWMM andWASP were coupled using drainage network outlets as
a link to create an integrated sewer network and urban river model.
Discharge and pollutant loading outputs at all drainage outlets,
retrieved from the SWMM, were transferred to the corresponding
boundary conditions in the WASP, with a temporal resolution of
once a day. Hence, the river model could respond to inshore water
quality changes promptly. This automatic process was realized
using a script written in Python.
2.3. Surrogate model using the LSTM algorithm

The LSTM is a neural network algorithm with memory charac-
teristics that can save long- and short-term memory resources.
Long-term memory is stored in the hidden layer, whereas short-
term memory is saved using a recurrent neural network [49]. The
LSTM usually includes forward and backward propagation steps.
The forward calculation requires three inputs (current network
input, previous output, and previous unit states) and two outputs.
The forget, input, and output gates are crucial in determining the
extent of element retention, input storage, and output utilization,
respectively. The forward propagation process can be formulated as
follows:
4
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ct ¼ ReLUðWc½ht�1; xt � þ bcÞct ¼ ftct�1 þ itct (3)

ot ¼ s½Wo½ht�1; xt � þ bo�ht ¼ otReLUðctÞ (4)

where ft is the forget gate; it is the input gate; ct is the current
input; ct is the current element; ot is the output gate; and ht is the
LSTM output.Wf ,Wfh,Wfx,Wi,Wc, andWo are the weight matrices
of ft , ht�1, Xt , it , ct , and ot , respectively. ½ht�1; xt � connects two
vectors into a longer vector; bf is the bias term of ft; s is the acti-
vation function; bi is the bias entry of it; bc is the offset item of the
current input unit ct; bo is the output gate offset; and ReLUðÞ is the
activation function.

In contrast to conventional scenarios, our study incorporates
LSTM to capture the impact of model parameters on the results. In
order to emulate the process-based model, we utilized both the
boundary conditions and parameters of the integrated model as
LSTM input samples, while the simulated river water quantity and
quality were employed as output samples. The inputs of the LSTM
were time-based sequence data composed of dynamic inputs and
steady parameters of the process-based model, as shown in
Table S2, which made LSTM play an equivalent role to the process-
based model during a single event. Limited by the high computa-
tional cost of the integrated model, it was crucial to cover a wide
range of rainfall scenarios in the training data within the shortest
time series. Therefore, 30 consecutive days in April and May
covering seven sequential rainfall events were selected for model
training. The training samples comprised 20 boundary conditions,
ten model parameters, and three model outputs. The model
boundary conditions, as listed in Table 2, were obtained from the
variable parts of the integrated model. Ten model parameters
(Table 3), considered the most influential variables (five sewer
network-related and five river-related parameters), were selected
based on other relevant studies to constitute various parameter
combinations of training data [50e52]. During training database
sampling, only the ten considered parameters were varied, and all
the other parameters remained fixed based on expert experience.
The model outputs included the river flow, ammonia nitrogen
concentration, and total phosphorus concentration at a location of
interest. Model boundary conditions and corresponding model
outputs over 30 days were extracted from the process-based
model. Parameter sets were generated via weighted random sam-
pling. The value ranges of the parameters were divided into 12 or 6
ranges on average according to the relative sensitivity. The Monte
Carlo simulation method was adopted within these ranges to
randomly sample the ten parameters, generating 473 parameter
sets based on the training data requirements and the total time
needed to obtain model results [53]. By combining these parameter
sets with the model boundary conditions spanning 30 days, we
generated a substantial dataset consisting of 14,190 training sam-
ples, which included corresponding model outputs.

According to the above design, the training period of the LSTM
was set from April 5 to May 5, 2019, including seven representative
rainfalls with intensities of 1.1, 3.7, 5.5, 5.9, 11.9, 13.8, and
30.3 mm d�1. The LSTM model employed a sample size of 14,190.
The LSTM model was designed with a four-layer neural network



Table 2
Model boundary conditions of the LSTM training samples.

Boundary condition group Boundary condition name Unit

Rainfall intensity mm d�1

Temperature �C
Non-point source pollution Water flow m3 s�1

Ammonia nitrogen concentration mg L�1

Total phosphorus concentration mg L�1

Tributaries Water flow m3 s�1

Ammonia nitrogen concentration mg L�1

Total phosphorus concentration mg L�1

WWTP Water flow m3 s�1

Ammonia nitrogen concentration mg L�1

Total phosphorus concentration mg L�1

Abbreviations: WWTP, wastewater treatment plant.

Table 3
Optimized parameters of the integrated model.

Parameter type Parameter Unit

Sewer-network-related Manning impermeability coefficient e

Manning permeability coefficient e

Houghton maximum permeability coefficient e

Impervious rainfall Lost e

Previous rainfall lost e

River-related Depth exponent e

Dissolved organic phosphorus mineralization rate constant (20 �C) d�1

Nitrification rate constant (20 �C) d�1

Nitrification temperature coefficient e

Half-saturation constant for the nitrification oxygen limit mg O2 L�1
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structure, including one fully connected, one LSTM, and two linear
layers. The dimension of the LSTM output layer was 30, while the
linear layers had dimensions of 90 each. The rectified linear unit
(ReLU) function, mean-square error function (MSEloss), and sto-
chastic gradient descent were used as the activation function, loss
function, and optimizer, respectively. The next seven days were
used as the test period, and the LSTM performance was verified by
the river flow and water quantity results of the process-based
model. Model settings for the LSTM emulation model are listed in
Table 4.
2.4. Ant colony optimization of the parameters

Parameter optimization was realized based on the ACO method.
The ACO algorithm is an iterative calculationmethod that simulates
the foraging process of ants in the real world. The optimization
algorithm was executed in ten algorithmic repetitions, with the
results averaged. Each repetition entailed 500 iterations with 100
ants. To ensure that all the edges attained the same probability of
being selected, all edge pheromones were set to the same
maximum level (t0max ¼ 100,000) before the repeated calculation
steps. The NasheSutcliffe efficiency (NSE) coefficient value of the
model prediction results (river flow, ammonia nitrogen concen-
tration, and total phosphorus concentration) was used as the
objective function to obtain the global algorithm search optimum.
This objective function can be expressed as follows:
Table 4
Model settings for the LSTM emulation model.

Layers Dimension of the output layer Dimension of the linear layer

4 30 90

5

NSE ¼ 1�

0
BBB@

PN
t¼1

�
Qsim;t � Qobs;t

�2
PN
t¼1

�
Qobs;t � Q

�2

1
CCCA (5)

NSEoverall ¼ 0:5NSEflow þ 0:25NSEN þ 0:25NSEP (6)

where N is the sample size, which is the number of model pre-
diction results and corresponding observations ; Qsim;t denotes the
model prediction results in group t; Qobs;t denotes the corre-

sponding observations; and Q denotes the average observation
data. Water quality prediction is based on hydraulic simulation for
the current process-based model. High-precision water quality
results with low-precision hydraulic results indicate that the model
may be overfitting, which is detrimental to optimization. To
address this concern, we assign a higher weight to NSEflow than
NSEN and NSEP.

Before optimization, the parameters were discretized as deci-
sion nodes of the ACO algorithm. The implementation process
involved the following steps:

(1) Definition of parameter optimization range

The optimization range for each parameter was determined
according to the model reference value (Table 6).
Activation function Loss function Optimizer

ReLU() MSEloss Stochastic gradient descent
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(2) Discretization of parameter ranges

The discretization method for each variable can be expressed as
follows:

hj ¼
xj;upper � xj;lower

N
ðj ¼ 1;2;/;nÞ (7)

where xj;lower is the lower limit of the jth parameter; xj;upper is the
upper limit; and N is the discreteness of the parameter, which is set
to ten.

The optimization method was constructed following the state
transition rule, which can be defined as follows:

PkijðtÞ ¼

8>>>>><
>>>>>:

�
tijðtÞ

�a � �
hijðtÞ

�b
P

seallowedk

½tisðtÞ�a � ½hisðtÞ�b
; if j2allowedk

0; otherwise

(8)

where PkijðtÞ is the probability that ant kmoves from positions i to j;

tijðtÞ is the pheromone trail; nij is the heuristic information; and b is
the weight of the heuristic information. nij is an auxiliary method
that helps guide the search for ants. The edges along which the ant
has already traveled in one iteration can no longer be selected and
this memory function is realized via the tabu list. Allowedk ¼
f0;1;…;n�1g � tabuk is applied, and tabukðk¼ 1;2;…;mÞ is the
tabu list used to record the locations where the ants have traveled.
This list constantly changes as the algorithm is operated.

The pheromone update rules of the ACO algorithm include local
and global dynamic updating. The optimal path can be continu-
ously developed by updating the pheromone trail along the current
optimal path. According to Moriasi et al.'s research on the evalua-
tion criteria of water environment models, the model results are
considered “good” when 0.65 < NSE �0.75 [54]. In this study, we
hope that the optimizedmodel canmeet the “good” standard while
retaining good generalization ability, so we set the threshold of the
NSE metric to 0.7. Using the ACO algorithm's positive feedback
mechanism, the pheromone trail along the current optimal path
can be retained for the next iteration until the NSE value reaches
0.7. A flow diagram of the parallel system is depicted in Fig. 2.
2.5. Model performance evaluation

The developed LSTM surrogate method for parameter estima-
tion consisted of two essential components: LSTM emulation and
parameter optimization processes. In order to assess the perfor-
mance of the model, a two-step analytical approach was employed.
First, the emulation effect of the LSTM model was analyzed by
comparing the prediction results of the LSTM and integrated
models in terms of the river flow, ammonia nitrogen concentration,
and total phosphorus concentration during the multiple rainfall
events. R2 was calculated to determine whether the LSTM model
Table 5
Performance of the model under the empirical and optimized parameters.

Model result name Model result type PBIAS C

River flow (m s�1) Unoptimized 462.8% 0
Optimized 4.1% 0

Ammonia nitrogen (mg L�1) Unoptimized 52.0% 0
Optimized 8.1% 0

Total phosphorus (m L�1) Unoptimized �196.5% 0
Optimized 9.5% 0

6

could accurately emulate the results of the process-based model,
including model errors and variations due to parameter changes,
which constituted the basis for the model surrogate feasibility.

The prediction effect of the optimized model was then analyzed
by comparing the original model, optimizedmodel, andmonitoring
results from January 1, 2019, to December 31, 2019, using the
percent bias (PBIAS), correlation coefficient, root mean square error
(RMSE), standard deviation, and relative percentage difference
(RPD). These metrics served as crucial indicators to gauge the ac-
curacy enhancement achieved by the optimized model.
3. Results and discussion

3.1. Evaluation of the LSTM surrogate model

The trained LSTM model employed the same model parameters
as the process-based model to simulate the river water quality
during eight consecutive rainfall events from April 5 to May 12,
2019 (30 days of training and seven days of testing), and the results
are shown in Fig. 3. The changes in the water flow and pollutant
concentration are shown in Fig. 3aec for the LSTM and mechanistic
models during the rainfall events. The R2 value was determined by
plotting the river water flow and pollutant concentration predicted
with the LSTM model against the process-based model results to
assess the emulation accuracy. Notably, the deviation of the LSTM
results from the process-based model results was negligible. Dur-
ing the training and test periods, the R2 values of the water flow,
ammonia nitrogen concentration, and total phosphorus concen-
tration were 0.9993, 0.9999, and 0.9998, respectively, indicating
that the LSTM model described more than 99.9% of the total vari-
ability in the water quantity and quality, which was desirable. The
Pearson correlation coefficients of river flow, ammonia nitrogen,
and total phosphorus concentration of the LSTM model and the
process-based model are 0.9996, 0.9999, and 0.9998, as shown in
Fig. 3 and Table S1, respectively, indicating a significant positive
linear correlation between the outputs of the LSTM and the
process-based model. A large number of points are concentrated
near the coordinate origin indicating that during this period, the
main weather conditions are low-intensity rainfall or sunny days
(Fig. 3d), while the distribution of points is scattered (Fig. 3e,f),
indicating that the concentration of nitrogen and phosphorus in
river water fluctuates significantly during rainfall events. The LSTM
model provided suitable results under both the light and heavy rain
scenarios, highlighting its feasibility as a surrogate model for
parameter optimization without interference by the boundary
conditions.

The LSTM model achieved high accuracy in the 37-day emula-
tion of the water quantity and quality relative to the process-based
model. Regarding the ammonia nitrogen and total phosphorus
concentrations in river water during the eight rainfall events, the
emulation results were highly similar to the integrated model re-
sults without any apparent over- or underestimation tendency,
which may be closely related to the similar specific concentration
orrelation coefficient RMSE Standard deviation RPD

.285 8.54 7.27 0.9

.999 0.13 1.91 14.7

.503 17.99 19.46 1.1

.996 1.51 9.99 6.6

.493 1.86 2.04 1.1

.995 0.33 1.78 5.4



Fig. 2. Flow diagram of the parallel system.

Fig. 3. Result comparison between the LSTM and process-based models under the same boundary conditions and parameters: a, water flow results; b, ammonia nitrogen con-
centration results; c, total phosphorus concentration results; d, water flow correlation; d, ammonia nitrogen concentration correlation; e, total phosphorus concentration
correlation.
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profiles. Regarding water flow, however, small deviations occurred
in the emulation of peaks and valleys due to the rapid change, large
fluctuations, and relatively low regularity. Due to the notable
temporal correlation between the water quantity and quality, the
LSTMmodel provided an excellent emulation effect for the process-
based model, which notably depended on the long- and short-term
memory capacities of the LSTMmodel. Other researches also prove
7

the feasibility of using LSTM as a surrogatemodel for the integrated
sewer network and urban river model in this study. Similar
research by Kratzert et al. [55] indicates that LSTM is more suitable
for predicting streamflow than traditional recurrent neural net-
works (RNN), which works ineffectively when the length of se-
quences is over ten [56]. Additionally, Li et al. [57] have found that
when used as a surrogate model for groundwater contamination
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source identification, LSTM exhibits the highest accuracy compared
to other methods such as RBF, Kriging, and KELM.

Notably, although the emulation R2 value of the LSTMmodel for
the process-basedmodel exceeded 99.9%, this does not suggest that
the LSTM model alone can provide precise predictions for water
quality. In contrast, the errors of the process-basedmodel were also
contained in the LSTM model. The process-based model still plays
an irreplaceable role in sudden pollution and rainfall events due to
its heightened sensitivity to variations in boundary conditions. The
accurate emulation of the process-based model by the LSTMmodel
can potentially reduce the prediction error.

The ACO algorithm in this study is designed for ten parallel
optimizations, with each optimization comprising 500 iterations. In
each iteration, the integrated sewer network and urban river model
need to be invoked once to obtain output, resulting in 5000 calls. If
the process-based model is called directly in each iteration, the
time required for a single invocation is approximately 1.5e2 h (the
simulation period is from January 1, 2019, to December 31, 2019, a
total of 365 days). Consequently, the total ACO operation time ex-
ceeds 7500 h, which is not implementable. When using the LSTM
surrogate model for iteration, a single invocation takes less than
1 min, reducing the overall ACO operation time to about 80 h.

3.2. Performance of the optimized, integrated model

Two simulations were conducted in 2019 using the integrated
sewer network and urban river model to assess the water quantity
and quality of the Jiuqu River. In one model, empirical values of the
parameters were determined according to the local geographical
environment. While in the other model, parameters were opti-
mized via the ACO algorithm based on LSTM emulation, as sum-
marized in Table 6. Daily simulation results of the river flow,
ammonia nitrogen concentration, and total phosphorus concen-
tration at the river's end were collected for comparison to online
station monitoring data, as shown in Fig. 4.

In 2019, the river flow remained relatively stable, with notable
fluctuations occurring only during heavy rain events or storms. The
ammonia nitrogen concentration in river water ranged from 0.1 to
33.9 mg L�1, while the total phosphorus concentration ranged from
0.03 to 6.77 mg L�1. Pollutant concentration fluctuations occurred
more frequently during the dry season than the rainy season, which
may be related to the different sources of the main pollutants
during the different periods. As the main pollution source, point
source significantly affected the concentration of river water pol-
lutants during the dry season. Therefore, point sources with large
differences in daily sewage discharge and pollutants concentration,
such as factory andmerchant sewage discharge, may cause stronger
fluctuations in water quality. During the rainy season, under the
dilution effect of rainfall, non-point source pollution became the
main influencing factor of river water quality. Compared with the
point source, the pollutant concentration in rainwater tended to be
relatively low and stable.

The optimized model achieved a better performance in water
quality prediction than the model with empirical parameters,
especially during the dry season (October to the following
February). The predicted ammonia nitrogen concentration after
optimization (average: 18.9 mg L�1) was approximately 42.2% of
that before optimization (average: 44.8 mg L�1). Similarly, the
predicted total phosphorus concentration after optimization
(average: 3.66 mg L�1) was approximately 82.1% of that before
optimization (average: 4.46 mg L�1). Notably, although not
apparent in Fig. 4, the predicted river flow was also reduced by
47.0% (from 1.59 to 0.84 m3 s�1 on average), suggesting a corre-
sponding decrease of 77.7% and 56.5% in ammonia nitrogen and
total phosphorus pollutant amounts after optimization,
8

respectively. As listed in Table 5, PBIAS of the optimized model
results reached 4.1% (river flow), 8.1% (ammonia nitrogen), and 9.5%
(total phosphorus), indicating excellent model performance in river
quantity and quality prediction according to the research by Mor-
iasi et al. [54]. The model performance under the empirical pa-
rameters during the rainy seasonwas relatively favorable. However,
during the dry season, a large deviation was observed. In contrast,
the optimized model yielded accurate prediction results during
both seasons. The higher adaptability to different scenarios of the
optimized model resulted in a quick response to changes in
boundary conditions, such as the river flow or pollutant concen-
tration, which is vital in engineering applications such as emer-
gency pollution control and facility operation.

The Taylor diagram (Fig. 5a) shows that the optimized model
achieved a high correlation and small RMSE value in water flow
quantity and quality simulation. The Taylor diagram was drawn
based on a polar coordinate system, with the radial coordinate r of
point P (r, q) representing the standard deviation. The projection
curve of point P on the circle of r ¼ 0.3 indicates the correlation
coefficient, while the position of point P in the green dashed curve
coordinate system represents RMSE. Taking the river flow of dry
season (square marker) in Fig. 5a as an example, it could be seen
that the optimized model demonstrates a standard deviation of
0.02, a correlation coefficient over 0.99, and an RMSE of 0.1 when
compared to the observed data. The standard deviation of the
models indicated that, after parameter optimization, the integrated
urban drainage model produced results close to the observed
values. The pollutant concentration simulation results during the
dry and rainy seasons were similar. The standard deviation of the
water flow during the dry season was smaller (0.02), while the
RMSE was larger (0.10) than the rainy season, indicating that the
prediction results for the dry seasonwere better in terms of discrete
values, while the prediction results for the rainy season deviated
less from the monitored values overall. The integrated urban
drainage model produced more effective simulations during the
rainy season than during the dry season. During the rainy season,
the model obtained a similarly high correlation (>0.99) but a
smaller RMSE value (<0.10), indicating a close alignment of the
model's results with the observed data in terms of data distribution
and discretization. This may be attributed to the relatively stable
soil infiltration during the rainy season, which slightly affected the
river water quantity.

Violin plots were generated to analyze the data distribution of
the river flow and pollutant concentration simulation results for
2019. The violin plots (Fig. 5bed) indicated a satisfactory perfor-
mance of the optimized model, which exhibited a favorable fit with
the observations. The outlier cutoffs (the thin lines in the violin
plots) and the 25th and 75th percentiles (the thick lines in the
plots) of the optimized model also indicated a suitable fit for the
observations. The frequency of extreme rainfall events was low, and
the river discharge number was mainly less than ten during the
rainy season and less than three during the dry season. Addition-
ally, the violin plot shows the probability density function for the
water flow quantity and quality dataset. As indicated by the data
distribution, there was a certain similarity between the ammonia
nitrogen and total phosphorus concentrations in river water. The
pollutant concentration in river water during the rainy season was
generally lower than in the dry season, but the peak ammonia ni-
trogen concentration during the rainy season was higher than
during the dry season. The strong fluctuation of pollutant concen-
tration in the river during the rainy season can be attributed to the
dilution effect caused by the rainfalls of different intensities, while
the sustained high concentration in the dry season is primarily
attributed to continuous pollution of point sources. However, point
sources are not the only reason. The reduced river water level



Fig. 4. Simulation of the river water flow (a), ammonia nitrogen concentration (b) and total phosphorus concentration (c) in 2019 via the integrated model.

Table 6
Changes in the model parameters before and after optimization.

Parameters Unit Ranges Empirical Optimized

Manning impermeability coefficient e 1.20e2.40 1.78 1.79
Manning permeability coefficient e 2.45e7.35 5.95 5.68
Houghton maximum permeability coefficient e 25.40e127.00 46.50 52.45
Depth exponent e 0.30e0.60 0.43 0.43
Dissolved organic phosphorus mineralization rate constant (20 �C) d�1 0e0.22 0.01 0.03
Impervious rainfall lost e 1.27e2.54 1.91 1.91
Previous rainfall lost e 3e10 5 5
Nitrification rate constant (20 �C) d�1 0e0.40 0.01 0.10
Nitrification temperature coefficient e 1.04e1.10 1.04 1.04
Half-saturation constant for the nitrification oxygen limit mg O2 L�1 0e5.0 2.0 1.9
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during dry days hampers the biodegradation of pollutants, di-
minishes the self-purification ability, and limits environmental
capacity, thereby exacerbating pollutant accumulation. Overall, the
optimized model notably simulates the urban water environment
during both dry and rainy seasons.
3. 3.3. Possible rationale for accuracy improvement

Compared to the integrated sewer network and urban river
model using empirical parameters, the optimized model based on
the coupled LSTM þ ACO approach significantly improved river
water quality prediction, especially during the dry season. The
changes in each parameter after model optimization were
analyzed, as listed in Table 6, to explore the possible reason for
model accuracy improvement due to parameter optimization and
the different efficiencies during the dry and rainy seasons. Among
the ten sensitive model parameters, the nitrification rate constant
9

at 20 �C changed the most, increasing from 0.01 to 0.10 within the
range of 0e0.40. Additionally, the dissolved organic phosphorus
mineralization rate constant at 20 �C experienced a change from
0.01 to 0.03 within the range of 0e0.22. The Houghton maximum
permeability coefficient changed from 46.50 to 52.45 within the
range of 25.40e127.00. The remaining parameters, namely Mann-
ing impermeability coefficient, Manning permeability coefficient,
depth exponent, impervious rainfall lost, previous rainfall lost,
nitrification temperature coefficient, and half-saturation constant
for the nitrification oxygen limit, changed slightly.

Due to the absence of emergent plants and the artificial hard-
ening of the urban section of the Jiuqu River, the uptake process of
microorganisms and a few plants is an important factor affecting
the concentration of nitrogen and phosphorus pollutants in the
river water [58]. These may cause different efficiencies during the
dry and rainy seasons after parameter optimization. During the dry
season, the uptake process predominantly determined the



Fig. 5. Correlation and comparative analysis of the optimized model prediction results with the monitored values during the dry and rainy seasons: a, standard deviation, RMSE and
correlation coefficient of water flow, ammonia nitrogen concentration and total phosphorus concentration; b, water flow distribution; c, ammonia nitrogen concentration dis-
tribution; d, total phosphorus concentration distribution.
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pollutant concentration in river water due to the river's low ve-
locity and limited flow. Parameter optimization could compensate
for the deficiency in the empirical model in this part, which could
significantly improve the prediction accuracy of the integrated
model during the dry season. During the rainy season, river water
mixing and dilution dominated due to the high velocity and notable
flow [59], resulting in a relatively insignificant optimization effect.
At the same time, significant differences exist in soil permeability
between the dry and rainy seasons. In contrast to the high-
frequency rainfall during the rainy season leading to a reduction
in the infiltration capacity of the watershed, a large proportion of
runoff directly enters the soil through infiltration during the dry
season [60], corresponding to the reduced river flow predictedwith
the optimizedmodel. The optimization of these parameters enables
the model to accurately estimate the total amount of pollutants
entering the river. Specifically, a slight decrease in the Manning
permeability coefficient leads to an approximate 5% increase in
rainwater runoff velocity in the optimized model, resulting in
earlier peak water flow in the river during each rainfall event,
without considering the influence of the other factors, as shown in
Fig. 4. The increase in the Houghton maximum permeability coef-
ficient indicates enhanced soil permeability in the saturated state,
leading to a significant reduction in the peak water level in the river
during the rainy season. However, this reduction is not observed
during the dry season, as the soil experiences limited saturation
during this period. The small increase in the dissolved organic
phosphorus mineralization rate constant and the large increase in
the nitrification rate constant indicate that the degradation rates of
dissolved phosphorus and ammonia nitrogen in river water could
increase, leading to a decrease in the nitrogen and phosphorus
concentrations, respectively. This phenomenon is more likely to be
observed during the dry season than during the rainy season due to
the slower river flow during the dry season. In summary, opti-
mizing the pollutant degradation and water infiltration processes
during the dry and rainy seasons contributes significantly to the
improved prediction accuracy of the integrated sewer network and
urban river model during the dry season in the context of the
LSTM þ ACO optimization method.
10
3.4. Potentials for urban water pollution control strategies

Water pollution control technology based on the sew-
ereWWTPeriver system constitutes a hotspot to solve the problem
of urban surface water pollution. In contrast to previous pollution
discharge control or degradation enhancement strategies, the
sewereWWTPeriver system-based approach for water pollution
control offers the potential tomitigate the adverse impacts of urban
pollution emissions on watershed water quality by addressing
pollution generation, accumulation, transmission, discharge, and
degradation. The high resource and energy consumption levels of
end-of-pipe treatments could be effectively prevented by maxi-
mizing the total pollutant amount reduction at each stage. This
strategy suits cities with complex and multiple pollution sources or
rapid population and area growth. Water quantity and quality
predictions provided by the integrated sewer network and urban
river model are vital for water pollution control technology based
on the sewereWWTPeriver system. To improve the prediction
accuracy of the integrated sewer network and urban river model, a
parameter estimationmethod based on the LSTMmodel surrogates
has been developed. This method overcomes the model accuracy
limitation in converting this technology from theoretical research
to practical application. Furthermore, runoff simulation with the
integrated model may be combined with urban low-impact
development techniques to explore the effect of runoff pollution
reduction on the urban water environment. Water transport
simulation within the sewer network may be combined with
separate sewer system construction and sewage circulation to
investigate the effect of various sewage treatment and reuse
methods. Pollution discharge simulation may be combined with
pollution control technology involving planting and breeding to
examine the effect of non-point source pollution reduction strate-
gies. Given the wide applicability of the LSTM, the model optimi-
zation system based on LSTM þ ACO built in this research holds the
potential for generalization to diverse process-based models. Since
LSTM is the key to correlating ACO with process-based models, the
accuracy of LSTM emulation determines the successful construc-
tion and application feasibility of the LSTM þ ACO optimization
system. Recent studies indicate that the excellent emulation effect
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of LSTM for time series process-based models extends beyond river
or water quality models, including groundwater, lake, reservoir,
drinking water, and even air temperature, PM2.5. Consequently, the
LSTM þ ACO optimization system is also suitable for the above
process-based models [61e66]. The LSTM model and ACO algo-
rithm in this research are objective techniques and ready for
automatic operation. In the future, the LSTM þ ACO method might
be integrated with online environmental sensors to realize digital
environment management with the help of emerging technologies
such as cloud computation.

4. Conclusions

In this study, we proposed a machine learning-based parameter
search parallel system for integrated process-based models. Our
approach involved employing the LSTM model, renowned for its
exceptional data series prediction capabilities, as a simulator for the
coupled mechanism model. By combing the favorable operational
characteristics of the ACO algorithm, we optimized the parameters
of the LSTM simulator and incorporate the optimized parameters
into the integrated process-based model. The parallel system could
offer a solution to address the limitations of traditional integrated
process-based models, such as insufficient monitoring data, long
modeling time, high computational cost, and overdependence on
the parameters. By achieving efficiency and performance en-
hancements, the original model preserves its complexity, accuracy,
and stability.

The feasibility of the parallel systemwith optimized parameters
was verified via the SWMM-WASP integrated process-based model
in the Jiuqu River basin. The performance assessment of the LSTM
simulation model revealed a remarkable resemblance between the
LSTM fitting accuracy and that of the coupled mechanism model,
particularly for the river flow, ammonia nitrogen concentration,
and total phosphorus concentration, yielding a high coefficient of
determination values (R2 ¼ 0.999, 0.996, and 0.995, respectively).
Furthermore, model prediction performance analysis indicated that
the integrated process-based model with optimized parameters
was highly accurate regarding the annual water flow, ammonia
nitrogen concentration, and total phosphorus concentration. The
analysis of the model parameters demonstrated that the parame-
ters related to degradation exhibited the most significant changes,
followed by those related to infiltration. The optimization of
pollutant degradation and the dry season water infiltration process
were pivotal factors in the significant improvement in the model
prediction accuracy during the dry season.

The integrated process-basedmodel with optimized parameters
via the LSTM-ACO approach could accurately simulate the river
water quality under the influence of the sewereWWTPeriver
systemwithin a short period. This model provides valuable support
for pollution control across various stages, including pollution
generation, accumulation, transmission, discharge, and degrada-
tion. Moreover, it offers potential solutions to urban water chal-
lenges. In the future, this technique may be combined with online
water sensors, cloud computing, and other emerging technologies
to play a significant role in developing digital cities, making it
feasible to efficiently and systematically tackle complex multi-
media water environment issues.
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